
LATTICE POLYGONS AND THE NUMBER 12

BJORN POONEN AND FERNANDO RODRIGUEZ-VILLEGAS

1. Prologue

In this article, we discuss a theorem about polygons in the plane, which involves in an
intriguing manner the number 12. The statement of the theorem is completely elementary,
but its proofs display a surprisingly rich variety of methods, and at least some of them
suggest connections between branches of mathematics that on the surface appear to have
little to do with one another.

We describe four proofs of the main theorem, but we give full details only for proof 4,
which uses modular forms. Proofs 2 and 3, and implicitly the theorem, appear in [4].

2. The Theorem

A lattice polygon is a polygon P in the plane R2 all of whose vertices lie in the lattice Z2

of points with integer coordinates. It is convex if for any two points P and Q in the polygon,
the segment PQ is contained in the polygon. Let `(P) be the total number of lattice points
on the boundary of P . If we define the discrete length of a line segment connecting two
lattice points to be the number of lattice points on the segment (including the endpoints)
minus 1, then `(P) equals also the sum of the discrete lengths of the sides of P .

We are interested in convex lattice polygons such that (0, 0) is the only lattice point in the
interior of P . For such P , we can define a dual polygon P∨ as follows. Let p1, p2, . . . , pn
be the vectors representing the lattice points along the boundary of P , in counterclockwise
order. For convenience, indices are considered modulo n, so that pn+1 = p1, etc. Define
qi to be the vector difference pi+1 − pi. We will soon see that the kindergarten process of
connecting the dots with straight lines from q1 to q2 to . . . to qn and back to q1 traces out
counterclockwise the boundary of a new convex lattice polygon whose only interior lattice
point is (0, 0); some of the qi may coincide. For now, however, we define P∨ simply as the
convex hull of {q1,q2, . . . ,qn}; the convex hull of a set S is the smallest convex set containing
S. One can show that P∨∨ is the 180◦ rotation of P .

We are now ready to state the theorem.

Theorem 1. Let P be a convex lattice polygon whose only interior lattice point is (0, 0), and
let P∨ be its dual. Then `(P) + `(P∨) = 12.

An instance of the theorem is illustrated in Figure 1.

3. Other manifestations of 12

How can we “explain” the 12? One way would be to relate it to other appearances of 12 in
mathematics. People in different fields brainstorming for an answer to the question “What
is 12?” would likely produce widely varying results:
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Figure 1. A polygon P and its dual. Note that 5 + 7 = 12.

(A) To one who specializes in algebraic geometry, 12 might be the number appearing in
Noether’s formula 12(1 + pa) = K2 + c2, which relates certain integer invariants of
an algebraic surface. This formula is a special case of the Hirzebruch-Riemann-Roch
theorem [6, pp. 363, 432] and the 12 here comes from the coefficient of x2 in the
Taylor series
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whose nth coefficient is Bn/n!, where Bn denotes the nth Bernoulli number.
(B) To one who studies automorphic forms, 12 might be the weight of ∆(z), which is the

cusp form of smallest weight for SL2(Z).
(C) To one who dabbles in astrology, 12 might be the number of signs in the zodiac.

We relate the 12 in our theorem to (A) and (B) only!

4. The proofs

We sketch four proofs, using the following:

(1) Exhaustion
(2) Stepping in the space of polygons
(3) Toric varieties
(4) Modular forms

The first two have the advantage of being completely elementary, but the last two do a
better job of explaining the 12. Only the last proof is new, so it is the only one that we give
in full.

We say that a polygon is legal if it is a convex lattice polygon in R2 and o := (0, 0) is its
only interior lattice point.
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5. Proof 1: Exhaustion

Exhaustion means that we are going to list all legal polygons, and verify Theorem 1 for
each, one at a time. If we take this literally, we will soon be truly exhausted, because there
are infinitely many legal polygons.

To cut down the number of polygons we need to consider, we can define a notion of equiv-

alence. Let SL2(Z) (respectively, GL2(Z)) denote the group of 2-by-2 matrices A =

[
a b
c d

]
such that a, b, c, d ∈ Z and detA = 1 (respectively, detA ∈ {1,−1}). Every matrix
A ∈ GL2(Z) determines a linear transformation of the plane R2 that maps Z2 bijectively
onto itself, so A maps legal polygons to legal polygons.

