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Abstract

There is an extensive literature on random planar maps and their connections to
continuous objects in dimension two. However, few results have been formulated or
proved in higher dimensions. Recently, an unconventional approach to random planar
maps was introduced. It studied inventory accumulation at a last-in-first-out retailer
with two products, and presented a bijection between inventory accumulation trajec-
tories and instances of critical Fortuin-Kasteleyn random planar maps.

In this paper, we generalize this inventory accumulation model to k products and
prove that the corresponding random walks scale to Brownian motions with appropriate
covariance matrices. We observe that a phase transition occurs at a certain critical
value. Moreover, we believe that this model leads to a reasonable object in higher
dimensions via bijections similar to the two-dimensional case, so our work can be
viewed as a small step towards higher-dimensional correspondences of random planar
maps.
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1 Introduction

Planar maps are connected planar graphs embedded into the two-dimensional sphere defined
up to homeomorphisms of the sphere. We allow self loops and multiple edges. Planar
maps have been studied extensively in combinatorics (see the seminal work by Tutte [12])
and theoretical physics (for example [7] and [3]). One may restrict attention to planar
triangulations (or quadrangulations), namely, one only allows faces in planar maps to have
three edges (or four edges), counting multiplicity. In the probabilistic setting, one may
choose planar maps randomly in a suitable class. For example, one can consider a random
planar map uniformly distributed over planar triangulations with n faces. See Le Gall and
Miermont’s work [9] for more about random planar maps and their scaling limits.

In a recent work, Sheffield proposed a new approach to study random planar maps [11]. In
this approach, random planar maps are coded by two random walks with certain correlation.
More precisely, Sheffield first studied inventory accumulation at a last-in-first-out retailer
with two products, called hamburgers and cheeseburgers. In his model, production of a
hamburger, production of a cheeseburger, consumption of a hamburger, consumption of a
cheeseburger and consumption of the freshest burger happen with respective probabilities
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at each time point. The freshest burger means the most recently produced

burger regardless of type. Then it was proved that the evolution of the two burger inventories
scales to a two-dimensional Brownian motion with covariance depending on p. A phase
transition happens at p = 1/2. In particular, when p ≥ 1/2, the burger inventory remains
balanced as the time goes to infinity, that is, the discrepancy between the two burgers remains
small.

This result has its own interest, but more importantly, Sheffield constructed a bijection
between the burger inventories (which are two random walks) and instances of the so-called
critical Fortuin-Kasteleyn random planar maps [6]. Therefore, one can generate a random
planar map from two random walks, and study its properties by studying the random walks,
that is, the inventory trajectories in the burger model.

One advantage of this approach is that the model can be generalized to higher dimensions
naturally, which is the goal of our work. In this paper, we will study inventory accumulation
with k products and prove that the corresponding random walks scale to Brownian motions
with certain covariance matrices. A phase transition occurs at a p = 1−1/k which generalizes
the two-dimensional result.

Furthermore, using bijections similar to the two-dimensional one, we expect to generate
a higher-dimensional random object by inventory trajectories (i.e. three or more random
walks) and study its properties in subsequent works. So far, few research has been devoted
to the analogous theory of random planar maps in higher dimensions, partly due to the
difficulty of enumeration and lack of bijective representations. See [1] for an interesting
higher-dimensional result among the few. We hope our work can be a first step towards the
study of certain higher-dimensional correspondences of random planar maps.

In Section 2, we will describe the model in detail and state the main scaling theorem.
The subsequent sections are devoted to the technicalities. Most proofs in this paper are
adaptations from the two-product case [11]. We will emphasize the ones that involve new
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ideas.
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2 Model setup and the main theorem

We consider a last-in-first-out retailer with k products, to which we refer as burger 1, . . . ,
burger k. Following the construction in Section 2 of [11], we define an alphabet of symbols

Θ = { 1 , 2 , . . . , k , 1 , 2 , . . . , k , F }

which represent the k types of burgers, the corresponding k types of orders and the “flexible”
order which always consumes the most recently produced burger in the remaining burger
stack.

A word in the alphabet Θ is a concatenation of symbols in Θ that represents a series of
events happened at the retailer. For example, if W = 2 3 3 1 2 F , then the word W
represents the series of events: a burger 2 is produced, a burger 3 is produced, a burger 3
is ordered, a burger 1 is produced, a burger 2 is ordered and the freshest burger is ordered,
which is burger 1 in this case.

