
VARIETIES WITHOUT EXTRA AUTOMORPHISMS III: HYPERSURFACES

BJORN POONEN

Abstract. For any field k and integers n ≥ 1, d ≥ 3, with (n, d) not equal to (1, 3) or (2, 4),
we exhibit a smooth hypersurface X over k of degree d in Pn+1 such that X has no nontrivial
automorphisms over k. For (n, d) = (2, 4), we find a smooth hypersurface X with the weaker
property of having no nontrivial automorphism induced by an automorphism of the ambient Pn+1.

1. Introduction

Let k be a field, and let p be its characteristic, which may be 0. Fix an algebraic closure k of
k. Let X in Pn+1 be a smooth hypersurface of degree d over k. Let X = X ×k k. Let AutX be
the group of automorphisms of X over k. Call γ ∈ AutX linear with respect to the embedding
X ↪→ Pn+1 if γ is induced by an automorphism of Pn+1 over k, i.e., by a linear transformation of
the homogeneous coordinates. The linear automorphisms form a subgroup LinX of AutX.

We will study LinX primarily. Before stating our main result, Theorem 1.6, let us briefly survey
known related results. First, it is known that for most (n, d), there is no difference between AutX
and LinX:

Theorem 1.1. If X is a smooth hypersurface in Pn+1 of degree d, where n ≥ 1, d ≥ 3, and (n, d)
does not equal (1, 3) or (2, 4), then AutX = LinX.

Proof. The case n = 1 is Theorem 1 of [Cha78]. The case n ≥ 2 is Theorem 2 of [MM63]. �

Remark 1.2. The exclusion of (1, 3) and (2, 4) in Theorem 1.1 is necessary. When (n, d) = (1, 3), a
choice of flex in X(k) makes X an elliptic curve, and if P ∈ X(k) satisfies 3P 6= 0, then translation
by P is a nonlinear automorphism of X. (See the proof of Theorem 1.3 below.) For (n, d) = (2, 4),
the equality fails only for certain X; an example due to Fano and Severi is described in the proof
of Theorem 4 in [MM63], for instance. What makes the proofs fail for (n, d) = (2, 4) is that the
canonical bundle is trivial, and that PicX can be larger than Z. In fact, the Tate conjecture
predicts that the latter is automatic for X over Fp with (n, d) = (2, 4).

Theorem 1.3. If n ≥ 1 and d ≥ 3, then LinX is finite.

Proof. See the “Historical Remarks” section at the end of [OS77]. The result has apparently been
known for at least one hundred years, at least when p = 0. Matsumura and Monsky [MM63] give
a proof in arbitrary characteristic, at least when n ≥ 2. If n = 1 and d ≥ 4, then X is a curve of
genus g = (d− 1)(d− 2)/2 ≥ 2, so AutX is finite [Sch38].

We are left with the easiest case, in which n = 1 and d = 3. Without loss of generality,
k = k. We can make X an elliptic curve by choosing a flex P as origin. The automorphism group
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Aut(X,P ) of the elliptic curve is finite and of order dividing 24 [Sil92, Theorem III.10.1]. Also,
Aut(X,P ) ⊆ LinX, since OX(1) for the embedding X ↪→ P2 is the line sheaf L(3P ) on X. The
orbit of P under LinX is contained in the set of points P ′ ∈ X(k) such that L(3P ′) ∼= L(3P );
this is the set of 3-torsion points of the elliptic curve (X,P ), which is of size at most 9. Hence
(LinX : Aut(X,P )) ≤ 9, so #(LinX) ≤ 216 (with equality if and only if X is supersingular and
p = 2). �

Remark 1.4. Suppose that p = 0 and d ≥ 3. In unpublished work, Bott and Tate [BT61] used
homological methods to show that there exists an upper bound for #(LinX) depending only on n
and d. For n = 1 and d ≥ 4, one can use Hurwitz’s theorem that #(AutX) ≤ 84(g − 1) for any
curve X of genus g. For n ≥ 2, Howard and Sommese [HS81] prove that there is a constant cn
depending only on n such that #(LinX) ≤ cndn.

Let N =
(
d+n+1

d

)
be the number of monomials of degree d in variables x0, . . . , xn+1. Over any

field k, smooth hypersurfaces of degree d in Pn+1 correspond to the points of a dense open subset
Hn,d of PN−1, on which the homogeneous coordinates are the coefficients of the polynomial defining
the hypersurface. For n ≥ 1, d ≥ 3, and (n, d) 6= (1, 3), Katz and Sarnak [KS99, Lemma 11.8.5]
show that there is an open subset Un,d ⊂ Hn,d whose points correspond to the smooth hypersurfaces

X with LinX = {1}.
Theorem 1.5. Suppose that n ≥ 1, d ≥ 3, and (n, d) 6= (1, 3). Then Un,d is nonempty. In other

words, the generic hypersurface X of degree d in Pn+1 has LinX = {1}.
Proof. Matsumura and Monsky [MM63] prove this for n ≥ 2, d ≥ 3, and their methods can be
adapted to the case n = 1, d ≥ 4. A proof for n = 1, d ≥ 4 written out in full can be found
in [Cha78] for p = 0, and in [KS99, 10.6.18] for arbitrary p using an alternative method. �

Combining Theorem 1.5 with the Lang-Weil method as in Corollary 11.8.7 of [KS99], one can
show that for these (n, d), there exists Nn,d > 0 such that for any field k with #k > Nn,d (in
particular, any infinite field), there exists a smooth hypersurface X of degree d in Pn+1 over k with
LinX = {1}. Our main result is that the same conclusion holds for all k:

Theorem 1.6. For any field k and integers n ≥ 1, d ≥ 3 with (n, d) 6= (1, 3), there exists a smooth
hypersurface X over k of degree d in Pn+1 such that LinX = {1}.
Remark 1.7. The exclusion of (1, 3) is necessary. If (n, d) = (1, 3), then we may choose a flex to
make X an elliptic curve, and then multiplication by −1 on the elliptic curve is a nontrivial linear
automorphism.

Remark 1.8. There is a small overlap between Theorem 1.6 and the main result of [Poo00a], since
a smooth hypersurface X of degree 4 in P2 with LinX = {1} is the same thing as a genus 3 curve
X with AutX = {1}.

Our proof of Theorem 1.6 does not use Theorem 1.5, so it gives a new proof of Theorem 1.5. We
can also combine Theorems 1.1 and 1.6 to obtain the following:

Corollary 1.9. For any field k and integers n ≥ 1, d ≥ 3 with (n, d) not equal to (1, 3) or (2, 4),
there exists a smooth hypersurface X over k of degree d in Pn+1 such that AutX = {1}.
Remark 1.10. Remark 1.7 shows that the exclusion of (1, 3) in Corollary 1.9 is necessary. But it
may be that Corollary 1.9 holds for (n, d) = (2, 4).

Section 2 gives the definition of X for Theorem 1.6, which will depend on n, d, and p. Section 3
proves that X is smooth. Most of the rest of the paper is devoted to proving that LinX is trivial
in the various cases. Finally, in Section 11, we mention a few consequences for the automorphism
group scheme AutX.
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2. Construction of X

The hypersurface X in Theorem 1.6 will be the subvariety of Pn+1 defined by a homogeneous
polynomial f(x0, x1, . . . , xn+1). In order to help us control the automorphisms, we will choose an
f that “endows the variables with an ordering.” As a first attempt, we could try

x0x
d−1
1 + x1x

d−1
2 + · · ·+ xnx

d−1
n+1,

but this fails for two reasons: first, the resulting hypersurface is singular at (1 : 0 : 0 : · · · : 0); and
second, it has nontrivial automorphisms if d−1 is not a power of p, since one can multiply xn+1 by
a nontrivial (d− 1)-th root of unity. In fact, if we choose any form with n+ 1 or fewer monomials,

there will be a nontrivial diagonal action of Gm on X in which λ ∈ k∗ acts as

(x0 : x1 : · · · : xn+1) 7→ (λa0x0 : λa1x1 : · · · : λan+1xn+1),

for some integers ai not all equal.
These problems can be fixed for most triples (n, d, p) by adding a few terms to the “ends” of f .

In particular, we will show that adding cxd0 and xdn+1 to f will work when d 6≡ 0, 1 (mod p), if we
choose c ∈ k \ {0, cbad}, where

cbad := −d(1−d)n+1−1(1− d)
(1−d)n+2−(1−d)

d ∈ k∗,

except that we must also avoid c = 243−9 if (n, d) = (2, 3). The hypersurface in Case I becomes
singular for c = 0 or c = cbad. If (n, d, c) = (2, 3, 243−9), then the resulting cubic surface in any
characteristic not 2 or 3 has a nontrivial linear automorphism given by

324 6561 1458 4374
16 324 −72 −216
0 0 648 0
48 −972 −216 0

 ∈ PGL4(k).

When d ≡ 0 (mod p), we need to add a term to rule out automorphisms mapping x0 7→ x0 +λx1
and fixing all other xi. (Actually such automorphisms create a problem only when d is a power of
p.) When d ≡ 1 (mod p), we add a few terms in order that some of the second partial derivatives
of f be nonvanishing, because our method for controlling the automorphisms relies on the fact that
most, but not all, of the second partial derivatives of f vanish.

The definition of f in all cases is given in Table 1. The congruence conditions on d defining the
cases are congruences modulo p. Note that in Cases I and II, we have p 6= 2, and if (n, d) = (2, 3)
in Case I, then p 6= 3 also, so there is always at least one choice for c ∈ k. The reader who prefers
to have c prescribed explicitly may take c = 2cbad in Case I and c = 2(−2)d−2 in Case II.

3. Smoothness of X

This section proves that X is smooth in each case. This is not especially difficult. The hard
part was finding the f for which this would be easy, and for which our methods for controlling the
automorphisms would apply.

Case I: d 6≡ 0, 1 (mod p)
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Case f Conditions

I d 6≡ 0, 1 cxd0 +

(
n∑
i=0

xix
d−1
i+1

)
+ xdn+1

c 6= 0, cbad
(n, d, c) 6= (2, 3, 243−9)

II
d ≡ 0
p 6= 2

cxd0 + x20x
d−2
1 +

(
n∑
i=0

xix
d−1
i+1

)
+ xdn+1 c 6= 0, (−2)d−2

III
d ≡ 0
p = 2

xd−10 x1 + c(xd1 + xd2) +

(
n∑
i=0

xix
d−1
i+1

)
+ xdn+1 c =

{
0, if n = 1

1, if n ≥ 2

IV
d ≡ 1
p 6= 2

xd0 +

bn−1
2
c∑

i=0

x22ix
d−2
2i+1

+

(
n∑
i=0

xix
d−1
i+1

)
+ xn+1x

d−1
0

V
d ≡ 1
p = 2
n = 1

x0x
d−2
1 x2 + x0x

d−1
1 + x1x

d−1
2 + x2x

d−1
0 + x21x

d−2
2

VI
d ≡ 1
p = 2
n > 1

xd1 +

bn−1
3
c∑

i=0

x3ix
d−2
3i+1x3i+2

+

(
n∑
i=1

xix
d−1
i+1

)
+ xn+1x

d−1
0

Table 1. Definition of f(x0, x1, . . . , xn+1).

Suppose P is a singular point. At P the derivative ∂f/∂xi must vanish for each i:

0 = cdxd−10 + xd−11

0 = (d− 1)x0x
d−2
1 + xd−12

0 = (d− 1)x1x
d−2
2 + xd−13(1)

...

0 = (d− 1)xn−1x
d−2
n + xd−1n+1

0 = (d− 1)xnx
d−2
n+1 + dxd−1n+1.