We say that two legal polygons P and Q are equivalent if there exists an A ∈ GL2(Z) that
transforms P into Q. In that case, `(P) = `(Q), and A transforms P∨ into Q∨ or the 180◦

rotation of Q∨, depending on the sign of detA. Hence proving Theorem 1 for P is the same
as proving it for Q. If we knew that there were only finitely many equivalence classes of
legal polygons, and if we could find a list of legal polygons representing these classes, then
we could prove Theorem 1 by checking the polygons on this list.

The desired finiteness does hold, and in fact, much more is true. For d ≥ 2, a convex lattice
polytope in Rd is the convex hull P of a finite set of points with integer coordinates, such
that the points are not all contained in a hyperplane; this ensures that P is d-dimensional.
Hensley [7] bounded the volume and the number of boundary lattice points in terms of d
and the number k of interior lattice points when k ≥ 1; this result for d = 2 was proved
earlier by Scott [14], and Hensley’s bounds have been improved in [11]. These results easily
imply the following:

Theorem 2. Fix integers d ≥ 2 and k ≥ 1. Up to the action of GLd(Z) and translation
by lattice points, there are only finitely many convex lattice polytopes in Rn having exactly k
interior lattice points.

Remark. Theorem 2 would be false if we allowed k = 0.

In the case of interest (d = 2 and k = 1), there are exactly 16 equivalence classes. Polygons
representing these equivalence classes are listed in Figure 2. We leave it to the reader to
pair them with their duals (up to equivalence), and to verify that Theorem 1 holds. Some
polygons are self-dual.

Although this method does prove Theorem 1, it is not very satisfying, because it does not
really explain anything.

6. Proof 2: stepping in the space of polygons

We say that two legal polygons are neighbors if there is a counterclockwise labeling p1,
p2, p3, . . . , pn of the boundary lattice points of one of them, such that the boundary lattice
points of the other are p1, p1 + p2, p2, p3, . . . , pn.

Warning. Suppose that P is a legal polygon with a counterclockwise labeling p1, p2, . . . , pn
of its boundary lattice points. Then the polygon with boundary lattice points p1, p1 + p2,
p2, p3, . . . , pn need not be legal: it may fail to be convex.

We can prove Theorem 1 by

(1) verifying it for a single legal polygon P0;
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Figure 2. The 16 equivalence classes of legal polygons.

(2) proving that for any P , there is a sequence of legal polygons starting from P0 and
ending with P , such that each polygon is a neighbor of its successor; and

(3) checking that the value of `(P) + `(P∨) is unchanged when P is replaced by a neigh-
boring legal polygon.

This method of proof is discussed in a series of exercises in [4, Section 2.5].
Most people would agree that such a proof is more satisfying than the one in Section 5:

it explains why `(P) + `(P∨) must be constant. But it does not explain why that constant
should be 12.
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7. Proof 3: Toric varieties

We do not want to go too deeply into the geometry of toric varieties here; readers with a
basic knowledge of algebraic geometry who want more details are encouraged to consult [4],
especially Sections 2.5 and 4.3. Other readers may choose to skip this section; it is not
needed in the rest of the paper.

To any legal polygon P , one can associate a 2-dimensional toric variety TP , which is a
kind of algebraic variety. The condition that o be the only interior lattice point of P is
exactly what is required to make the surface TP nonsingular. The arithmetic genus pa, the
self-intersection K2 of the canonical bundle, and the second Chern class c2 of the tangent
bundle are geometric invariants of the surface TP that can be expressed in terms of the
combinatorics of P ; in fact it turns out that they equal 0, `(P), and `(P∨), respectively.
Hence Theorem 1 is simply a restatement of Noether’s formula 12(1 + pa) = K2 + c2 for
2-dimensional nonsingular toric varieties. If one proves Noether’s formula for surfaces in
general using algebraic-geometric methods, as done in [9, p. 154] for instance, one obtains
a new proof of Theorem 1. The point of view taken in [4] is the reverse; the combinatorial
proof of Section 6 can be used to give an independent proof of Noether’s formula in the
special case of toric surfaces.

This proof is just one instance of a great exchange that has been taking place between
two disciplines. Results in the combinatorics of lattices are being used to prove results about
toric varieties, and vice versa, to the benefit of both sides.