To describe the evolution of burger inventory mathematically, we consider the collection
G of (reduced) words in the alphabet Θ modulo the following relations

i i = i F = ∅ and i j = j i (2.1)

where 1 ≤ i, j ≤ k and i 6= j. Intuitively, the first relation means that an order i or F
consumes a preceding burger i , and the second means that we move an order one position
to the left if it does not consume the immediately preceding burger. For example,

W = 2 3 3 1 2 F = 2 1 2 F = 2 2 1 F = ∅,

which is reasonable since every burger is consumed. By the same argument as in the proof of
Proposition 2.1 in [11], we see that G is a semigroup with ∅ as the identity and concatenation
as the binary operation.

Let X(n) be i.i.d. random variables indexed by Z (i.e. time), each of which takes its
value in Θ with respective probabilities
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Let µ denote the corresponding probability measure on the space Ω of maps from Z to Θ.
In this paper, we follow the convention that probabilities and expectations are with respect
to µ unless otherwise mentioned. For m ≤ n, we write

X(m,n) := X(m)X(m+ 1) · · ·X(n)

where · means that a word is reduced modulo the relations (2.1). Then X(m,n) describes
the events that happen between time m and time n at the retailer.

If a burger is added at timem and consumed at time n, we define φ(m) = n and φ(n) = m.
Proposition 2.2 in [11] remains valid in this k-burger setting:

Proposition 2.1. It is µ-almost surely that for every m ∈ Z, φ(m) is finite. In other words,
φ is an involution on Z.

Since a slight modification of the original proof will work here, we only describe the ideas.
Let Ei be the event that every burger of type i is ultimately consumed. It can be shown that
the union of Ei’s has probability one, and since Ei’s are translation-invariant, the zero-one
law implies that each of them occurs almost surely. A similar argument works for orders, so
each X(m) has a correspondence, which is the statement of Proposition 2.1.

Hence we may define

Y (n) :=

{
X(n) X(n) 6= F ,

i X(n) = F , X(φ(n)) = i .

Proposition 2.1 also enables us to define the half-infinite burger stack X(−∞, n). Namely,
X(−∞, n) is defined to be the sequence of X(m) where m ≤ n and φ(m) > n. It contains
no orders since each order consumes an earlier burger. It is infinite because otherwise the
length of X(−∞, n) is a simple random walk in n and will be zero at some time, but an
order added at that time will consume no burgers.

For a word W in the alphabet Θ, we define Ci(W ) to be the net burger count of type i,
i.e., the number of i minus the number of i . Also, we define C(W ) to be the total burger
count, i.e.,

C(W ) :=
k∑
i=1

Ci(W ).

If W has no F , then for 1 ≤ i 6= j ≤ k, we define Dij(W ) to be the net discrepancy of
burger i over burger j, i.e.,

Dij(W ) := Ci(W )− Cj(W ).

Definition 2.2. Given the infinite X(n) sequence, let Cin be the integer-valued process defined
by Ci0 = 0 and Cin − Cin−1 = Ci(Y (n)) for all n. Let Cn :=

∑k
i=1 Cin and Dijn := Cin − Cjn.

For any integer n, we define two vector-valued processes An and Ãn by

An := (D12
n ,D23

n , . . . ,Dk−1,kn , Cn) and Ãn := (C1n, C2n, . . . , Ckn).

We extend these definitions to real numbers by piecewise linear interpolation so that t 7→ At
and t 7→ Ãt are infinite continuous paths.

4



When n > 0, we have Cin = Ci(Y (1, n)); when n < 0, we have Cin = Ci(Y (n + 1, 0));
similarly for Cn and Dijn . As shorthand notations, we write

Ci(m) = Ci(Y (m)) and Ci(m,n) = Ci(Y (m,n))

for m ≤ n, and we let C(m),Dij(m), C(m,n) and Dij(m,n) be defined similarly.

Note that the two processes An and Ãn actually code the same information about the
evolution of the sequence Y (n). More precisely, if we view An and Ãn as column vectors,

then it follows from Definition 2.2 that An = MÃn where M is an invertible matrix defined
by

M :=



1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 1 −1 0
0 · · · 0 0 1 −1
1 1 1 · · · 1 1


.