Note that if 0 ≤ i ≤ n, and xi = 0 at P , then xi+1 = 0 by the equation

0 = (d− 1)xi−1x
d−2
i + xd−1i+1

(or the first equation, if i = 0), so that by induction xj = 0 for all j ≥ i. On the other hand, if
2 ≤ i ≤ n+ 1, and xi = 0, we find from

0 = (d− 1)xi−2x
d−2
i−1 + xd−1i

that either xi−1 = 0 or xi−2 = 0, and the latter also implies xi−1 = 0 by what we just proved, so
that xi−1 = 0 in any case. Also, if x1 = 0, then x0 = 0 by the first equation in (1).

Thus if any xi is zero at P , all are zero at P . Hence if there is a singular point P , all its projective
coordinates are nonzero. Without loss of generality, assume xn+1 = 1. Then from the last equation
in (1) we find

xn = d(1− d)−1.

Substituting into the penultimate equation in (1), we find

xn−1 = d2−d(1− d)d−3.
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Working our way up the list of equations, using all of them up to but not including the first, we
prove by induction on i that

xn+1−i = d
1−(1−d)i

d (1− d)
1−(i+1)d−(1−d)i+1

d2

for i = 1, 2, . . . , n + 1. The values of x0 and x1 so computed contradict the first equation in (1),
provided that c 6= cbad.

Case II: d ≡ 0 (mod p), p 6= 2

This time, the vanishing of the derivatives gives rise to the system

0 = 2x0x
d−2
1 + xd−11

0 = −x0xd−21 − 2x20x
d−3
1 + xd−12

0 = −x1xd−22 + xd−13(2)

...

0 = −xn−1xd−2n + xd−1n+1

0 = −xnxd−2n+1.

As in Case I, if 2 ≤ i ≤ n and xi = 0, then xi+1 = 0 by the equation

0 = −xi−1xd−2i + xd−1i+1 .

On the other hand, if 4 ≤ i ≤ n+ 1 and xi = 0, then from

0 = −xi−2xd−2i−1 + xd−1i

we obtain xi−1 = 0 or xi−2 = 0, and the latter also implies xi−1 = 0 by what we just proved, so
that xi−1 = 0 in any case.

From the last equation in (2), we obtain xn = 0 or xn+1 = 0, so we immediately deduce xi = 0 for
3 ≤ i ≤ n+ 1. If x1 = 0, then we obtain x0 = 0 from the original equation f = 0, and x2 = 0 from
the second equation in (2), which is a contradiction, as desired. Thus we may assume x1 = 1, and
then the first and third equations in (2) yield x0 = −1/2 and x2 = 0. For (−1

2 : 1 : 0 : 0 : · · · : 0) to
be a point on X we must have

c

(
−1

2

)d
+

1

4
− 1

2
= 0,

so we obtain the desired contradiction, provided that c 6= (−2)d−2.

Case III: d ≡ 0 (mod p), p = 2

The vanishing of the derivatives gives rise to the system

0 = xd−20 x1 + xd−11

0 = xd−10 + x0x
d−2
1 + xd−12

0 = x1x
d−2
2 + xd−13(3)

...

0 = xn−1x
d−2
n + xd−1n+1

0 = xnx
d−2
n+1.
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We deduce as in Case II that x3 = x4 = · · · = xn+1 = 0. If x1 = 0, then we obtain x2 = 0 from
the original equation f = 0, and x0 = 0 from the second equation in (3), so all xi are zero, a
contradiction. Thus we may assume x1 = 1, and the third and first equations in (3) yield x2 = 0

and xd−20 = 1. The original equation f = 0 becomes

x0 + 1(1 + 0) + x0 + 0 + 0 + · · ·+ 0 = 0,

a contradiction in characteristic 2.

Case IV: d ≡ 1 (mod p), p 6= 2

The vanishing of the derivatives gives rise to the system

0 = xd−11 + 2x0x
d−2
1 + xd−10

0 = xd−12 − x20xd−31

0 = xd−13 + 2x2x
d−2
3

0 = xd−14 − x22xd−33(4)

...

0 = xd−1n+1 (−x2n−1xd−3n if n is odd)

0 = xd−10 .

The last equation implies x0 = 0. The first then implies x1 = 0, and going down the list of equations
we show by induction that xi = 0 for all i. (Note that the conditions defining this case imply d ≥ 4,
so the exponent d− 3 and anything larger will be positive.)

Case V: d ≡ 1 (mod p), p = 2, n = 1

The vanishing of the derivatives gives rise to the system

0 = xd−21 x2 + xd−11

0 = x0x
d−3
1 x2 + xd−12(5)

0 = x0x
d−2
1 + xd−10 + x21x

d−3
2 .

Working from the bottom up, we find

x1 = 0 =⇒ x0 = 0 =⇒ x2 = 0 =⇒ x1 = 0.

Thus if any xi is zero, all the xi are zero, a contradiction. Hence all the xi are nonzero. Then
the first equation in (5) implies x1 = x2. Substituting x2 = x1 in the second equation yields

0 = x0x
d−2
1 + xd−11 , so x0 = x1 = x2. Substituting these into the third equation, we find xd−10 = 0,

so x0 = 0, a contradiction.

Case VI: d ≡ 1 (mod p), p = 2, n > 1
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The vanishing of the derivatives gives rise to the system

0 = xd−21 x2

0 = xd−12 + x0x
d−3
1 x2 + xd−11

0 = xd−13 + x0x
d−2
1

0 = xd−14 + xd−24 x5

0 = xd−15 + x3x
d−3
4 x5(6)

0 = xd−16 + x3x
d−2
4

...

0 = xd−10 (+xn−1x
d−2
n if n ≡ 1 (mod 3))

(To see the pattern, pretend that the exceptional term xd−11 in the second equation were actually
in the first, and group the equations in threes.) Let m = 3bn+2

3 c. There are zero, one, or two
equations past the first m equations, and these final ones are those that are missing a “second
term,” i.e., that are simply of the form 0 = xd−1i for some i.

By the first equation, either x1 or x2 is zero. If x2 = 0, then x1 = 0 by the second equation, so
x1 = 0 in any case. The third equation then yields x3 = 0. For i = 3, 6, . . . ,m− 3, the (i+ 2)-th,
(i+ 1)-th, and (i+ 3)-th equations show that

xi = 0 =⇒ xi+2 = 0 =⇒ xi+1 = 0 =⇒ xi+3 = 0,

where we should interpret xn+2 as x0 if necessary. Thus we deduce xi = 0 for 3 ≤ i ≤ m.
If m = n, we have xm+1 = 0 and x0 = 0 automatically from the last two equations in (6). If

m = n + 1, we have x0 = 0 automatically from the last equation. If m = n + 2, we have already
shown x0 = xn+2 = 0. Thus in every case we have xi = 0 for all i except possibly i = 2. Finally,
we obtain x2 = 0 from the second equation in (6).

4. Controlling the automorphisms: the idea

The remainder of the paper is devoted to proving that LinX is trivial in each case. In this
section, we explain the main tool to be used, and introduce some notation.

Suppose we are in Case I. Then ∂f/∂x0 is killed by ∂/∂xi for all i ≥ 2. If we have a linear

automorphism of X given by the matrix L = (`ij) ∈ GLn+2(k), and if we set yi =
∑n+1

j=0 `ijxj , then

(7) f(x0, x1, . . . , xn+1) = αf(y0, y1, . . . , yn+1)

for some nonzero scalar α ∈ k∗, and

∂

∂x0
f(x0, x1, . . . , xn+1) = α

n+1∑
i=0

`i0
∂f(y0, y1, . . . , yn+1)

∂yi

is killed by at least an (n − 2)-dimensional subspace of the span of the operators ∂/∂xj , which
is also the span of the ∂/∂yi. Such considerations will severely constrain the possibilities for the
entries of the matrix L.

In general, let A denote the Hessian matrix of f , with entries aij := ∂2f
∂xi∂xj

. For (column) vectors

v = (v0, v1, . . . , vn+1) and w = (w0, w1, . . . , wn+1) in k
n+2

, we define a symmetric k-linear pairing

〈v, w〉 := vtAw =
n+1∑
i=0

n+1∑
j=0

viwj
∂2f

∂xi∂xj
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taking values in k[x0, x1, . . . , xn+1]. If L = (`ij) ∈ GLn+2(k) gives an automorphism of X, then

〈v, w〉 is a scalar multiple of the result of replacing each xi by
∑n+1

j=0 `ijxj in 〈Lv,Lw〉. In particular,
and this is mainly what we will use,

〈Lv, Lw〉 = 0 ⇐⇒ 〈v, w〉 = 0.

For a vector v ∈ kn+2
, define a subspace

v⊥ := {w ∈ kn+2
: 〈v, w〉 = 0 }.

For any subspace V , let codimV denote the codimension of V as a subspace of k
n+2

. In the
subsequent sections we will repeatedly use the following (trivial) observation.

Lemma 4.1. The number codim v⊥ equals the dimension of the k-vector space spanned by the
(polynomial) entries of the column vector Av.

Proof. Both numbers equal the dimension of the image of (Av)t, considered as a linear function on

k
n+2

. �

For a subspace V ⊆ kn+2
, define a subspace

V ⊥ := {w ∈ kn+2
: 〈v, w〉 = 0 for all v ∈ V }.

If L gives an automorphism of X, then for all vectors v and subspaces V ,

(8) (Lv)⊥ = L
(
v⊥
)

and (LV )⊥ = L
(
V ⊥
)
,

so in particular

(9) codim(Lv)⊥ = codim v⊥ and codim(LV )⊥ = dimV ⊥.

We let {e0, e1, . . . , en+1} denote the standard basis for k
n+2

.
For 0 ≤ m ≤ n+ 1, define subspaces

Sm :=

m∑
i=0

k · ei, Tm :=

n+1∑
i=m

k · ei.

Also set Sm = 0 if m < 0, and Tm = 0 if m > n+ 1.
Once we have taken full advantage of the fact that L respects the pairing, we can usually complete

the proof that L is a scalar multiple of the identity simply by equating various coefficients in (7).

5. Controlling the automorphisms: Case I

In this case we have

A =



h0 g1 0 0 · · · 0 0
g1 h1 g2 0 · · · 0 0
0 g2 h2 g3 · · · 0 0
0 0 g3 h3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · hn gn+1

0 0 0 0 · · · gn+1 hn+1


where gi := (d− 1)xd−2i and

hi :=


cd(d− 1)xd−20 if i = 0

(d− 1)(d− 2)xi−1x
d−3
i if 1 ≤ i ≤ n

d(d− 1)xd−2n+1 + (d− 1)(d− 2)xnx
d−3
n+1 if i = n+ 1.
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We will subdivide Case I as follows (recall that p 6= 2 throughout this case):

• Case I.1: d 6≡ 0, 1, 2 (mod p) and d 6= 3
• Case I.2: d ≡ 2 (mod p) and p 6= 2
• Case I.3: d = 3; p 6= 2, 3; and n ≥ 2.

Case I.1: d 6≡ 0, 1, 2 (mod p) and d 6= 3

In this subcase, g1, . . . , gn+1, h0, h1, . . . , hn+1 are linearly independent over k. In particular, note
that e⊥m equals Sm−2 + Tm+2, which is the k-vector space spanned by all the ei except em−1, em,
and em+1.

Lemma 5.1. For any v = (v0, v1, . . . , vn+1) ∈ k
n+2

,

v⊥ =
⋂

i:vi 6=0

e⊥i .