Remark . The proof here and the proof of the previous section are related, as discussed
in [4, Section 2.5]. If P and Q are neighboring legal polygons and Q is the one with more
boundary lattice points, then TQ can be constructed geometrically from TP by “blowing up
a point” [6, p. 28]. The relation pa = 0 for toric varieties is implied by the classical fact that
the arithmetic genus pa of a nonsingular surface is a birational invariant.

8. Proof 4: Modular forms

We now give the final proof, using transformation properties of the logarithm of the
modular form ∆(z). No prior knowledge of modular forms is required (we state a few facts
without proof), but we use some undergraduate topology and complex analysis.

8.1. Interpretation via matrices. Let p1, p2, . . . , pn be as in Section 2.

Lemma 3. The vectors p1 and p2 form a basis for the lattice Z2 that has the same orientation
as the standard basis (1, 0), (0, 1).

Proof. Since the pi were chosen in counterclockwise order, it suffices to show that p1 and p2

span Z2. If v is a lattice point not of the form m · p1 + n · p2, then translating v by such a
combination yields a new lattice point w in the closed parallelogram P that has the vectors
p1 and p2 as sides, such that w is not a vertex of P . Replacing w by p1 +p2−w if necessary,
we can assume that w is in or on the triangle with vertices o, p1, p2 but is not equal to any
of these vertices. Since P has no interior lattice point other than o, the point w cannot be
in the interior of the triangle. For the same reason it cannot be in the interior of either side
with endpoint o. Hence w is in the interior of the segment joining p1 to p2. This also is a
contradiction, since then w should have been listed as a boundary lattice point between p1

and p2. �
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Remark. Lemma 3 could also be derived by applying Pick’s formula [4, p. 113] to the triangle
with vertices o, p1, p2. Pick’s formula states that the area of a lattice polygon equals
I + B/2 − 1, where I is the number of interior lattice points, and B is the number of
boundary lattice points. See [3] and [5] for further discussion of this formula.

Lemma 3 implies that the 2 × 2 matrix

[
p1

p2

]
whose rows are p1 and p2 written as row

vectors belongs to SL2(Z). Similarly,

[
p2

p3

]
∈ SL2(Z). The matrix M such that

M

[
p1

p2

]
=

[
p2

p3

]
has the form M =

[
0 1
c d

]
. Since M ∈ SL2(Z) also, c = −1. In general, for each i, we have

a matrix Mi =

[
0 1
−1 di

]
such that

Mi

[
pi−1
pi

]
=

[
pi
pi+1

]
.

With respect to the basis {pi−1,pi} we then have

(1) pi−1 = (1, 0), pi = (0, 1), pi+1 = (−1, di), qi−1 = (−1, 1), qi = (−1, di − 1),

and qi − qi−1 = nipi where ni = di − 2. Since P is convex, the point pi+1 of P must lie in
the half plane x + y ≤ 1 below the line through pi and pi−1; this forces ni ≤ 0. If pi is a
vertex (as opposed to being in the interior of one of the sides), then ni < 0. At this point,
we can explain why the dual of a legal polygon is legal.

Proposition 4. If P is a legal polygon, then drawing segments from q1 to q2 to . . . to qn
and back to q1 results in a new legal polygon. In particular, P∨ is legal.

Proof. As we traverse the boundary of P once in a counterclockwise direction, the direction
we face also rotates 360◦ counterclockwise. Since the vectors qi are translates of the vectors
forming the sides of the polygon (the vectors that show the direction of our motion), the
segments between them trace out some lattice polygon P ′ that contains o.

Using (1), we see that if qi−1 6= qi, then the only lattice points inside or on the solid
triangle with vertices o, qi−1, qi are o and those on the side joining qi−1, qi. This holds for
all i, so o is the only interior lattice point of P ′.

It remains to show that P ′ is convex. If pi is a vertex of P (or equivalently, ni 6= 0),
then we may characterize qi−1,qi as the primitive vectors along sides of P coming in and
out of pi, respectively, when P is given the counterclockwise orientation. A vector (a, b) is
primitive if gcd(a, b) = 1.