It is more natural to describe the evolution of Y (1, n) by Ãn, since Ãn is just a random
walk on Zk (or Rk if extended linearly) where the ith axis corresponds to the burger count
of type i. However, An gives one more interesting perspective to view the stack Y (1, n).
Consider the line L through (0, . . . , 0) and (1, . . . , 1) in Rk. Since Cn is a simple random
walk along L and is independent of the other k − 1 coordinates of An, we may view An
as an addition of a one-dimensional simple random walk and an independent walk on the
perpendicular (k − 1)-dimensional hyperplane.

With the linear relation established between An and Ãn, we are ready to state two
equivalent versions of the main scaling limit theorem.

Theorem 2.3. As ε → 0, the random variables εAt/ε2 converge in law (with respect to the
L∞ metric on compact intervals) to

(B1
αt, B

2
t ),

where B1
t = (W 1

t , . . . ,W
k−1
t ) is a (k − 1)-dimensional Brownian motion with covariance

Cov(W i
t ,W

j
t ) =


t i = j,

− t
2
|i− j| = 1,

0 otherwise,

B2
t is a standard one-dimensional Brownian motion independent of B1

t and α := max{ 2
k
−

2p
k−1 , 0}.

Theorem 2.4. As ε → 0, the random variables εÃt/ε2 converge in law (with respect to the
L∞ metric on compact intervals) to a k-dimensional Brownian motion

B̃t = (V 1
t , . . . , V

k
t )
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with covariance

Cov(V i
t , V

j
t ) =

{
( 1
k2
− α

2k
+ α

2
)t i = j,

( 1
k2
− α

2k
)t i < j,

where α := max{ 2
k
− 2p

k−1 , 0}.

It can be verified that (B1
αt, B

2
t ) = MB̃t in distribution, so it is not hard to see that the

two theorems are indeed equivalent.
Theorem 2.3 is a direct generalization of Theorem 2.5 in [11]. We will focus on proving

this version in later sections. We noted that Cn is a simple random walk independent of Dijn ,
so it scales to B2

t which is independent of B1
t as in the theorem. Moreover, the value of α

suggests that a phase transition happens at p = 1 − 1
k
, which will be further explained in

the next section.
To see that the limit in Theorem 2.4 is reasonable, we consider the special case p = 0,

i.e., there are no “flexible” orders. In this case, Ãn is a simple random walk on Zk, so we
expect the limit to be a k-dimensional Brownian motion. Indeed, if p = 0, then α = 2/k and

Cov(V i
t , V

j
t ) =

{
1
k

i = j,

0 i < j.

3 Computation of the covariance matrix and the crit-

ical value

In this section, we calculate the covariance matrix [Cov(Di,i+1
n ,Dj,j+1

n )]ij. It determines the
value of α, the critical value of p at the phase transition and the covariance matrix of the
limiting Brownian motion as in Theorem 2.3.

3.1 First calculations

Following the argument in Section 3.1 of [11], we let J be the smallest positive integer for
which X(−J,−1) has at least one burger. We use |W | to denote the length of a reduced
word W and let χ = χ(p) = E[|X(−J,−1)|].

The orders in X(−J,−1) are of types different from the one burger in X(−J,−1). In
particular, we have that

|Dij(−J,−1)| ≤ |X(−J,−1)| = −C(−J,−1) + 2. (3.1)

Since C(−n,−1) is a martingale in n, the optional stopping theorem applied to the
stopping time J ∧ n implies that

0 = E[C(−1,−1)] = E[C(−J,−1)1J≤n] + E[C(−n,−1)1J>n]. (3.2)
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For J > n, C(−n,−1) ≤ 0, so E[C(−J,−1)1J≤n] ≥ 0. Letting n → ∞, we see that
E[C(−J,−1)] ≥ 0. On the other hand, E[C(−J,−1)] ≤ 1, so by (3.1),

χ = E[|X(−J,−1)|] ∈ [1, 2]. (3.3)

Notice that χ = 2 if and only if E[C(−J,−1)] = 0. Therefore, as n→∞ in (3.2), we deduce
that

χ = 2 if and only if lim
n→∞

E[C(−n,−1)1J>n] = 0. (3.4)

By (3.1), (3.3) and symmetry, E[Dij(−J,−1)] exists and equals zero. Moreover, since
|Dij(−n,−1)| ≤ −C(−n,−1) for n < J , by (3.4),

χ = 2 implies that lim
n→∞

E[|Dij(−n,−1)|1J>n] = 0. (3.5)

It turns out that there is a dichotomy between χ = 2 and 1 ≤ χ < 2, which corresponds
exactly to the phase transition at p = 1 − 1/k. In this section, we focus on the case χ = 2
and show that p ≤ 1− 1/k. We leave the case 1 ≤ χ < 2 to the following sections.