Proof. Suppose w = (w0, w1, . . . , wn+1) ∈ k
n+2

. If the i-th coordinate of Aw is nonzero, then at
least one of wi−1, wi, wi+1 is nonzero. If wi is nonzero, then hi occurs in the i-th coordinate of Aw
and in no other coordinates. If wi = 0 but wi−1 6= 0, then then gi occurs in the i-th coordinate
of Aw and in no other coordinates. If wi = 0 but wi+1 6= 0, then then gi+1 occurs in the i-th
coordinate of Aw and in no other coordinates. The nonzero coordinates of Aw are thus linearly
independent over k, since each involves a g or h not present in the other coordinates. In other
words, the polynomials 〈ei, w〉 for i = 0, 1, . . . , n + 1 that are nonzero are linearly independent.
Thus if 〈v, w〉 = 0 and vi 6= 0, then 〈ei, w〉 = 0. �

Lemma 5.1 and the remark preceding it let us immediately calculate v⊥ for any vector v, and also
V ⊥ for any subspace V , since V ⊥ =

⋂
v∈V v

⊥. In particular, we obtain the following corollaries.

Corollary 5.2. If v ∈ k
n+2

is nonzero, then codim v⊥ ≥ 2, with equality if and only if v is a
multiple of e0 or en+1.

Note that for 0 ≤ m ≤ n, the (m + 1)-dimensional subspace Sm ⊂ k
n+2

has S⊥m = Tm+2, and
codimS⊥m = m+ 2.

Corollary 5.3. Suppose 0 ≤ m ≤ n − 2. Let V be an (m + 2)-dimensional subspace of k
n+2

containing Sm. Then codimV ⊥ ≥ m+ 3, with equality if and only if V = Sm+1.

Proof. Write V = Sm+k·v, so V ⊥ = S⊥m∩v⊥. If v has any nonzero coordinate vi with m+2 ≤ i ≤ n,
then the condition that an element w of S⊥m be in v⊥ places at least two linear conditions on w,
namely wi = 0 and wi+1 = 0, so codimV ⊥ ≥ codimS⊥m + 2 = m + 4 in this case. Similarly, if
vn+1 6= 0, then the condition that an element w of S⊥m be in v⊥ places the new conditions wn = 0
and wn+1 = 0 on w, so that codimV ⊥ ≥ m+ 4 again. The only remaining possibility is that vi = 0
for all i ≥ m+ 2, in which case we must have V = Sm+1 and codimV ⊥ = codimTm+3 = m+ 3. �

Corollary 5.4. Suppose 3 ≤ m ≤ n + 1. Let V be an (n −m + 3)-dimensional subspace of k
n+2

containing Tm. Then codimV ⊥ ≥ n−m+ 4, with equality if and only if V = Tm−1.

Proof. The proof is completely analogous to that of Corollary 5.3. �

Corollary 5.5. The vectors Le0 and Len+1 are multiples of e0 and en+1 in some order.

Proof. This follows from (9) and Corollary 5.2. �
9



We may now subdivide Case I.1 further into two subcases.

Case I.1.a: Le0 is a multiple of e0
Corollary 5.3 gives a characterization of the flag S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 of vector spaces containing

S0 that involves only dimensions and the ⊥-operation. Since L preserves S0 by assumption, we
have L(Sm) = Sm for 0 ≤ m ≤ n− 1. Similarly by Corollary 5.4, L(Tm) = Tm for 2 ≤ m ≤ n+ 1.
Together, these imply that L is of the form1

L =



∗ ∗ 0 · · · 0 0 0
0 ∗ 0 · · · 0 0 0
0 0 ∗ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ∗ 0 0
0 0 0 · · · 0 ∗ 0
0 0 0 · · · 0 ∗ ∗


,

with zeros off the diagonal except possibly in positions `01 and `n+1,n. Since L is nonsingular,

`ii 6= 0 for all i, and by scaling L, we may assume `n+1,n+1 = 1. By equating coefficients of xdn+1

in (7), we see that α = 1. Equating coefficients of xdn and of xd−1n xn+1 in

f(x0, x1, . . . , xn, xn+1) = f(`00x0 + `01x1, `11x1, . . . , `nnxn, `n+1,nxn + xn+1),

we obtain

0 = `nn`
d−1
n+1,n + `dn+1,n

0 = (d− 1)`nn`
d−2
n+1,n + d`d−1n+1,n.

Multiply the first by (d − 1) and the second by `n+1,n, and subtract to deduce `n+1,n = 0. For

i = n, n − 1, . . . , 1 in turn, we equate coefficients of xix
d−1
i+1 to find `ii = 1. Equate coefficients of

xd−10 x1 and use `00 6= 0 and d 6≡ 0 (mod p) to deduce `01 = 0. Finally equate coefficients of x0x
d−1
1

to deduce `00 = 1. Thus L is the identity, as desired.

Case I.1.b: Le0 is a multiple of en+1

This time Corollaries 5.3 and 5.4 imply that L(Sm) = Tn+1−m for 0 ≤ m ≤ n− 1 and L(Tm) =
Sn+1−m for 2 ≤ m ≤ n+ 1, so that L is of the form

L =



0 0 0 · · · 0 ∗ ∗
0 0 0 · · · 0 ∗ 0
0 0 0 · · · ∗ 0 0
...

...
...

. . .
...

...
...

0 0 ∗ · · · 0 0 0
0 ∗ 0 · · · 0 0 0
∗ ∗ 0 · · · 0 0 0


,

with nonzero entries on the reverse diagonal, and zero entries off it, except possibly at `0n and
`n+1,1. We may assume `0,n+1 = 1. Equating coefficients of xdn and of xd−1n xn+1 in

f(x0, x1, . . . , xn, xn+1) = f(`0nxn + xn+1, `1nxn, . . . , `n1x1, `n+1,0x0 + `n+1,1x1)

1Each asterisk in a matrix denotes an element of k which may or may not be zero.
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we find

0 = c`d0n + `0n`
d−1
1n

0 = cd`d−10n + `d−11n .

Subtracting `0n times the second from the first, we find c(1 − d)`d0n = 0, so `0n = 0. Substituting
back into the second, we find `1n = 0 as well. But this contradicts the nonsingularity of L.

Case I.2: d ≡ 2 (mod p) and p 6= 2

We have

A =



2cg0 g1 0 0 · · · 0 0 0
g1 0 g2 0 · · · 0 0 0
0 g2 0 g3 · · · 0 0 0
0 0 g3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 gn 0
0 0 0 0 · · · gn 0 gn+1

0 0 0 0 · · · 0 gn+1 2gn+1


,

and g0, g1, . . . , gn+1 are linearly independent over k.

Lemma 5.6. If v ∈ kn+2
is nonzero, then codim v⊥ ≥ 1, with equality if and only if v is a multiple

of en+1.

Proof. By Lemma 4.1, codim e⊥n+1 = 1, and the same is true for any multiple of en+1.
Now assume instead that the first nonzero coordinate vi in v occurs for i ≤ n. Then gi appears

exactly once in the coordinates of Av, namely in the (i−1)-th coordinate (or in the 0-th coordinate
if i = 0). If i < n, then gi+1 appears in the (i+ 1)-th coordinate of Av, since ai+1,i is independent
of the other entries of its row in A, so the span of the coordinates of Av has dimension at least 2.
If i = n, then gn+1 appears in either the n-th or the (n+ 1)-th coordinate of Av, so again the span
of the coordinates of Av has dimension at least 2. Thus codim v⊥ ≥ 2 by Lemma 4.1. �

Corollary 5.7. We have L(Tn+1) = Tn+1.

The (n−m+ 2)-dimensional space Tm satisfies T⊥m = Sm−2 if 2 ≤ m ≤ n.

Lemma 5.8. For nonzero v ∈ kn+2
, we have codim v⊥ ≤ 2 if and only if v is a multiple of some

ei or is a linear combination of en and en+1.

Proof. The “if” direction is clear from Lemma 4.1. Now suppose codim v⊥ ≤ 2 and that the first
nonzero vi in v occurs for i < n. We must show that v is a multiple of ei. As in the proof of
Lemma 5.6, gi appears exactly once in the coordinates of Av, namely in the (i− 1)-th coordinate
(or the 0-th coordinate if i = 0), and gi+1 appears in the (i + 1)-th coordinate, so at least these
two coordinates are linearly independent. Suppose for sake of contradiction that vj 6= 0 for some
j > i, and choose the largest such j. If j ≤ n, then gj+1 appears in the (j + 1)-th coordinate of Av
but not before, so it is independent of the (i− 1)-th and (i+ 1)-th coordinates, and the span is of
dimension at least 3, as desired. If j = n+ 1, then gn+1 appears in the n-th coordinate of Av and
not before, so we are again done, unless i+ 1 = n.

To handle the remaining case i = n − 1, j = n + 1 we break into cases according as vn = 0
or not. If vn = 0, then gn−1 appears only in the (n − 2)-th coordinate of Av, gn appears only in
the n-th coordinate of Av, and gn+1 appears in the (n + 1)-th coordinate of Av, so these three
coordinates are independent. If vn 6= 0, then gn−1 appears only in the (n− 2)-th coordinate of Av,

11



a pure multiple of gn occurs in the (n − 1)-th coordinate, and a non-pure combination of gn and
gn+1 occurs in the n-th coordinate, so again the span of the coordinates is at least 3-dimensional.
Hence codim v⊥ ≥ 3. �

Corollary 5.9. We have L(Tn) = Tn.

Proof. Lemma 5.8 shows that Tn is the only 2-dimensional subspace consisting entirely of vectors
v for which codim v⊥ ≤ 2. �

Lemma 5.10. For 0 ≤ i ≤ n− 1, Lei is a multiple of ei.

Proof. By Lemma 5.8 and Corollary 5.9, L acts on e0, e1, . . . , en−1 by scaling them independently
and then permuting them. Equating coefficients of xd0 in (7) we see that Le0 must be a multiple of

e0. By induction on i for 1 ≤ i ≤ n− 1, equating coefficients of xi−1x
d−1
i shows that Lei must be

a multiple of ei. �

Lemma 5.10 and Corollaries 5.7 and 5.9 together imply that L is of the form

L =



∗ 0 0 · · · 0 0 0
0 ∗ 0 · · · 0 0 0
0 0 ∗ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ∗ 0 0
0 0 0 · · · 0 ∗ 0
0 0 0 · · · 0 ∗ ∗


.

The argument at the end of Case I.1.a now implies that L is (a scalar multiple of) the identity.

Case I.3: d = 3; p 6= 2, 3; and n ≥ 2

We have

A = 2



3cx0 x1 0 0 · · · 0 0 0 0
x1 x0 x2 0 · · · 0 0 0 0
0 x2 x1 x3 · · · 0 0 0 0
0 0 x3 x2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · xn−3 xn−1 0 0
0 0 0 0 · · · xn−1 xn−2 xn 0
0 0 0 0 · · · 0 xn xn−1 xn+1

0 0 0 0 · · · 0 0 xn+1 xn + 3xn+1


.

Lemma 5.11. If n > 2, then codim v⊥ ≤ 2 if and only if v is a multiple of one of the following:

e0, e0 ±
√

3ce1, 3en − en+1, en+1.

If n = 2, the same is true, except that multiples of e0 ±
√

3c(e1 + 3e3) are also possible.

Proof. We may assume v 6= 0. Let j be the largest integer such that vj is nonzero.

If j = 0, then v is a multiple of e0, and codim v⊥ = 2.
If j = 1, then to have codim v⊥ ≤ 2, we must have v0 6= 0, since codim e⊥1 = 3. Assume v0 = 1.