Now let pi,pj, with i < j, be two consecutive vertices of P that determine a side of P of
length m. Note that qi = qj−1. By (1), qi − qi−1 = nipi and qj − qj−1 = njpj. Then, since
pi and pj must be linearly independent, qi is a vertex of P ′. Since pi and pj are vertices, we
have ni < 0 and nj < 0, so −pi and −pj are the primitive vectors along sides of P ′ coming
in and out of qi, respectively. Finally, pj − pi = mqi, so o = qi + (1/m)pi + (1/m)(−pj) is
in the cone {qi +αpi +β(−pj) : α, β ∈ R≥0 } determined by the sides of P ′ at qi. It follows
that P ′ is convex. �
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Since

MnMn−1 · · ·M1

[
p0

p1

]
=

[
pn
pn+1

]
=

[
p0

p1

]
,

we have

(2)

[
0 1
−1 dn

] [
0 1
−1 dn−1

]
· · ·
[

0 1
−1 d1

]
= I,

the identity matrix.
Using (1), we find that the discrete length of the segment from qi−1 to qi is |(di−1)−1| =

2 − di, since di − 2 ≤ 0. Hence `(P∨) =
∑n

i=1(2 − di). On the other hand, `(P) = n, so
Theorem 1 is equivalent to

∑n
i=1(3 − di) = 12. But this equality cannot be a consequence

of (2) alone: if we took the sequence of matrices Mi corresponding to P and repeated it
twice, the resulting sequence would still multiply to give the identity, but now the sum of
the (3−d)’s would be 24. We need somehow to incorporate the information that our polygon
P winds exactly once around the origin. To do this we lift (2) to an equation in an extension
of the group SL2(Z) by Z, in which the Z keeps track of the winding number.

8.2. The universal cover S̃L2(R) of SL2(R). Let SL2(R) denote the group of 2-by-2

matrices A =

[
a b
c d

]
such that a, b, c, d ∈ R and detA = 1. As a topological space, SL2(R)

is the set of oriented bases of R2 of determinant one. Geometric intuition suggests that
the only homotopy invariant of a loop in this space is “the number of times the basis gets
rotated around the origin”, so that the fundamental group π1(SL2(R)) should be Z; we
recommend [12] as an introduction to fundamental groups and universal covers.

This is not hard to prove rigorously; for example, one could use the Iwasawa decomposition,
which for SL2(R) says that each M ∈ SL2(R) can be factored uniquely as

M =

[
1 u
0 1

] [
a 0
0 a−1

] [
cos θ − sin θ
sin θ cos θ

]
with u ∈ R, a ∈ R+, and 0 ≤ θ < 2π. Thus there is a homeomorphism

SL2(R) ≈ R×R+ ×R/2πZ

(not a homomorphism). Since R and R+ are simply connected, and since the last fac-
tor R/2πZ has simply connected cover R with covering group 2πZ ∼= Z, we find that
π1(SL2(R)) = Z.

We let S̃L2(R) denote the universal cover of SL2(R), which is a connected topological
group fitting into an exact sequence

0→ Z→ S̃L2(R)→ SL2(R)→ 0.

Although S̃L2(R) cannot be described as a subgroup of matrices satisfying algebraic condi-
tions [18, Exercise 15(b), p. 137], we can give a fairly concrete description of it. Consider
pairs (M, [γ]), where

M =

[
a b
c d

]
∈ SL2(R)

and [γ] is the path-homotopy class [12, p. 319] of a path γ in R2\o from
[
0 1

]
I to

[
0 1

]
M ;

i.e., from (0, 1) to (c, d). Every M ∈ SL2(R) acts on the right on R2 (whose elements we
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identify with row vectors), and hence also acts on paths in R2 \ o. We obtain a group
structure on the set of pairs (M, [γ]) by letting

(M1, [γ1]) · (M2, [γ2]) = (M1M2, [γ2 + γM2
1 ]),

where γM2
1 denotes the action described in the previous sentence, and + denotes the join

of two paths sharing an endpoint. The matrix M2 transforms γ1 into a path that begins
where γ2 ends. This group is connected, and it covers SL2(R) with covering group Z, so it

is isomorphic to S̃L2(R).

8.3. The extension S̃L2(Z) of SL2(Z). Our desired extension of SL2(Z) by Z is the preim-

age of SL2(Z) under the covering map S̃L2(R) → SL2(R). We call this group S̃L2(Z), even

though S̃L2(Z) is, of course, not the universal cover of SL2(Z), since SL2(Z) is a discrete
group.