3.2 Computation of E[Dij(0)Dlm(−J,−1)]

In preparation for computing Cov(Dijn ,Dlmn ) = E[DijnDlmn ] for any i 6= j and l 6= m, we first
calculate E[Dij(0)Dlm(−J,−1)].

If i, j, l and m are distinct, then Dij(0) is independent of Dlm(−J,−1), so by symmetry

E[Dij(0)Dlm(−J,−1)] = 0. (3.6)

Next, we evaluate E[Dij(0)Dij(−J,−1)] for i 6= j. On the event X(0) 6= F , Dij(0) is de-
termined by X(0) independently of Dij(−J,−1), so E[Dij(0)Dij(−J,−1)] = 0 by symmetry.

On the event X(0) = F , we have φ(0) = −J . Suppose Y (0) = i . Then for any j 6= i,
Dij(0) = −1, and for any other j, l, Djl(0) = 0. Because X(−J,−1) contains a burger i and
(possibly) orders of types other than i, it follows that

|X(−J,−1)|+ k − 2 =
∑
j 6=i

Dij(−J,−1)

=−
∑
j 6=i

Dij(0)Dij(−J,−1) = −1

2

∑
j 6=l

Djl(0)Djl(−J,−1).

Taking the expectation of the above equation which does not depend on i, we see that
conditioned on X(0) = F ,

χ+ k − 2 = −1

2

∑
j 6=l

E[Djl(0)Djl(−J,−1)] = −k(k − 1)

2
E[Djl(0)Djl(−J,−1)] (3.7)

by symmetry, where j 6= l are arbitrary. Together with the case X(0) 6= F , (3.7) implies
that for any i 6= j,

E[Dij(0)Dij(−J,−1)] = −p(χ+ k − 2)

k(k − 1)
, (3.8)
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since X(0) = F with probability p/2.
It remains to compute E[Dij(0)Dil(−J,−1)] for distinct i, j and l. On the event X(0) 6=

F , because of the independence of Dij(0) and Dil(−J,−1), we have E[Dij(0)Dil(−J,−1)] =
0 as before. On the event X(0) = F and Y (0) 6= i or j , we have Dij(0) = 0, so

E[Dij(0)Dil(−J,−1)] = 0. On the event X(0) = F and Y (0) = j , we have Dij(0) = 1,

so E[Dij(0)Dil(−J,−1)] = 0. Finally, on the event X(0) = F and Y (0) = i , we observe
that Dij(0) = Dil(0) = −1, so E[Dij(0)Dil(−J,−1)] = E[Dil(0)Dil(−J,−1)]. Summarizing
the cases above, we obtain that

E[Dij(0)Dil(−J,−1)] = E[Dil(0)Dil(−J,−1)1X(0)= F ,Y (0)= i ]. (3.9)

Since Dil(0)Dil(−J,−1) = Dli(0)Dli(−J,−1) and Dil(0) = 0 if Y (0) 6= i or l ,

E[Dil(0)Dil(−J,−1)1X(0)= F ,Y (0)= i ] = E[Dil(0)Dil(−J,−1)1X(0)= F ,Y (0)= l ]

=
1

2
E[Dil(0)Dil(−J,−1)1X(0)= F ]

=
1

2
E[Dil(0)Dil(−J,−1)].

Together with (3.9) and (3.8), this implies that

E[Dij(0)Dil(−J,−1)] =
1

2
E[Dij(0)Dij(−J,−1)] = −p(χ+ k − 2)

2k(k − 1)
. (3.10)

3.3 The covariance matrix and the phase transition

By the same argument as in Section 3.1 of [11], we have

E[Dij(0)Dlm(−n,−1)] = E[Dij(0)Dlm(−J,−1)1J≤n] + E[Dij(0)Dlm(−n,−1)1J>n] (3.11)

where the rightmost term tends to zero as n → ∞ if χ = 2 because of (3.5). Therefore,
summarizing (3.6), (3.8) and (3.10), we see that for i 6= j, l 6= m,

χ = 2 implies lim
n→∞

E[Dij(0)Dlm(−n,−1)] =


− p
k−1 i = l, j = m,

− p
2(k−1) i = l, j 6= m,

0 i, j, l,m distinct.