Then

Av = 2(3cx0 + v1x1, v1x0 + x1, v1x2, 0, 0, . . . , 0).
12



In order for the span of the coordinates to have dimension at most 2, the first two coordinates must
be dependent. By looking at the coefficients of x1, we see that this would imply

3cx0 + v1x1 = v1(v1x0 + x1),

which holds if and only if v1 = ±
√

3c.
If 2 ≤ j ≤ n, then xj+1 appears in the (j + 1)-th coordinate of Av but not before, and the j-th

coordinate is a nonzero combination of xj−1 and xj , so if codim v⊥ ≤ 2, then the 0-th, 1-st, . . . ,
(j − 1)-th coordinates of Av are all multiples of the j-th coordinate. In particular, xj−2 does not
appear in the (j−1)-th coordinate of Av, so vj−1 = 0. Thus the j-th coordinate of Av is a multiple
of xj−1. But the (j−1)-th coordinate involves xj , so it cannot be a multiple of the j-th coordinate,
a contradiction.

Finally we have the case j = n + 1. Suppose codim v⊥ ≤ 2. If vn 6= 0, then xn−1 appears in
the n-th coordinate of Av and not afterwards, and the (n + 1)-th coordinate is nonzero, so these
coordinates already span a 2-dimensional space, and all others must be dependent on them. In this
case, all coordinates must be combinations of xn−1, xn, and xn+1 only. If furthermore 0 ≤ i < n
and vi 6= 0, we get a contradiction by observing that xi−1 (x0 if i = 0) appears in the i-th coordinate
of Av. Thus, from our assumption vn 6= 0 we deduce that v is a combination of en and en+1 in
which both appear. The (n− 1)-th coordinate of Av is a nonzero multiple of xn, and this can be in
the span of the n-th and (n+ 1)-th coordinates only if the (n+ 1)-th coordinate also is a multiple
of xn, which happens if and only if v is a multiple of 3en − en+1.

Thus from now on, we may assume j = n + 1 and vn = 0. If vn−1 6= vn+1/3, then the last two
coordinates of Av are independent, so in order to have codim v⊥ ≤ 2, all other coordinates must
be combinations of these last two. In particular, they would all be combinations of xn and xn+1

only. For 0 ≤ i ≤ n − 1, the non-appearance of xi−1 (of x0 if i = 0) in the i-th coordinate of Av
then forces vi = 0, so that v is a multiple of en+1, and in this case codim v⊥ = 2.

Finally we have the case vn = 0, vn−1 = vn+1/3 6= 0. The (n − 1)-th coordinate of Av is a
combination of xn−1 and xn−2 in which the latter appears, and the (n + 1)-th coordinate is a
multiple of xn + 3xn+1. These already span a 2-dimensional space, so if codim v⊥ ≤ 2, all other
coordinates must be combinations of xn−2, xn−1, xn, and xn+1. Suppose that n > 2. Then for
0 ≤ i ≤ n−2, the non-appearance of xi−1 (of x0 if i = 0) in the i-th coordinate of Av forces vi = 0.
The (n − 2)-th, (n − 1)-th, and (n + 1)-th coordinates of Av are now nonzero multiples of xn−1,
xn−2, and xn + 3xn+1, respectively, so there are independent, and codim v⊥ ≥ 3.

We are left with the case n = 2, v2 = 0, v1 = v3/3. If v1 6= ±
√

3cv0, then the 0-th and 1-st
coordinates of Av are independent, and neither involves x3, so the last coordinate is independent
of both of them, yielding codim v⊥ ≥ 3. Otherwise, if v1 = ±

√
3cv0, then v is a nonzero multiple

of e0 ±
√

3c(e1 + 3e3), and we check that in this case codim v⊥ = 2. �

We next subdivide Case I.3 according as n = 2 or n > 2.

Case I.3.a: n > 2

Corollary 5.12. We have L(S1) = S1 and L(Tn) = Tn.

Proof. By (8), L must permute the five lines generated by the vectors listed in Lemma 5.11. The

only 2-dimensional subspace of k
n+2

containing three of these five lines in S1, so L(S1) = S1. The
subspace spanned by the other two lines is Tn, so L(Tn) = Tn. �

Lemma 5.13. The vectors Len and Len+1 are nonzero multiples of en and en+1, respectively.

Proof. By Corollary 5.12, we know L(Tn) = Tn. Hence y0, y1, . . . , yn−1 are linear combinations of
x0, x1, . . . , xn−1 only.
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Substituting x0 = x1 = · · · = xn−1 = 0 in (7), we find

(10) (xn + xn+1)x
2
n+1 = α(zn + zn+1)z

2
n+1,

where zi denotes the part of the linear form yi involving xn and xn+1. By unique factorization, this
implies that zn+1 is a nonzero scalar multiple of xn+1. Without loss of generality, we may assume
zn+1 = xn+1; i.e. `n+1,n+1 = 1. Equating coefficients of x3n+1 in (10), we obtain α = 1. Now (10)
implies zn = xn. This gives the desired result. �

Corollary 5.14. We have L(Sn−2) = Sn−2 and L(Sn−1) = Sn−1.

Proof. This follows from Lemma 5.13, since e⊥n = Sn−2 and e⊥n+1 = Sn−1. �

Lemma 5.15. For 1 ≤ m ≤ n+ 1, T⊥m = Sm−2.

Proof. We use backwards induction on m. Clearly T⊥n+1 = Sn−1. For 1 ≤ m ≤ n,

T⊥m = T⊥m+1 ∩ e⊥m = Sm−1 ∩ (Sm−2 + Tm+2) = Sm−2.

�

Lemma 5.16. For 2 ≤ m ≤ n+ 1, Lem is a multiple of em.

Proof. We know it already for m = n+ 1 and m = n. We use backwards induction on m. Suppose
2 ≤ m ≤ n − 1, and that Lem′ is a multiple of em′ for m′ > m. Then Tm+1 and Tm+2 are each
preserved by L, and so are Sm−1 = T⊥m+1 and Sm = T⊥m+2 by Lemma 5.15. Hence if v = Lem,
then v ∈ Sm, since em ∈ Sm. Also v 6∈ Sm−1, since otherwise L(Sm) ⊂ Sm−1, and L would not be
invertible. Moreover v⊥ ∩ Sm−1 has codimension 1 in Sm−1, since e⊥m ∩ Sm−1 has codimension 1 in
Sm−1. In other words, the span of the 0-th, 1-st, . . . , (m−1)-th coordinates of Av is 1-dimensional.
But xm appears in the (m− 1)-th coordinate of Av (since v ∈ Sm \ Sm−1), and not before, so the
0-th, 1-st, . . . , (m − 2)-th coordinates must all be zero. This forces v0 = v1 = · · · = vm−1 = 0, so
v = Lem is a multiple of em. �

We have S0 = S1 ∩ e⊥2 , so S0 also is fixed by L. Putting this together with Corollary 5.12 and
Lemma 5.16, we see that L is of the form

L =



∗ ∗ 0 · · · 0 0 0
0 ∗ 0 · · · 0 0 0
0 0 ∗ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ∗ 0 0
0 0 0 · · · 0 ∗ 0
0 0 0 · · · 0 0 ∗


.

The argument at the end of Case I.1.a now implies that L is (a scalar multiple of) the identity.

Case I.3.b: n = 2
The form defining X is

f := cx30 + x0x
2
1 + x1x

2
2 + x2x

2
3 + x33.

For future convenience, we will make the change of coordinates

(x0, x1, x2, x3) 7→ (x0, x1, x3,−x2 − x3/3),

and for the rest of Case I.3.b, we will work with the new f , which is

f := cx30 + x0x
2
1 − x32 +

(
3x1 + x2

3

)
x23 +

2x33
27

.
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The new A is

A = 2


3cx0 x1 0 0
x1 x0 0 x3
0 0 −3x2

1
3x3

0 x3
1
3x3 x1 + 1

3x2 + 2
9x3

 .
The set W of vectors v ∈ k4 such that codim v⊥ ≤ 2 is the union of seven lines, the transform of

those generated by the seven vectors in Lemma 5.11. They are the lines E1, E2, . . . , E7 generated
by e0, e0 +

√
3ce1, e0 −

√
3ce1, e3, e2, e0 +

√
3c(e1 − 3e2), and e0 −

√
3c(e1 − 3e2), respectively.

By (8), L must permute the Ei.

There are four 2-dimensional subspaces of k
4

containing exactly three of these lines, namely

W1 := S1 ⊃ E1, E2, E3

W2 := ke0 + k(e1 − 3e2) ⊃ E1, E6, E7

W3 := k(e0 +
√

3ce1) + ke2 ⊃ E2, E5, E6

W4 := k(e0 −
√

3ce1) + ke2 ⊃ E3, E5, E7.

The only Ei not contained in any Wj is E4, so L(E4) = E4. The span of the other six Ei is S2, so
L(S2) = S2.

We now know that L has the form

L =


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

 .
Without loss of generality we may assume `33 = 1. Equating coefficients of x33 in (7), we find
α = 1. By viewing both sides of (7) as polynomials in x3, we see that the forms cx30 + x0x

2
1 − x32

and 3x1 + x2 are each preserved by L.
If γ ∈ k∗ and the plane cubic

(11) (cx30 + x0x
2
1 − x32) + γ (3x1 + x2)

3 = 0

has a unique singularity2, then that singularity is preserved by the automorphism induced by L.
A short calculation shows that the singularities on these curves are at the points (x0 : x1 : x2) =

(−9s2 : 2 : 2s), where s ∈ k \ {0,−3} satisfies c = − 4
243s4

and γ =
(

s
3+s

)2
.

For c 6= −223−9, 243−9, we find that there are four possibilities for s, giving rise to four distinct
values of γ for which the curve has a unique singularity. The four distinct points so obtained are
in general position in P2, since they lie on the conic 2x0x1 + 9x22 = 0. Hence an automorphism of
P2 that fixes them is trivial. Together with the fact that L preserves the form 3x1 + x2 (and not
just up to scalar multiple), this implies that the upper left 3× 3 block of L is the identity, so L is
the identity.

If c = −223−9, then we may assume p 6= 5 in addition to p 6= 2, 3, since cbad = −263−9 coincides
with this c in characteristic 5. We dehomogenize the cubic

−223−9x30 + x0x
2
1 − x32 = 0

by setting x = x2/x0 and y = x1/x0, to obtain the elliptic curve in Weierstrass form

E : y2 = x3 + 223−9.

2There is automatically at most one singularity if the cubic is irreducible.
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(As usual, we choose the point at infinity as origin O on E, to make E an algebraic group.)
Then L induces an automorphism σ of P2 preserving E. The automorphism σ also preserves the
line 3y + x = 0, which is tangent to E at P := (2/27,−2/81) and meets E again at [−2]P =
(−1/27, 1/81). Hence σ(P ) = P . The action of σ on E is the composition of an automorphism η of
E as an elliptic curve (i.e. fixing O), and a translation on E. Since σ preserves the class of a line
section, which is the class of the divisor 3 ·O, the translation must be a translation by a 3-torsion
point T . It follows that η fixes [3]P = (−2/81, 10/729). The six automorphisms of E have the form
(x, y) 7→ (±x, ωy), where ω3 = 1, but x([3]P ) and y([3]P ) are finite and nonzero in k, so η must be
the identity. Since σ(P ) = P , it then follows that T = O. Thus σ fixes E pointwise, and hence is
the identity. Since L does not scale 3x1 + x2, this implies that L is the identity.

The last case c = 243−9 (in which two of the four s-values, namely −3/2 + 3i/2 and −3/2− 3i/2
give rise to the same γ) was ruled out by assumption at the very beginning, so we are done with
Case I.3.b, and indeed we are done with all of Case I.

6. Controlling the automorphisms: Case II

We will subdivide Case II as follows (recall that p 6= 2 throughout this case):

• Case II.1: d ≡ 0 (mod p); d 6= 3; and p 6= 2, 3
• Case II.2: d ≡ 0 (mod p); d 6= 3; and p = 3
• Case II.3: d = 3, p = 3, and n ≥ 2.