Now let Mi and di be as in Section 8.1 and furthermore assume without loss of generality
that p0 = (1, 0) and p1 = (0, 1). Let γi be the straight-line path from (0, 1) to (−1, di).
Then by induction on j, we have

MjMj−1 · · ·M1 =

[
pj
pj+1

]
and MjMj−1 · · ·M1 transforms γj+1 into the straight-line path from pj+1 to pj+2. Hence

(Mj, [γj]) · (Mj−1, [γj−1]) · · · · · (M1, [γ1]) = (MjMj−1 · · ·M1, [Γj])

where Γj is the polygonal path from p1 to p2 to . . . to pj+1. Taking j = n, we obtain

(3) (Mn, [γn]) · (Mn−1, [γn−1]) · · · · · (M1, [γ1]) = (I, loop),

where loop denotes the path-homotopy class of a counterclockwise loop around o.

Remark . The group we are calling S̃L2(Z) can be presented in terms of generators and
relations either as 〈a, b : aba = bab〉 or as 〈x, y : x2 = y3〉, where a, b, x, y equal (respectively)[

1 1
0 1

]
,

[
1 0
−1 1

]
,

[
0 −1
1 0

]
,

[
0 −1
1 1

]
equipped with the straight-line paths. It is isomorphic also to groups occurring naturally in
several other contexts:

• the fundamental group of R3 \ T , where T is a trefoil knot,
• the braid group B3 (an isomorphism being given, for example, by sending a, b to

standard generators of B3 [2, p. 18]), and
• the local fundamental group of the ordinary cusp singularity, which also equals the

fundamental group of C2 \ {(x, y) ∈ C2 : y2 = x3}, where C denotes the field of
complex numbers.

See [16, p. 11].
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8.4. The modular form ∆(z) and its logarithm. Let H = {z ∈ C : Im(z) > 0} denote
the upper half plane. Matrices

M =

[
a b
c d

]
∈ SL2(R)

act on points z ∈ H according to the rule: Mz := (az + b)/(cz + d).
An excellent introduction to the theory of modular forms is given in [15]. In fact, the only

external fact we need is that there exists a holomorphic function ∆(z) on H such that

(a) ∆(z) 6= 0 for all z ∈ H; and

(b) ∆(Mz) = (cz + d)12∆(z) for all M =

[
a b
c d

]
∈ SL2(Z) and z ∈ H.

Property (b) is part of what it means for a function to be a modular form. To be precise, if
k is an integer, a modular form of weight k for the group SL2(Z) is a holomorphic function
f on H such that

(i) f(Mz) = (cz + d)kf(z) for all M =

[
a b
c d

]
∈ SL2(Z) and z ∈ H; and

(ii) f is “holomorphic at infinity;” i.e., it has a Fourier expansion of the form f(z) =
∑∞

n=0 ane
2πinz.

Note that condition (i) applied with M =

[
1 1
0 1

]
yields f(z + 1) = f(z), which implies that

f has a Fourier expansion of the form f(z) =
∑∞

n=−∞ ane
2πinz; the point of condition (ii) is

to require that an = 0 for n < 0. If in addition the Fourier coefficient a0 is zero, then f is
said to “vanish at the cusp ∞,” and f is called a cusp form.

The function we need is given by the following striking result, which is proved, for example,
in [15].

Theorem 5. The set of cusp forms of weight 12 for SL2(Z) is a 1-dimensional vector space
over C, spanned by

∆(z) := (2π)12q
∞∏
n=1

(1− qn)24 where q := e2πiz.

The fact that ∆(z) 6= 0 for z ∈ H follows from the convergence of the product for |q| < 1.
Also, H is simply connected, so we may fix once and for all a branch of log ∆(z) on H. Then

(4) log ∆(Mz)− log ∆(z) = 12 log(cz + d) + 2πim

for some integer m depending on the choice of branch of log(cz + d). If when c 6= 0 one
chooses the branch of log(cz+d) so that its range is the same as that of log(z) in H, then the
integer m is related to Dedekind sums [13, p. 47]. The complications arising from Dedekind
sums and their transformation formulas can be avoided, however, if we equip M with a path
as in Section 8.2.

If M =

[
a b
c d

]
∈ SL2(R), then having a path γ from (0, 1) to (c, d) in R2 \ o lets us make

a canonical choice of branch of log(cz + d): for fixed z ∈ H, we set log(0 · z + 1) = 0 and
then make log(c′z + d′) a continuous function of the path parameter, as (c′, d′) moves from
(0, 1) to (c, d). Moreover this choice of branch depends only on the path-homotopy class of

γ; we call it L(M, [γ]; z). For (M, [γ]) ∈ S̃L2(Z),

(5) log ∆(Mz)− log ∆(z) = 12L(M, [γ]; z) + 2πiΦ(M, [γ])



10 BJORN POONEN AND FERNANDO RODRIGUEZ-VILLEGAS

now defines a function Φ : S̃L2(Z)→ Z.