(3.12)

Moreover, Dij(0)2 = 1 if Y (0) is of type i or j, and Dij(0)Dil(0) = 1 if Y (0) is of type i,
so

E[Dij(0)Dlm(0)] =


2
k

i = l, j = m,
1
k

i = l, j 6= m,

0 i, j, l,m distinct.

(3.13)

Now we evaluate Cov(Dijn ,Dlmn ) = E[DijnDlmn ]. Using

Dijr Dlmr = Dij(r)Dlm(r) +Dij(r)Dlmr−1 +Dijr−1Dlm(r) +Dijr−1Dlmr−1
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recursively for 2 ≤ r ≤ n and applying the translation invariance of the law of Ym, we deduce
that when χ = 2,

Cov(Dijn ,Dlmn )

=
n∑
r=1

E[Dij(r)Dlm(r)] +
n∑
r=2

E[Dij(r)Dlmr−1 +Dijr−1Dlm(r)]

=nE[Dij(0)Dlm(0)] +
n∑
r=2

(
E[Dij(0)Dlm(1− r,−1)] + E[Dlm(0)Dij(1− r,−1)]

)

=


2n
k
− 2np

k−1 + o(n) i = l, j = m,
n
k
− np

k−1 + o(n) i = l, j 6= m,

o(n) i, j, l,m distinct,

(3.14)

where the last equation follows from (3.12) and (3.13).
For i = l and j = m, the variance is nonnegative, so

χ = 2 implies p ≤ 1− 1

k
. (3.15)

We remark that (3.14) and (3.15) suggest that the phase transition happens at the critical
value p = 1− 1

k
. Let α = max{ 2

k
− 2p

k−1 , 0}. When χ = 2 and p ≤ 1− 1
k
, it follows immediately

from (3.14) that

Cov(Di,i+1
n ,Dj,j+1

n ) =


αn+ o(n) i = j,

−αn
2

+ o(n) |i− j| = 1,

o(n) otherwise.

(3.16)

This explains why the limiting Brownian motion should have the covariance matrix as in
Theorem 2.3. In the following sections, we will take care of the case χ < 2 and prove that
the convergence indeed happens.

4 Excursion words revisited

This section generalizes the discussion of excursion words in Section 3.3 of [11] to the k-burger
case. First, we quote two results from Section 3.2 of [11] directly.

Lemma 4.1. Let Z1, Z2, Z3, . . . be i.i.d. random variables on some measure space and ψ a
measurable function on that space such that E[ψ(Z1)] < ∞. Let T be stopping time of the
process Z1, Z2, . . . and E[T ] <∞. Then E[

∑T
j=1 ψ(Zj)] <∞.

Lemma 4.2. Let Z1, Z2, . . . be i.i.d. random variables on some measure space and let Zn
be a non-negative integer-valued process adapted to the filtration of the Zn (i.e., each Zn is
a function of Z1, Z2, . . . , Zn) that has the following properties:

1. Bounded initial expectation: E[Z1] <∞.
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2. Positive chance to hit zero when close to zero: For each k > 0 there exists
a positive chance pk such that conditioned on any choice of Z1, Z2, . . . , Zn for which
Zn = k, the conditional probability that Zn+1 = 0 is at least pk.

3. Uniformly negative drift when far from zero: There exist positive constants C
and c such that if we condition on any choice of Z1, Z2, . . . , Zn for which Zn ≥ C, the
conditional expectation of Zn+1 −Zn is less than −c.

4. Bounded expectation when near zero: There further exists a constant b such that
if we condition on any choice of Z1, Z2, . . . , Zn for which Zn < C, then the conditional
expectation of Zn+1 is less than b.

Then E[min{n : Zn = 0}] <∞.

Recall some definitions in Section 3.3 of [11]:

Definition 4.3. We define E to be the excursion word X(1, K) where K is the smallest
integer such that CK+1 < 0.

If i is positive, let Vi be the symbol corresponding to the ith record minimum of Cn,
counting forward from zero. If i is negative, let Vi be the −ith record minimum of Cn,
counting backward from zero. Denote by Ei the reduced word in between Vi−1 and Vi (or in
between 0 and Vi if i = 1). Note that E = E1.

We still have the assertions that E almost surely contains no F symbols and there are
always as many burgers as orders in the word E. Also, the Ei’s and E are i.i.d. excursion
words. The following analogy to Lemma 3.5 in [11] remains true:

Lemma 4.4. If p is such that χ < 2, then the expected word length E[|E|] is finite, and hence
the expected number of symbols in E of each type in { 1 , . . . , k , 1 , . . . , k } is E[|E|]/(2k).