Case II.1: d ≡ 0 (mod p); d 6= 3; and p 6= 2, 3

We have

A =



h0 g1 0 0 · · · 0 0
g1 h1 g2 0 · · · 0 0
0 g2 h2 g3 · · · 0 0
0 0 g3 h3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · hn gn+1

0 0 0 0 · · · gn+1 hn+1


where

gi :=

{
−xd−21 − 4x0x

d−3
1 if i = 1

−xd−2i if 2 ≤ i ≤ n+ 1

and

hi :=


2xd−21 if i = 0

2x0x
d−3
1 + 6x20x

d−4
1 if i = 1

2xi−1x
d−3
i if 2 ≤ i ≤ n+ 1.

The polynomials g1, . . . , gn+1, h0, . . . , hn+1 are linearly independent, and hence the same proof as
in Case I.1 shows that L must be of the form

L =



∗ ∗ 0 · · · 0 0 0
0 ∗ 0 · · · 0 0 0
0 0 ∗ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ∗ 0 0
0 0 0 · · · 0 ∗ 0
0 0 0 · · · 0 ∗ ∗


,
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or of the form

L =



0 0 0 · · · 0 ∗ ∗
0 0 0 · · · 0 ∗ 0
0 0 0 · · · ∗ 0 0
...

...
...

. . .
...

...
...

0 0 ∗ · · · 0 0 0
0 ∗ 0 · · · 0 0 0
∗ ∗ 0 · · · 0 0 0


.

The second case is easily ruled out, since equating coefficients of xd−2n x2n+1 in

f(x0, x1, . . . , xn, xn+1) = f(`0nxn + `0,n+1xn+1, `1nxn, . . . , `n1x1, `n+1,0x0 + `n+1,1x1)

yields 0 = `d−21n `20,n+1, which contradicts the nonsingularity of L.
In the first case, since L is nonsingular, `ii 6= 0 for all i. By scaling L, we may assume `n+1,n+1 =

1. By equating coefficients of xdn+1 in (7), we see that α = 1. Equating coefficients of xd−1n xn+1 in

f(x0, x1, . . . , xn, xn+1) = f(`00x0 + `01x1, `11x1, . . . , `nnxn, `n+1,nxn + xn+1),

we obtain

0 = (d− 1)`nn`
d−2
n+1,n.

Since d− 1 and `nn are nonzero in k, we have `n+1,n = 0. For i = n, n− 1, . . . , 1 in turn, we equate

coefficients of xix
d−1
i+1 to find `ii = 1. Equate coefficients of x20x

d−2
1 , of x0x

d−1
1 and of xd1 to obtain

`200 = 1

2`00`01 + `00 = 1

c`d01 + `201 + `01 = 0.

The first two equations yield the possibilities (1, 0) and (−1,−1) for (`00, `01), but only (1, 0) is
consistent with the third equation. Thus L is the identity.

Case II.2: d ≡ 0 (mod p); d 6= 3; and p = 3

When p = 3, there is a single linear relation between the g’s and h’s (as defined in Case II.1),
namely g1 = h0 + h1.

Lemma 6.1. For nonzero v ∈ k
n+2

, we have codim v⊥ ≥ 2, with equality if and only if v is a
multiple of e0, e0 + e1, or en+1.

Proof. The values of codim v⊥ will be exactly the same as in Case I.1 except possibly for v’s for
which the appearances of g1, h0, h1 in the coordinates of Av are dependent due to the new relation
between them. This happens when v0h0 + v1g1 is a scalar multiple of v0g1 + v1h1 and both are
nonzero. Using g1 = h0 + h1, we see that this holds exactly when v0 = v1 6= 0. We may assume
this from now on, since otherwise the inequality and the equality cases are the same as in Case I.1.

Let j be the largest integer such that vj 6= 0. If j ≤ 1, then v is a multiple of e0 + e1 and we are
done. If j > 1, then gj appears in the (j−1)-th coordinate of Av but not before, and hj appears in
the j-th coordinate of Av but not before, and the 0-th coordinate of Av is nonzero, so these three
coordinates are linearly independent, and codim v⊥ ≥ 3. �

Corollary 6.2. The vector Len+1 is a multiple of en+1, and L(S1) = S1.
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Proof. We have

〈e0, e0 + e1〉 = h0 + g1 = xd−21 − x0xd−31 ,

〈e0, en+1〉 = 0,

〈e0 + e1, en+1〉 = 0,

unless n = 1, in which case 〈e0 + e1, en+1〉 = −xd−2n+1 instead. If n > 1, the multiples of en+1 are
distinguished from the multiples of e0 and e0 + e1 by the fact that they pair to give zero with the
latter two, so L maps en+1 to itself, and fixes the subspace S1 generated by the multiples of the
other two. If n = 1, then the multiples of en+1 are distinguished by the fact that they pair with
multiples of e0 or e0 + e1 to give perfect (d− 2)-th powers always, so the result again follows. �

Any easy induction on m proves that for 0 ≤ m ≤ n, S⊥m = Tm+2, which is of codimension m+2.

Lemma 6.3. Suppose 1 ≤ m ≤ n−2. Let V be an (m+2)-dimensional subspace of k
n+2

containing
Sm. Then codimV ⊥ ≥ m+ 3, with equality if and only if V = Sm+1.

Proof. Write V = Sm + k · v, so

V ⊥ = S⊥m ∩ v⊥ = Tm+2 ∩ v⊥.
If v has any nonzero coordinate vi with m + 2 ≤ i ≤ n, then the condition that an element w
of Tm+2 be in v⊥ places at least two linear conditions on w, namely wi = 0 and wi+1 = 0, so
codimV ⊥ ≥ codimTm+2 + 2 = m + 4 in this case. Similarly, if vn+1 6= 0, then the condition
that an element w of S⊥m be in v⊥ places the new conditions wn = 0 and wn+1 = 0 on w, so that
codimV ⊥ ≥ m+ 4 again. The only remaining possibility is that vi = 0 for all i ≥ m+ 2, in which
case we must have V = Sm+1 and codimV ⊥ = codimTm+3 = m+ 3. �

Corollary 6.4. We have L(Sm) = Sm for 1 ≤ m ≤ n− 1.

Lemma 6.5. We have L(Tm) = Tm for 2 ≤ m ≤ n+ 1.

Proof. Suppose n = 1. Then the needed fact L(T2) = T2 follows from the first half of Corollary 6.2.
Suppose n ≥ 2. Using S⊥m = Tm+2 and Corollary 6.4 proves the result for all the required m

except m = 2. We know that L(T2) is an n-dimensional subspace of k
n+2

containing L(T3) = T3
such that codimL(T2)

⊥ = n+ 1. Write L(T2) = T3 + k · v, where vi = 0 for i ≥ 3. Since T⊥3 = S1,
which has codimension n, in order to have codimL(T2)

⊥ = n + 1, the first two coordinates of Av
must be linearly dependent. This is possible only if v is a multiple of e0 + e1 or a multiple of e2.
But L(T2) ∩ S1 = L(T2 ∩ S1) = {0}, so e0 + e1 6∈ L(T2). Thus L(T2) = T3 + k · e2 = T2. �

Corollary 6.6. We have L(Sm) = Sm for 0 ≤ m ≤ n− 1.

Proof. The new result, L(S0) = S0, follows from L(T2) = T2 and T⊥2 = S0. �

By Lemma 6.5 and Corollary 6.6, L is of the form

L =



∗ ∗ 0 · · · 0 0 0
0 ∗ 0 · · · 0 0 0
0 0 ∗ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ∗ 0 0
0 0 0 · · · 0 ∗ 0
0 0 0 · · · 0 ∗ ∗


.

Repeating the argument at the end of Case II.1 completes the proof in this case.
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Case II.3: d = 3, p = 3, n ≥ 2

In this case we have

A = −



x1 x0 + x1 0 0 · · · 0 0 0
x0 + x1 x0 x2 0 · · · 0 0 0

0 x2 x1 x3 · · · 0 0 0
0 0 x3 x2 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · xn−2 xn 0
0 0 0 0 · · · xn xn−1 xn+1

0 0 0 0 · · · 0 xn+1 xn


.

Lemma 6.7. For nonzero v ∈ k
n+2

, we have codim v⊥ ≥ 2, with equality if and only if v is a
multiple of e0, e0 + e1, or en+1.

Proof. Let i be the smallest integer such that vi is nonzero. Let j be the largest integer such that
vj is nonzero.

If i = 0 and j = 0, then v is a multiple of e0, and codim v⊥ = 2.
If i = 0 and j = 1, then we may assume v = e0 + γe1 for some γ ∈ k∗. If codim v⊥ ≤ 2, then the

first two coordinates of Av must be linearly dependent, which implies γ2 + γ + 1 = 0, which yields
γ = 1 (since we are in characteristic 3). Hence v is a multiple of e0 + e1.

If i = 0 and 2 ≤ j ≤ n, then xj+1 appears only in the (j + 1)-th coordinate of Av, xj appears in
the (j − 1)-th coordinate of Av and not before, and the 0-th coordinate of Av is nonzero, so these
three coordinates are independent, and codim v⊥ ≥ 3.

If i = 0 and j = n + 1, then we branch according as vn is zero or not. If vn = 0, then the
(n+ 1)-th coordinate of Av is a nonzero multiple of xn, the n-th coordinate of Av is a combination
of xn and xn+1 in which xn+1 appears, and the 0-th coordinate is a nonzero combination of x0 and
x1, so these three coordinates are independent, and codim v⊥ ≥ 3. If vn 6= 0 and n > 2, then the
(n + 1)-th coordinate is a nonzero combination of xn and xn+1, the 0-th coordinate is a nonzero
combination of x0 and x1, and the n-th coordinate involves xn−1, which appears in neither the
0-th nor the (n+ 1)-th coordinate, so these three coordinates are independent, and codim v⊥ ≥ 3.
Finally suppose vn 6= 0 and n = 2. The 0-th coordinate of Av is a nonzero combination of x0 and
x1, and the 3-rd coordinate of Av is a nonzero combination of x2 and x3, so these two coordinates
are independent. If moreover codim v⊥ ≤ 2, then the 2-nd coordinate must be a linear combination
of the 0-th and 3-rd. The 0-th coordinate must appear in this combination since x1 appears in the
2-nd coordinate of Av. But x0 does not appear in the 2-nd coordinate, so x0 cannot appear in the
0-th coordinate, and this implies v1 = 0. Then x3 appears while x2 does not appear in the 2-nd
coordinate, making it impossible for the 2-nd coordinate to be a combination of the 0-th and 3-rd
coordinates.

If i ≥ 1 and j ≤ n, then the (i − 1)-th coordinate of Av is nonzero, and the i-th coordinate is
not a multiple of it, so these two coordinates are independent. Also, the (j + 1)-th coordinate of
Av is a multiple of xj+1, which does not appear anywhere else in Av, so the (i − 1)-th, i-th, and

(j + 1)-th coordinates are independent, and codim v⊥ ≥ 3.
If 1 ≤ i ≤ n− 1 and j = n+ 1, then the (i− 1)-th coordinate of Av is a nonzero multiple of xi

(or of x0 + x1 if i = 1), the i-th coordinate of Av is a nonzero combination of xi−1 and xi+1, and
the n-th coordinate of Av involves xn+1, which does not appear earlier, so these three coordinates
are independent, and codim v⊥ ≥ 3.
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If i = n and j = n + 1, then xn−1 appears only in the n-th coordinate of Av, the (n − 1)-th
coordinate is a nonzero multiple of xn, and the (n + 1)-th coordinate is a combination of xn and
xn+1 in which both appear, so these three coordinates are independent, and codim v⊥ ≥ 3.