If (M1, [γ1]) · (M2, [γ2]) = (M3, [γ3]) in S̃L2(R), and if [c3 d3] is the bottom row of M3,
then a computation shows that

L(M1, [γ1];M2z) + L(M2, [γ2]; z) and L(M3, [γ3]; z)

are both branches of log(c3z + d) on H, so they differ by 2πiN((M1, [γ1]), (M2, [γ2])) for

some integer-valued function N : S̃L2(R) × S̃L2(R) → Z. But N is continuous, S̃L2(R)
is connected, and Z is discrete, so the image of N is constant. Evaluating N when both

arguments are the identity in S̃L2(R) shows that N is identically zero. Now adding (5) for
(M2, [γ2]) to the corresponding equation for (M1, [γ1]) with z replaced by M2z, and comparing

with (5) for (M1, [γ1])(M2, [γ2]), we find that Φ : S̃L2(Z)→ Z is a homomorphism.

Remark. The modular form ∆ was used only to construct Φ. There are other, more elemen-
tary means to construct Φ, but these are also more ad hoc. For instance, we could have used

one of the explicit presentations of S̃L2(Z) mentioned in Section 8.3.

8.5. Values of the homomorphism Φ. Fix z ∈ H. As (c, d) winds around o once in the
counterclockwise direction, cz+d winds around 0 ∈ C once in the clockwise direction. Hence
by definition L(I, loop; z) = −2πi and Φ(I, loop) = 12.

Let

S :=

[
0 −1
1 0

]
T :=

[
1 1
0 1

]
.

Let S̃ and T̃ be the elements of S̃L2(Z) obtained by equipping S with the straight-line path
from (0, 1) to (1, 0), and T with the trivial path. It is known that S and T generate SL2(Z)

(and in fact S̃ and T̃ generate S̃L2(Z)), but we will not need to use this. A short calculation
shows that

S̃−1 · T̃−d =

([
0 1
−1 d

]
, [γ]

)
,

where γ is the straight-line path from (0, 1) to (−1, d). Applying (3) to the diamond (the
4th polygon in Figure 2) shows that (

S̃−1
)4

= (I, loop)

and applying Φ to both sides shows that 4Φ
(
S̃−1

)
= 12, so Φ

(
S̃
)

= −3. Similarly,

applying (3) to the hexagon (the 10th polygon in Figure 2) shows that(
S̃−1 · T̃−1

)6
= (I, loop)

so Φ
(
S̃−1 · T̃−1

)
= 2, and Φ

(
T̃
)

= 1. (Alternatively, one could calculate Φ(S̃) = −3 and

Φ(T̃ ) = 1 directly from (5), using the fixed point z = i of S for the former.) Hence

Φ

([
0 1
−1 d

]
, [γ]

)
= Φ

(
S̃−1 · T̃−d

)
= 3− d.

Applying Φ to (3) shows that
∑n

i=1(3−di) = 12, which, as we saw in Section 8.1, is equivalent
to Theorem 1.
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Figure 3. A legal loop L of winding number 1 and its dual. Because the
dotted line counts as having length −1, `(L) = 3. Note that 3 + 9 = 12 · 1.

9. Generalizations

Theorem 1 can be generalized in various ways. We do not know, however, how to generalize
it to polygons with more than one interior lattice point.

9.1. Legal loops. These are generalizations of legal polygons. A legal loop L is a closed
path in the plane formed by consecutive legal moves. A legal move is an oriented segment
joining two lattice points such that its initial and end point together with the origin form
a non-degenerate triangle with no other lattice point (in the interior or on its boundary)
except those three; equivalently, by Pick’s formula, we could require the triangle to have
area 1/2. Clearly, a legal polygon is a legal loop. Notice that we do not require a legal loop
to have acute angles at its corners, and hence its winding number w with respect to o (in the
sense of algebraic topology) can be an arbitrary integer. Boundary lattice points now have
to be counted with a sign; precisely, if s is an oriented segment joining two lattice points p
and p′, and if there are k lattice points on s, then define

`(s) = (k − 1) · det

[
p
p′

]
.