Since E is balanced between burgers and orders, the second statement follows from the
first immediately by symmetry. For the first statement, it suffices to prove that the expected
number of burgers in E−1 is finite, since E and E−1 have the same distribution. The original
proof still works, so we omit it.

For a variant of Lemma 3.6 in [11], we consider the following sequences:

1. mth empty order stack: Om is the mth smallest value of j ≥ 0 with the property
that X(−j, 0) has an empty order stack.

2. mth empty burger stack: Bm is the mth smallest value of j ≥ 1 with the property
that X(1, j) has an empty burger stack.

3. mth left record minimum: Lm = L0
m is the smallest value of j ≥ 0 such that

C(−j, 0) = m. Thus, X(−Lm, 0) = V−mE−m . . . V−1E−1.

4. mth right record minimum: Rm = R0
m is the smallest value j ≥ 1 such that

C(1, j) = −m. Thus, X(1, Rm) = E1V1 . . . EmVm.
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5. mth left minimum with no orders of type 1, 2, . . . , i: for 1 ≤ i ≤ k, Lim is the
mth smallest value of j ≥ 0 with the property that j = Lm′ for some m′ and X(−j, 0)
has no orders of type 1, 2, . . . , i.

6. mth right minimum with no burgers of type 1, 2, . . . , i: for 1 ≤ i ≤ k, Ri
m is the

mth smallest value of j ≥ 1 with the property that j = Rm′ for some m′ and X(1, j)
has no burgers of type 1, 2, . . . , i.

We observe that all these record sequences have the property that the word between two
consecutive records are i.i.d.. Moreover, for 1 ≤ i ≤ k, each Lim is equal to Li−1m′ for some
m′ by definition. Thus we can write each X(−Lim,−Lim−1 − 1) as a product of consecutive
words of the form X(−Li−1m′ ,−Li−1m′−1 − 1). We have the following lemma:

Lemma 4.5. The following are equivalent:

1. E[|E|] <∞.

2. E[|X(−Li1, 0)|] <∞ where 0 ≤ i ≤ k.

3. E[|X(−O1, 0)|] <∞.

4. E[|X(1, Ri
1)|] <∞ where 0 ≤ i ≤ k.

5. E[|X(1, B1)|] <∞.

Proof. 1 implies 2: Note that for i = 0, L0
1 = L1 and X(−L0

1, 0) = V−1E−1. Since E−1 and
E have the same law, 2 follows immediate from 1 when i = 0. To prove 2 for 1 ≤ i ≤ k, we
use induction.

Assume 2 holds for i − 1. Let H(m) be the number of orders of type i in X(−Li−1m , 0).
If we can apply Lemma 4.2 with Zm = X(−Li−1m ,−Li−1m−1 − 1) and Zm = H(m), then
E[min{m : H(m) = 0}] < ∞. That means the expected number of X(−Li−1m ,−Li−1m−1 − 1)
concatenated to produce X(−Li1, 0) is finite. Since X(−Li−1m ,−Li−1m−1 − 1) are identically
distributed as X(−Li−11 , 0) which has finite expected length by inductive hypothesis, Lemma
4.1 implies that X(−Li1, 0) also has finite expected length.

Therefore it remains to check the four assumptions of Lemma 4.2. For any m > 1,

H(m) = max{H(m− 1)− hm, 0}+ om,

where hm is the number of burger i in X(−Li−1m ,−Li−1m−1 − 1) and om is the number of order
i in it. The expected number of burger i equals the expected number of order i in E−m
by Lemma 4.4, while the expected number of burger i in V−m is 1/k, which has no orders.
Hence E[hm] ≥ E[om] + 1/k since X(−Li−1m ,−Li−1m−1 − 1) is a concatenation of at least one
V−m′E−m′ . Then following the same argument as in the proof of Lemma 3.6 of [11], we can
verify the negative drift assumption. The other three assumptions follow easily from the
construction of the sequence and the inductive hypothesis.
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2 implies 3: By definition, X(−O1, 0) corresponds to the first time that the stack
contains only burgers, while X(−Lk1, 0) corresponds to the first time that the stack contains
only burgers and increases in length, it follows easily that |X(−O1, 0)| ≤ |X(−Lk1, 0)|, so the
expectation is finite.

3 implies 1: The number of burgers in X(−O1, 0) is at least the number of burgers in
E−1, which accounts for half of its length, so E[|E−1|] <∞. Thus the same holds for E.