If i = n+ 1 and j = n+ 1, then v is a multiple of en+1, and codim v⊥ = 2. �

Corollary 6.8. The vector Len+1 is a multiple of en+1, and L(S1) = S1.

Proof. Since n ≥ 2, we have

〈e0, e0 + e1〉 = −x0 − 2x1,

〈e0, en+1〉 = 0,

〈e0 + e1, en+1〉 = 0,

so the multiples of en+1 are distinguished from the multiples of e0 and e0 + e1 by the fact that
they pair to give zero with the latter two. Thus L maps en+1 to itself, and fixes the subspace S1
generated by the multiples of the other two. �

Lemma 6.9. Suppose 1 ≤ m ≤ n−2. Let V be an (m+2)-dimensional subspace of k
n+2

containing
Sm. Then codimV ⊥ ≥ m+ 3, with equality if and only if V = Sm+1.

Proof. Write V = Sm + k · v, so

V ⊥ = S⊥m ∩ v⊥ = Tm+2 ∩ v⊥.

We may assume vi = 0 for i ≤ m. We must show that the codimension of Tm+2 ∩ v⊥ in Tm+2 is at
least 1, with equality if and only if v is a nonzero multiple of em+1. This is the same as showing
that the span of the (m + 2)-th, . . . , (n + 1)-th coordinates of Av is of dimension at least 1, with
equality if and only if v is a nonzero multiple of em+1.

Let j be the largest integer such that vj is nonzero. If j = m + 1, then v is a nonzero multiple
of em+1, the (m + 2)-th coordinate of Av is a nonzero multiple of xm+2, and all later coordinates
are zero, so we have equality, as desired.

If m + 2 ≤ j ≤ n, then the (j + 1)-th coordinate of Av is a nonzero multiple of xj+1, but the
j-th coordinate of Av involves xj−1, so the span is of dimension at least 2.

If j = n + 1 and vn = 0, then the (n + 1)-th coordinate of Av is a nonzero multiple of xn, but
the n-th coordinate involves xn+1, so the span is of dimension at least 2.

If j = n + 1 and vn 6= 0, then xn−1 appears in the n-th coordinate of Av, and the (n + 1)-
th coordinate of Av is nonzero but does not involve xn−1, so again the span is of dimension at
least 2. �

The rest of the proof of this case is exactly analogous to the corresponding final section of the
proof in Case II.2, from Corollary 6.4 on.

7. Controlling the automorphisms: Case III

We have

A =



0 g1 0 0 · · · 0 0 0
g1 0 g2 0 · · · 0 0 0
0 g2 0 g3 · · · 0 0 0
0 0 g3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 gn 0
0 0 0 0 · · · gn 0 gn+1

0 0 0 0 · · · 0 gn+1 0


,
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where

gi :=

{
xd−20 + xd−21 if i = 1

xd−2i if 2 ≤ i ≤ n+ 1.

Note that g1, . . . , gn+1 are linearly independent over k.

Lemma 7.1. Suppose n ≥ 4. If v ∈ kn+2
is nonzero and codim v⊥ ≤ 2 then v is a multiple of

some ei, or v is a combination of e0 and e1, or a combination of e0 and e2, or a combination of en
and en+1, or a combination of en−1 and en+1, or a combination of e0 and en+1.

If n = 2 or n = 3, then the same result holds, except that combinations of e0, en−1, en+1 and
combinations of e0, e2, en+1 are also possible.

For all n ≥ 2, only the multiples of e0 and the multiples of en+1 satisfy codim v⊥ = 1.

Proof. It is clear that the listed v’s satisfy codim v⊥ ≤ 2. Now suppose codim v⊥ ≤ 2.
Let i be the smallest integer such that vi is nonzero. Let j be the largest integer such that vj is

nonzero.
If i = 0 and j ≤ 1, then v is a combination of e0 and e1. If v is a multiple of e0, then codim v⊥ = 1;

otherwise, the 0-th and 2-nd coordinates of Av are independent and codim v⊥ = 2.
If i = 0 and j = 2, then v1 = 0, since otherwise, the 0-th coordinate of Av is a multiple of g1, the

2-nd coordinate of Av is a multiple of g2, and the 3-rd coordinate of Av is a multiple of g3, which
makes codim v⊥ ≥ 3. Hence v is a combination of e0 and e2. The 0-th and 2-nd coordinates of Av
are independent unless v is a multiple of e0, in which case codim v⊥ = 1.

If i = 0 and 3 ≤ j ≤ n, then gj+1 appears in the (j + 1)-th coordinate of Av but not before, gj
appears in the (j−1)-th coordinate of Av but not before, and the 1-st coordinate of Av is nonzero,
so these three coordinates are independent, and codim v⊥ ≥ 3.

If i = 0 and j = n + 1, then the 1-st and n-th coordinates of Av are nonzero and independent
because xn+1 appears only in the latter. Thus codim v⊥ ≥ 2. Hence if codim v⊥ ≤ 2, then every
other coordinate of Av must be a combination of the 1-st and n-th. In particular, each nonzero
coordinate of Av involves g1 or gn+1, so the 2-nd, 3-rd, . . . , (n− 1)-th coordinates of Av must be
zero. If n ≥ 4 this forces v1 = v2 = · · · = vn = 0, as desired. If n = 3, then the vanishing of the 2-nd
coordinate of Av forces only v1 = v3 = 0, so that v is a combination of e0, e2, and e4, as desired.
Finally, if n = 2, then either v1 = 0 or v2 = 0, since if all vi were nonzero, then for m = 1, 2, 3, the
term gm occurs in the m-th coordinate of Av but not afterwards, making codim v⊥ ≥ 3. Thus v is
a combination of e0, e1, and e3, or a combination of e0, e2, and e3, as desired.

We have now completely finished the case i = 0, and symmetrical considerations prove all cases
in which j = n + 1. Therefore, from now on, we assume 1 ≤ i ≤ j ≤ n. If i = j, then v is
a multiple of ei, and codim v⊥ = 2, as desired. Otherwise, if 1 ≤ i < j ≤ n, then gi appears
only in the (i− 1)-th coordinate of Av, gj+1 appears only in the (j + 1)-th coordinate of Av, and
gi+1 appears in the (i + 1)-th coordinate of Av, so these three coordinates are independent, and
codim v⊥ ≥ 3. �
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Lemma 7.2. The matrix L is of the form

L =



∗ ∗ ∗ 0 · · · 0 0 0 0
0 ∗ 0 0 · · · 0 0 0 0
0 0 ∗ 0 · · · 0 0 0 0
0 0 0 ∗ · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · ∗ 0 0 0
0 0 0 0 · · · 0 ∗ 0 0
0 0 0 0 · · · 0 0 ∗ 0
0 0 0 0 · · · 0 ∗ ∗ ∗


or of the form

L =



0 0 0 0 · · · 0 ∗ ∗ ∗
0 0 0 0 · · · 0 0 ∗ 0
0 0 0 0 · · · 0 ∗ 0 0
0 0 0 0 · · · ∗ 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 ∗ · · · 0 0 0 0
0 0 ∗ 0 · · · 0 0 0 0
0 ∗ 0 0 · · · 0 0 0 0
∗ ∗ ∗ 0 · · · 0 0 0 0


.

In other words, either L has nonzero entries on the diagonal and zeros elsewhere except possibly
at `01, `02, `n+1,n−1, `n+1,n, or L has nonzero entries on the reverse diagonal and zeros elsewhere
except possibly at `0,n−1, `0,n, `n+1,1, `n+1,2.

Proof. If n = 1, then the nonzero v ∈ kn+2
for which codim v⊥ = 1 are exactly the combinations

of e0 and e2, so L must preserve the subspace S0 + T2; i.e., L must have the form

L =

∗ ∗ ∗0 ∗ 0
∗ ∗ ∗

 ,
and this is what Lemma 7.2 is claiming in this case.

For n ≥ 2, Lemma 7.1 implies that L maps e0 and en+1 to themselves or interchanges them, up
to scalar multiple. By symmetry, we may assume that Le0 is a multiple of e0, and that Len+1 is
a multiple of en+1. (The possibilities where Le0 is a multiple of en+1 will give rise to the mirror

reflections of the possibilities for L in the first case.) The subset W := {v : codim v⊥ ≤ 2} of k
n+2

is preserved by L, and Lemma 7.1 gives an explicit description of W .
If n = 2, then e1 ∈ e⊥3 , so Le1 ∈ (Le3)

⊥ = e⊥3 = S1 + T3. Similarly Le2 ∈ e⊥0 = S0 + T2. This
completes the proof in the case n = 2.

If n = 3, then the subspace V of k
n+2

generated by e0, e2, and e4 is preserved by L, since by
Lemma 7.1 it is the only 3-dimensional subspace contained in W . Also, L preserves S1 (resp. T3),
since by Lemma 7.1 this is the only 2-dimensional subspace that contains ke0 (resp. ke4), that is
not contained in V , and that is contained in W . These restrictions together imply that L has the
desired shape.

From now on, we assume n ≥ 4. By Lemma 7.1, the 2-dimensional subspaces containing ke0
and contained in W are S1 = ke0 + ke1 and R := ke0 + ke2. Hence L preserves {S1, R}, and
preserves their sum, which is S2. Similarly L preserves Tn−1. It then follows from Lemma 7.1 that
L permutes e3, e4, . . . , en−2 up to scalar multiple, since these (and their multiples) are the only
vectors of W outside S2 + Tn−1.
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We next prove by induction on i that L(Si) = Si for 2 ≤ i ≤ n − 2, and that Lei is a multiple
of ei for 3 ≤ i ≤ n − 2. The base case L(S2) = S2 is already known. Suppose 3 ≤ i ≤ n − 2, and
L(Si−1) = Si−1, and L(ej) is a multiple of ej for 3 ≤ j ≤ i − 1. We know already that Lei is a
multiple of some ek, k ≥ i, but the only such ek that can pair with some vector in Si−1 to give
something nonzero is ei, so Lei must be a multiple of ei. Hence also L(Si) = Si, which completes
the induction step.

In particular, we now know that L(T3) = T3. The subspaces S1 and R can be distinguished
using the fact that only the latter contains elements that can pair with some vector in T3 to give
something nonzero, so L(S1) = S1 and L(R) = R. Similarly we deduce that L(Tn) = Tn and that
L preserves the subspace R′ := ken−1 + ken+1. The restrictions we have deduced, taken together,
imply that L has the desired shape. �

Case III.1: n = 1

Equation (7) becomes

(12) xd−10 x1 + x0x
d−1
1 + x1x

d−1
2 + xd2

= α
[
(`00x0 + `01x1 + `02x2)

d−1`11x1 + (`00x0 + `01x1 + `02x2)(`11x1)
d−1

+ `11x1(`20x0 + `21x1 + `22x2)
d−1 + (`20x0 + `21x1 + `22x2)

d
]
.

Equating coefficients of xd0 yields 0 = α`d20, so `20 = 0. Since L is nonsingular, `00 6= 0. Equating

coefficients of xd−20 x21 yields 0 = α`d−200 `01`11, but α, `00, `11 must all be nonzero, so `01 = 0. Equating

coefficients of xd−20 x1x2 yields 0 = α`d−200 `02`11, so `02 = 0. Equating coefficients of xd−11 x2 yields

0 = α`11`
d−2
21 `22, and `11, `22 6= 0 by nonsingularity, so `21 = 0. We now know that L is diagonal.

Without generality assume `22 = 1. Equating coefficients of xd2 in (12) shows α = 1. Equating

coefficients of x1x
d−1
2 shows `11 = 1. Equating coefficients of x0x

d−1
1 shows `00 = 1. Thus L is the

identity.