The determinant is ±1. We then define `(L) as the sum of `(s) over the oriented segments
s forming the loop.

Let

qi =

(
det

[
pi
pi+1

])
· (pi+1 − pi),

and define the dual L∨ to be the loop obtained by “connecting the dots” from q1 to q2 to
. . . to qn and back to q1, listing also the lattice points along the segments drawn. It is not
hard to see that L∨ is again a legal loop with the same winding number w. See Figure 3 for
an example. The statement of Theorem 1 becomes

`(L) + `(L∨) = 12 · w .



12 BJORN POONEN AND FERNANDO RODRIGUEZ-VILLEGAS

Of all the proofs of Theorem 1 that we have discussed, proof 4 seems to be the best suited for
this generalization. Proof 3 is difficult to generalize, because the natural object associated
to a legal loop by the construction of Section 7 need not be an algebraic variety; it could also
be a “non-separated scheme”, which is the algebraic analogue of a non-Hausdorff topological
space. Hence Noether’s formula as stated does not apply.

9.2. Higher dimensions. Theorem 1 has generalizations to higher dimensions, but the
statements are not as simple, and in fact we do not give any explicitly here. The appropriate
notion of legal polytope would have to be that of a reflexive polytope; i.e., a convex lattice
polytope that can be described as the solution set of a system of linear inequalities of the
form a1x1 + · · · + adxd ≤ 1 with a1, . . . , ad integers with gcd 1. The dual polytope (usually
called the polar polytope) is defined as the convex hull of the points (a1, . . . , ad). Our original
definition of dual polygon differs from this one when d = 2 by a 90◦ rotation. A reflexive
polytope has o as its only interior lattice point, but in any dimension d > 2 there exist non-
reflexive convex lattice polytopes having o as the only interior lattice point [8]. Applying
the Hirzebruch-Riemann-Roch theorem to the toric variety associated to a reflexive polytope
gives information about the combinatorics of the polytope.

Physicists are interested in reflexive polytopes because of their relation to mirror symme-
try [1]; in fact, they now have a complete classification in dimension 3 [10]: there are 4,319 of
them! The complete list and other interesting information may be obtained from the website
http://tph16.tuwien.ac.at/~kreuzer/CY.html.

10. Gauss-Bonnet?

There is a potential connection of Theorem 1 to the Gauss-Bonnet theorem. For a geodesic
polygon P on a surface of constant curvature c, the classical Gauss-Bonnet theorem [17,
pp. 247–250] states that

(6) c · Area(P) +
∑

(exterior angles) = 2π.

For example, on a sphere of a radius 1, if a “triangle” bounded by arcs of great circles has
interior angles α, β, γ measured in radians, then its area is α + β + γ − π.

Now suppose instead that P is one of our legal lattice polygons. If pi and pi+1 are two
adjacent boundary lattice points, as in Section 8.1, then the area of the triangle with vertices
o, pi, pi+1 equals

1

2
det

[
pi
pi+1

]
=

1

2
.

Summing over i shows that Area(P) = n/2, where n = `(P); alternatively, this follows from
Pick’s formula.

Recall that the nonnegative integer 2 − di had an interpretation as the discrete length
of a segment in the dual polygon. We now explain why it can also be interpreted as a
combinatorial analogue of an exterior angle. With respect to the basis {pi−1,pi} of Z2,
we have pi−1 = (1, 0) and pi = (0, 1), and pi+1 = (−1, di). If di = 2, then at pi there
is a “straight angle”; as di decreases, the exterior angle (with respect to our basis) at pi
increases; see Figure 4. Therefore we define the discrete exterior angle of P at pi to be
1−di/2: there is no intrinsic reason not to multiply by 1/2, and doing so makes the analogy
to Gauss-Bonnet clearer.
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2-di=0

2-di=1

2-di=2

2-di=3

2-di=4

p
i

p
i-1

Figure 4. The dependence of the exterior angle at pi on 2− di.

Theorem 1, reinterpreted as in Section 8.1, says that n+
∑n

i=1(2− di) = 12. Dividing by
2, we obtain

(7) Area(P) +
∑

(discrete exterior angles) = 2bπc,

where bπc = 3 is the discrete analogue of π!
We leave it to the reader to mull over whether there exists an explanation for the similar-

ities between (6) and (7). We do not know one.
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