The equivalence of 1, 4 and 5 are proved similarly.

Resembling Lemma 3.7 in [11], we have:

Lemma 4.6. If E[|E|] <∞, then as n→∞ the fraction of i symbols among the rightmost
n elements of X(−∞, 0) tends to 1/k almost surely for any i. Also, as n→∞ the fraction of
i or F symbols among the leftmost n elements of X(1,∞) tends to some positive constant
almost surely.

On the other hand if E[|E|] =∞, then as n→∞ the fraction of F symbols among the
leftmost n elements of X(1,∞) tends to zero almost surely.

Proof. The proof is almost the same as in [11]. If E[|E|] <∞, then by Lemma 4.5, the words
X(−Om,−Om−1−1) are i.i.d. with finite expectation, so X(−∞, 0) is an i.i.d. concatenation
of words X(−Om,−Om−1 − 1). The law of large numbers implies that the number of each
type of burgers in X(−Om, 0) is given by Cm + o(m) almost surely for some constant C.
By symmetry, these constants are all equal to E[|X(−O1, 0)|]/k. The first statement then
follows, and the second is proved analogously.

For the last statement, we note that X(1,∞) is an i.i.d. concatenation of burger-free
words X(Bm−1+1, Bm), and an F symbol can be added only when the burger stack is empty.
Hence the number of F symbols in X(1, Bm) grows like a constant times m. If E[|E|] =∞,
Lemma 4.5 implies that E[|X(1, B1)|] = ∞. Thus the number of orders in X(1, Bm) grows
faster than any constant multiple of m almost surely, so the fraction of F symbols tends to
zero almost surely.

5 Bounded increments and large deviation estimates

We fix a semi-infinite stack S0 = X(−∞, 0) and let X(1), X(2), . . . be chosen according to
µ. Lemma 3.10 in [11] still holds in this case:

Lemma 5.1. For N > 0, E[DijN |X(l) : 1 ≤ l ≤ n] and E[DijN |X(l) : 1 ≤ l ≤ n, Cl : l ≤ N ]
are both martingales in n with increments of magnitude at most two.

To prove the lemma, [11] discussed monotonicity of stacks in the two-dimensional case,
which does not have a correspondence in higher dimensions. Instead, Scott Sheffield sug-
gested us to use the notion of neighboring stacks here.

Definition 5.2. Two semi-infinite stacks S0 and S1 are called neighbors if S1 can be achieved
from S0 by removing an arbitrary burger from S0, or vice versa.

12



For example, S0 = · · · 2 1 1 3 2 2 3 and S1 = · · · 2 1 1 2 2 3 are neighbors,
because one can get from S0 to S1 by removing the fourth burger from the right.

Lemma 5.3. If S0 and S1 are neighbors, then for any word W , S0W and S1W are still
neighbors.

Proof. Assume that we get S1 from S0 by deleting a j . By induction, we may also assume
that W contains a single element.

If W is a burger, then for σ = 1, 2, SσW is achieved by adding W onto Sσ. If W = F ,
then SσW is achieved by deleting the rightmost burger from Sσ. If W = i , then SσW is
achieved by deleting the rightmost i from Sσ. Hence in these three cases, it is easily seen
that the resulting two stacks are still neighbors.

If W = j and there is a j in S0 to the right of the j which we deleted to get S1, then

SσW is achieved by deleting the rightmost j from Sσ. Hence the resulting two stacks are

neighbors. Otherwise, the j deleted to get S1 is the rightmost j in S0, so S0W = S1.

Hence S0W and S1W are neighbors.

Proof of Lemma 5.1. Since the two conditional expectations are clearly martingales in n, we
only need to prove that the increments are bounded. To this end, it suffices to show that
changing X(l) for a single 1 ≤ l ≤ N only changes DijN by at most two.

Suppose that X(l) is changed to X(l)′. Here we make the convention that a prod-
uct of words is always reduced. It is easy to see that X(−∞, l) and X(−∞, l − 1)X(l)′

have a common neighbor X(−∞, l − 1). Lemma 5.3 then implies that X(−∞, N) and
X(−∞, l − 1)X(l)′X(l + 1, N) have a common neighbor X(−∞, l − 1)X(l + 1, N). Since
the ij-discrepancy differs by at most one between neighbors, we see that DijN changes by at
most two if we change a single X(l).

The following large deviation estimates are modifications of Lemma 3.12 and 3.13 in [11].