Case III.2: n ≥ 2

Equating coefficients of xd0 in (7) rules out the second possibility in Lemma 7.2, so L is of the
form

L =



∗ ∗ ∗ 0 · · · 0 0 0 0
0 ∗ 0 0 · · · 0 0 0 0
0 0 ∗ 0 · · · 0 0 0 0
0 0 0 ∗ · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · ∗ 0 0 0
0 0 0 0 · · · 0 ∗ 0 0
0 0 0 0 · · · 0 0 ∗ 0
0 0 0 0 · · · 0 ∗ ∗ ∗


,

and (7) becomes

(13) f(x0, x1, . . . , xn+1)

= αf(`00x0 + `01x1 + `02x2, `11x1, . . . , `nnxn, `n+1,n−1xn−1 + `n+1,nxn + `n+1,n+1xn+1).

Note that `ii 6= 0 for all i, since L is nonsingular. Equating coefficients of xd−20 x21 in (13) yields

0 = α`d−200 `01`11 so `01 = 0. Equating coefficients of xd−20 x1x2 yields 0 = α`d−200 `02`11 so `02 = 0.
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Equating coefficients of xd−1n xn+1 yields 0 = α`nn`
d−2
n+1,n`n+1,n+1 so `n+1,n = 0. Equating coefficients

of xd−2n−1xnxn+1 yields 0 = α`nn`
d−2
n+1,n−1`n+1,n+1 so `n+1,n−1 = 0. We now know that L is diagonal.

Without loss of generality assume `n+1,n+1 = 1. Equating coefficients of xdn+1 in (13) shows α = 1.

We now prove `ii = 1 for all i by backwards induction, by equating coefficients of xix
d−1
i+1 . Thus L

is the identity.

8. Controlling the automorphisms: Case IV

The matrix A will have bn+1
2 c nonzero 2× 2 blocks along the diagonal, and zeros elsewhere. For

odd i, define gi := −2xi−1x
d−3
i . Also define

hi :=

{
2xd−2i+1 if i is even

2x2i−1x
d−4
i if i is odd.

(Note that d ≥ 4 in Case IV.) The g’s and h’s are linearly independent over k.

Case IV.1: n is odd

We have

A =



h0 g1 0 0 · · · 0 0 0
g1 h1 0 0 · · · 0 0 0
0 0 h2 g3 · · · 0 0 0
0 0 g3 h3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · hn−1 gn 0
0 0 0 0 · · · gn hn 0
0 0 0 0 · · · 0 0 0


.

Clearly Len+1 is a multiple of en+1, because only the multiples of en+1 pair under 〈 , 〉 with all
vectors to give zero. For i = 0, 2, 4, . . . , n− 1, let Vi be the k-vector space spanned by ei, ei+1, and

en+1. It is clear that V0, V2, V4, . . . , Vn−1 are the only 3-dimensional subspaces V of k
n+2

such
that codimV ⊥ = 2. Thus L(Vi) = Vπ(i) for some permutation π of {0, 2, 4, . . . , n − 1}. In other
words, L has the form of a permutation matrix, except with 2×2 blocks, and with an added row at
the bottom with potentially nonzero entries, and with zeros in an added final column on the right
(except for the lower right corner, which must be nonzero).

If we view both sides of (7) as polynomials in xn+1 and equate coefficients of xd−1n+1, we find that
yn is a nonzero multiple of xn. Thus L(Vn−1) = Vn−1. If we instead equate coefficients of xn+1, we
find that y0 is a nonzero multiple of x0. Thus L(V0) = V0.

We now prove by backwards induction that yi is a nonzero multiple of xi for i = n−1, n−2, . . . , 1.
(We already know it for i = n and i = 0.) First suppose i is even. By assumption, yi+1 is a multiple
of xi+1, so π(i) = i. It follows that yi is a linear combination of xi and xi+1. Moreover, xi occurs
in this combination, since otherwise L would be singular. Suppose `i,i+1 6= 0. Then for each j < i,

equating coefficients of xjx
d−1
i+1 in (7) yields

0 = α`i−1,j`
d−1
i,i+1

so `i−1,j = 0. The block form of L implies `i−1,j = 0 for j ≥ i as well, so L has a row of zeros,
which is a contradiction. Thus `i,i+1 must have been zero, and hence yi is a (nonzero) multiple of
xi.
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Next suppose i is odd, 1 ≤ i ≤ n − 2. For j < i, equating coefficients of xjx
d−1
i+1 in (7) yields

0 = α`i,j`
d−1
i+1,i+1, and `i+1,i+1 is nonzero (since yi+1 is a nonzero multiple of xi+1), so `i,j = 0 for

j < i. On the other hand, the block form of L implies `i,j = 0 for j > i also, so yi is a (nonzero)
multiple of xi.

Equating coefficients of xdn in (7) yields 0 = α`nn`
d−1
n+1,n, so `n+1,n = 0. For each j < n, equating

coefficients of xd−1j xn shows that 0 = α`nn`
d−1
n+1,j , so `n+1,j = 0. Thus yn+1 is a (nonzero) multiple

of xn+1.
We now know that L is diagonal. We may assume `00 = 1. Equating coefficients of xd0 in (7)

shows α = 1. Equating coefficients of xn+1x
d−1
0 in (7) shows `n+1,n+1 = 1. We can now show

`ii = 0 for i = n, n− 1, . . . , 1 as well, by backwards induction: equating coefficients of xix
d−1
i+1 in (7)

yields `ii`
d−1
i+1,i+1 = 1, so if `i+1,i+1 = 1, then `ii = 1. Thus L is the identity.

Case IV.2: n is even

The matrix A has the same form as in Case IV.1 except that it ends with two final rows of zeros
and two final columns of zeros, instead of only one of each.

The subspace of v in k
n+2

such that 〈v, w〉 = 0 for all w in k
n+2

is Tn, so L(Tn) = Tn. For
i = 0, 2, 4, . . . , n − 1, let Vi be the k-vector space spanned by ei, ei+1, en, and en+1. It is clear

that V0, V2, V4, . . . , Vn−2 are the only 4-dimensional subspaces V of k
n+2

such that codimV ⊥ = 2.
Thus L(Vi) = Vπ(i) for some permutation π of {0, 2, 4, . . . , n− 2}. In other words, L has the form
of a permutation matrix, except with 2 × 2 blocks, and with two added rows at the bottom with
potentially nonzero entries, and with zeros in two added final columns on the right (except for the
lower right 2× 2 block, which may have nonzero entries).

If we substitute x0 = x1 = · · · = xn−1 = 0 in (7), we obtain

xnx
d−1
n+1 = α(`nnxn + `n,n+1xn+1)(`n+1,nxn + `n+1,n+1xn+1)

d−1.

By unique factorization, `nnxn+`n,n+1xn+1 is a nonzero multiple of xn, and `n+1,nxn+`n+1,n+1xn+1

is a nonzero multiple of xn+1. Hence the lower right 2 × 2 block of L is diagonal, with nonzero
entries on the diagonal.

View both sides of (7) as polynomials in xn+1. Equating coefficients of xd−1n+1 shows that yn is

a nonzero multiple of xn. Equating coefficients of xn+1 shows that yd−10 is a nonzero multiple of

xd−10 , so y0 is a nonzero multiple of x0.

Now view both sides of (7) as polynomials in xn. Equating coefficients of xn shows that yd−1n+1

is a nonzero multiple of xd−1n+1, so yn+1 is a nonzero multiple of xn+1. Equating coefficients of xd−1n

shows that yn−1 is a nonzero multiple of xn−1.
The same backwards induction on i as in Case IV.1 now shows that yi is a nonzero multiple of

xi for all i. (We already know it for i = 0, n− 1, n, n+ 1.) Thus L is diagonal. We deduce that L
is (a scalar multiple of) the identity as in the end of Case IV.1.

9. Controlling the automorphisms: Case V

Note that d ≥ 5 in Case V. We have

A =

 0 xd−31 x2 xd−21

xd−31 x2 0 x0x
d−3
1

xd−21 x0x
d−3
1 0

 .
The greatest common divisor of the entries of A is xd−31 , so yd−31 must be a nonzero multiple of

xd−31 . Hence y1 is a nonzero multiple of x1. Without loss of generality we may assume y1 = x1.
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Then (7) becomes

(14) f(x0, x1, x2) = αf(`00x0 + `01x1 + `02x2, x1, `20x0 + `21x1 + `22x2).

If we set x1 = 0 and use the definition of f , we obtain

x2x
d−1
0 = α(`20x0 + `22x2)(`00x0 + `02x2)

d−1.

By unique factorization, we deduce that `20 = 0 and `02 = 0. Now (14) becomes

(15) α−1(x0x
d−2
1 x2 + x0x

d−1
1 + x1x

d−1
2 + x2x

d−1
0 + x21x

d−2
2 )

= (`00x0 + `01x1)x
d−2
1 (`21x1 + `22x2) + (`00x0 + `01x1)x

d−1
1 + x1(`21x1 + `22x2)

d−1

+ (`21x1 + `22x2)(`00x0 + `01x1)
d−1 + x21(`21x1 + `22x2)

d−2

Equating coefficients of xd−10 x1 yields 0 = `21`
d−1
00 . The nonsingularity of L guarantees `00 6= 0, so

`21 = 0. Equating coefficients of xd1 yields 0 = `01, so L is diagonal.

Equating coefficients of x1x
d−1
2 and of x21x

d−2
2 yields

α−1 = `d−122 ,

α−1 = `d−222 .

Dividing, we find `22 = 1, and then α = 1. Equating coefficients of x0x
d−1
1 now shows `00 = 1.

Thus L is the identity.

10. Controlling the automorphisms: Case VI

Let m = 3bn+2
3 c. For i = 0, 3, 6, . . . ,m− 3, define fi := xd−3i+1 xi+2, gi := xd−2i+1 , and hi := xix

d−3
i+1 .

We have

A =



0 f0 g0 0 0 0 · · ·
f0 0 h0 0 0 0 · · ·
g0 h0 0 0 0 0 · · ·
0 0 0 0 f3 g3 · · ·
0 0 0 f3 0 h3 · · ·
0 0 0 g3 h3 0 · · ·
...

...
...

...
...

...
. . .


,

in which there are bn+2
3 c 3 × 3 blocks along the diagonal, and zeros elsewhere. (There will be

(n+ 2−m) rows of zeros at the bottom, and also (n+ 2−m) columns of zeros at the right.) Note
that f0, g0, h0, f3, g3, h3, . . . are linearly independent over k.

The set of v in k
n+2

such that 〈v, w〉 = 0 for all w in k
n+2

is Tm, so L(Tm) = Tm. Note that
dimTm = (n + 2) mod 3 = n + 2 −m. For i = 0, 3, 6, . . . ,m − 3, let Vi be the (n + 2 −m) + 3-
dimensional vector space spanned by Tm, ei, ei+1, and ei+2.

Lemma 10.1. If codim v⊥ ≤ 3, then v ∈ Vi for some i.

Proof. If v is not contained in any Vi, then there are at least two distinct i, j ∈ {0, 3, 6, . . . ,m− 3}
such that v equals a nonzero combination w of ei, ei+1, ei+2, plus a nonzero combination w′ of ej ,
ej+1, ej+2, plus an element of Tm. Any nonzero combination of the three columns Ai, Ai+1, Ai+2

will have entries spanning a vector space of dimension at least 2, because there will be at least two
nonzero entries, and there will be one form fi, gi, or hi that appears in some but not all of these
nonzero entries. The span of the nonzero entries of this combination does not intersect the span of
the entries of a nonzero combination of Aj , Aj+1, Aj+2, so we see that codim v⊥ ≥ 2 + 2 = 4. �

Corollary 10.2. We have L(Vi) = Vπ(i) for some permutation π of {0, 3, 6, . . . ,m− 3}.
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Proof. By Lemma 10.1, the Vi are the only ((n + 2 −m) + 3)-dimensional subspaces V such that
codimV ⊥ = 3. �

Corollary 10.3. For i = 0, 3, 6, . . . ,m − 3, each of yi, yi+1, yi+2 is a linear combination of xj,
xj+1, xj+2, where j = π−1(i).

Proof. This is a direct consequence of Corollary 10.2 and the fact L(Tm) = Tm. �

Before proceeding further, we subdivide Case VI as follows.

• Case VI.1: n ≡ 0 (mod 3)
• Case VI.2: n ≡ 1 (mod 3) and n ≥ 4
• Case VI.3: n ≡ 2 (mod 3).

(Also, remember that throughout Case VI, p = 2, d is odd, and n > 1.)

Case VI.1: n ≡ 0 (mod 3)

We have m = n. Each of y0, y1, . . . , yn−1 is a linear combination of x0, x1, . . . , xn−1, by
Corollary 10.3. Thus if we substitute x0 = x1 = · · · = xn−1 = 0 in (7), we obtain

xnx
d−1
n+1 = α(`n,nxn + `n,n+1xn+1)(`n+1,nxn + `n+1,n+1xn+1)

d−1.

By unique factorization, `n,n+1 = `n+1,n = 0.

If we consider both sides of (7) as polynomials in xn+1 and equate coefficients of xd−1n+1, we deduce
that yn is a multiple of xn. In particular, the only yi in which xn appears is yn. If we consider both
sides of (7) as polynomials in xn and equate coefficients of xn, we deduce that yd−1n+1 is a multiple

of xd−1n+1, so yn+1 is a multiple of xn+1.
If we again consider both sides of (7) as polynomials in xn+1, but this time equate coefficients

of xn+1, we deduce that yd−10 is a multiple of xd−10 , so y0 is a multiple of x0. Corollary 10.3 implies
π(0) = 0.

Similarly if we consider both sides of (7) as polynomials in xn and equate coefficients of xd−1n ,
we deduce that yn−1 is a multiple of xn−1, and π(m− 3) = m− 3.

We now prove π(i) for all i = 0, 3, 6, . . . ,m − 3 by induction. Suppose i ≥ 3, and we know
π(j) = j for j < i. By Corollary 10.3, the only y-monomial of f(y0, y1, . . . , yn+1) whose expansion

can contain xi−1x
d−1
i is yi−1y

d−1
i . It follows that yi must involve xi, so π(i) = i by Corollary 10.3.

Fix i ∈ {3, 6, 9, . . . ,m−6}. If we expand f(y0, y1, . . . , yn+1) and discard all monomials unless they
involve both one of xi−3, xi−2, xi−1 and one of xi, xi+1, xi+2, then what remains, by Corollary 10.3,
is exactly the expansion of yi−1y

d−1
i . Hence yi−1y

d−1
i is a multiple of xi−1x

d−1
i , and by unique

factorization, we see that yi−1 is a multiple of xi−1 and yi is a multiple of xi.
We now know that L is of the form

L =



∗ 0 0 0 0 0 · · · 0 0 0 0 0
∗ ∗ ∗ 0 0 0 · · · 0 0 0 0 0
0 0 ∗ 0 0 0 · · · 0 0 0 0 0
0 0 0 ∗ 0 0 · · · 0 0 0 0 0
0 0 0 ∗ ∗ ∗ · · · 0 0 0 0 0
0 0 0 0 0 ∗ · · · 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 0 0 · · · ∗ 0 0 0 0
0 0 0 0 0 0 · · · ∗ ∗ ∗ 0 0
0 0 0 0 0 0 · · · 0 0 ∗ 0 0
0 0 0 0 0 0 · · · 0 0 0 ∗ 0
0 0 0 0 0 0 · · · 0 0 0 0 ∗



,
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and the diagonal entries must be nonzero, since L is nonsingular.
Equating coefficients of x0x

d−1
1 in (7) yields

0 = α`10`
d−1
11

so `10 = 0. Equating coefficients of xd−11 x2 yields

0 = α`d−111 `12

so `12 = 0.
Let i be a positive multiple of 3. Equating coefficients of xdi yields

0 = α`i,i`
d−1
i+1,i,

so `i+1,i = 0. Similarly, equating coefficients of xdi+2 yields

0 = α`i+1,i+2`
d−1
i+2,i+2

so `i+1,i+2 = 0.
We now know that L is diagonal. Without loss of generality suppose `11 = 1. Equating coeffi-

cients of xd1 in (7) shows α = 1. Equating coefficients of xn+1x
d−1
0 shows `n+1,n+1 = `1−d00 . Equating

coefficients of xnx
d−1
n+1 shows

`n,n = `1−dn+1,n+1 = `
(1−d)2
00 .

By backwards induction on i, we show

(16) `i,i = `
(1−d)n+2−i

00

for all i ≥ 1. In particular,

1 = `11 = `
(1−d)n+1

00 .

On the other hand, equating coefficients of x0x
d−3
1 x2, we find

1 = `00`22 = `
1+(1−d)n
00 .

Since the exponents (1 − d)n+1 and 1 + (1 − d)n are relatively prime, it follows that `00 = 1, and
then by (16), `i,i = 1 for all i. Thus L is the identity.

Case VI.2: n ≡ 1 (mod 3) and n ≥ 4

We have m = n + 2. In what follows, subscripts are to be considered modulo m. Suppose
i ∈ {0, 3, 6, . . . ,m − 3}. Because of Corollary 10.3, the only y-monomials in f(y0, y1, . . . , yn+1)

whose expansions could possibly contain xi−1x
d−1
i are those of the form yj−1y

d−1
j for some j ∈

{0, 3, 6, . . . ,m − 3}. Moreover, for fixed i, at most one of these y-monomials can contribute an

xi−1x
d−1
i term. On the other hand, by (7), xi−1x

d−1
i must appear in one of them, since it appears in

f(x0, x1, . . . , xn+1). Suppose it appears in yj−1y
d−1
j . Then, again by Corollary 10.3, the monomials

in the expansion of yj−1y
d−1
j are exactly those monomials in the expansion of f(y0, y1, . . . , yn+1)

involving both one of xi−3, xi−2, xi−1 and one of xi, xi+1, xi+2. By (7) it then follows that yj−1y
d−1
j

is a multiple of xi−1x
d−1
i . By unique factorization, we deduce that yj−1 is a multiple of xj−1 and

yj is a multiple of xj . By Corollary 10.3, it follows that π(i) = j and π(i− 3) = j − 3. (We should
identify −3 with m−3 when necessary.) Thus π acts as a rotation of {0, 3, 6, . . . ,m−3}, and there
exists an integer r divisible by 3, determined up to a multiple of m, such that if j 6≡ 1 (mod 3),
then yj is a multiple of xj+r. If j ≡ 1 (mod 3), then by Corollary 10.3, yj is a combination of
xj+r−1, xj+r, and xj+r+1.
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It follows that the only y-monomial on the right hand side of (7) whose expansion could contain
xd1 is yd1 . Thus r ≡ 0 (mod m).

Equating coefficients of xd0 in (7), we find `10 = 0. Equating coefficients of x0x
d−1
2 , we find

`12 = 0. Thus y1 is a multiple of x1.
Now suppose j ∈ {4, 7, 10, . . . ,m − 2}. Equating coefficients of xdj−1 in (7), we deduce that

`j,j−1 = 0. Equating coefficients of xdj+1, we deduce that `j,j+1 = 0.

We now know that L is diagonal. The same proof as at the end of Case VI.1 shows that L is (a
scalar multiple of) the identity.

Case VI.3: n ≡ 2 (mod 3)

We have m = n+ 1. Since Tm is the one-dimensional vector space generated by en+1, we know
that Len+1 is a multiple of en+1. In other words, the only yi that involves xn+1 is yn+1.

If we view both sides of (7) as polynomials in xn+1, and equate coefficients of xd−1n+1 in (7), we
deduce that yn is a multiple of xn. Similarly, equating coefficients of xn+1 shows that y0 is a
multiple of x0. In particular, we have π(0) = 0 and π(m− 3) = m− 3.

We now show π(i) = i for all i ∈ {0, 3, 6, . . . ,m − 3} by induction on i. Suppose i ≥ 3, and we
know π(j) = j for j < i. By Corollary 10.3, the only y-monomial in the right hand side of (7)

whose expansion can contain xi−1x
d−1
i is yi−1y

d−1
i . It follows that yi involves xi, and π(i) = i, as

desired. In fact, the monomials in the expansion of yi−1y
d−1
i are exactly those monomials in the

expansion of f(y0, y1, . . . , yn+1) involving both one of xi−3, xi−2, xi−1 and one of xi, xi+1, xi+2,

and in which the exponents of xi, xi+1, xi+2 are even. By (7) it then follows that yi−1y
d−1
i is a

multiple of xi−1x
d−1
i . By unique factorization, we deduce that yi−1 is a multiple of xi−1 and yi is

a multiple of xi.
We now know that L is of the form

L =



∗ 0 0 0 0 0 · · · 0 0 0 0
∗ ∗ ∗ 0 0 0 · · · 0 0 0 0
0 0 ∗ 0 0 0 · · · 0 0 0 0
0 0 0 ∗ 0 0 · · · 0 0 0 0
0 0 0 ∗ ∗ ∗ · · · 0 0 0 0
0 0 0 0 0 ∗ · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · ∗ 0 0 0
0 0 0 0 0 0 · · · ∗ ∗ ∗ 0
0 0 0 0 0 0 · · · 0 0 ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗


,

and the diagonal entries must be nonzero, since L is nonsingular.
Equating coefficients of x0x

d−1
1 in (7), we find 0 = α`10`

d−1
11 , so `10 = 0. Equating coefficients of

xd0, we find 0 = α`n+1,0`
d−1
00 , so `n+1,0 = 0. Thus y0 is the only yi that involves x0.

If we view both sides of (7) as polynomials in x0, and equate coefficients of xd−10 , we deduce that
yn+1 is a multiple of xn+1.

Equating coefficients of xd−11 x2, we find 0 = α`d−111 `12, so `12 = 0.
Now suppose j ∈ {4, 7, 10, . . . ,m − 2}. Equating coefficients of xdj−1 in (7), we deduce that

`j,j−1 = 0. Equating coefficients of xdj+1, we deduce that `j,j+1 = 0.

We now know that L is diagonal. The same proof as at the end of Case VI.1 shows that L is (a
scalar multiple of) the identity.
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11. The automorphism group scheme

Finally, we consider the automorphism group scheme AutX of a smooth hypersurface X over k.
One can recover AutX as the group of k-points of AutX, but the triviality of AutX cannot be
deduced immediately from the triviality of AutX, because a priori AutX could be non-reduced.
Fortunately, it is usually reduced:

Theorem 11.1. If X is a smooth hypersurface in Pn+1 of degree d, where n ≥ 1, d ≥ 3, and (n, d)
does not equal (1, 3), then the connected component of the identity of AutX is trivial.

Proof. Let TX denote the tangent sheaf of X over k. Under the hypotheses on (n, d), we have

H0(X,TX) = 0 by [KS99, Theorem 11.5.2]. Thus the tangent space at the identity of AutX is

trivial, so the connected component of the identity of AutX is trivial. �

Combining Corollary 1.9 and Theorem 11.1, we obtain:

Corollary 11.2. For any field k and integers n ≥ 1, d ≥ 3 with (n, d) not equal to (1, 3) or (2, 4),
there exists a smooth hypersurface X over k of degree d in Pn+1 such that AutX is trivial.
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