Lemma 5.4. Fix any p ∈ [0, 1] and a semi-infinite stack S0 = X(−∞, 0). There exist
positive constants C1 and C2 such that for any choice of S0, a > 0, n > 1 and any i, j,

P( max
1≤l≤n

|Cl| > a
√
n) ≤ C1e

−C2a and P( max
1≤l≤n

|Dijl | > a
√
n) ≤ C1e

−C2a.

The original proof carries over almost verbatim. The idea is to use Lemma 5.1 to give
bounded increments, and then apply a pre-established large deviation estimate of martingales
with bounded increments.

We remark that it is an important technique to estimate the deviation of martingales
with bounded jumps. See [4] for more interesting results.

Lemma 5.5. Fix any p ∈ [0, 1]. There exist positive constants C1 and C2 such that for any
a > 0 and n > 1,

P(|X(1, n)| > a
√
n) ≤ C1e

−C2a.
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Proof. Let the semi-infinite stack S0 be rotating among 1 , . . . , k . Suppose that Cl and all
Dijl fluctuate by at most a

√
n/(4k − 1) for 1 ≤ l ≤ n.

Claim that no burger in S0 expect the rightmost a
√
n(2k − 1)/(4k − 1) burgers will be

consumed in the first n steps. Assume the opposite. If the first such burger is consumed at
step l and is an m , then at this moment all burgers to the right are of types different from
m . Since Cl ≥ −a

√
n/(4k − 1), there are at least a

√
n(2k − 2)/(4k − 1) burgers above the

m . Among them there are at least 2a
√
n/(4k − 1) burgers of some type m′ 6= m. Hence

|Dmm′

l | > a
√
n/(4k − 1), which is a contradiction.

It follows from the claim that there are at most a
√
n(2k− 1)/(4k− 1) orders in X(1, n).

Since Cl fluctuates by at most a
√
n/(4k − 1), there are at most 2ka

√
n/(4k − 1) burgers in

X(1, n). Therefore, |X(1, n)| ≤ a
√
n.

Thus, to have |X(1, n)| > a
√
n, Cl or at least one Dijl must fluctuate by more than

a
√
n/(4k − 1). An application of Lemma 5.4 then completes the proof.

6 The case χ < 2

In this section, we will resolve the remaining case from Section 3, i.e., the case χ < 2. We
will use the results from Section 4 and 5 to prove that when χ < 2, the scaling limit of An
on a compact interval has the law of a one-dimensional Brownian motion. This means that
the total burger count Cn dominates. As we remarked after the statement of Theorem 2.3,
Cn is a simple random walk and thus scales to a Brownian motion, so it suffices to show that
Dijn scales to 0 in law on compact intervals.

In addition to the statement above, we will show that χ < 2 implies that p > 1 − 1/k.
Together with (3.15), this gives the dichotomy mentioned in Section 3.1, namely,

χ < 2 ⇐⇒ p > 1− 1/k and χ = 2 ⇐⇒ p ≤ 1− 1/k. (6.1)

Thus this section proves Theorem 2.3 in the case p > 1−1/k. We divide the proof into three
lemmas.

Lemma 6.1. If E[|E|] < ∞ (which holds when χ < 2), then Var[Dijn ] = o(n) for all pairs
(i, j).

Proof. First, we prove that the random variables n−1/2Dijn converge to 0 in probability. To
do this, we consider the following events:

1. |X(1, n)| < a
√
n.

2. The top 2ka
√
n burgers in stack X(−∞, 0) are well balanced among all burger types

with error ε
√
n, i.e., the number of burgers of any type is between (2a − ε)

√
n and

(2a+ ε)
√
n.

3. The top b burgers in the stack X(−∞, n) are well balanced among all burger types
with error ε

√
n for all b > (2k − 1)a

√
n.
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We assert that if all three events happen, then |n−1/2Dijn | < 4ε. First, 1 and 2 together
imply that all the orders in X(1, n) are fulfilled by the top 2ka

√
n burgers in X(−∞, 0),

so the burgers below height −2ka
√
n in X(−∞, 0) are not affected by X(1, n). Hence the

stacks X(−∞, 0) and X(−∞, n) are identical below height −2ka
√
n. On the other hand,

|X(1, n)| < a
√
n implies that |Cn| < a

√
n, so the number of burgers in X(−∞, n) above

height −2ka
√
n is at least (2k − 1)a

√
n. By 2 and 3, the discrepancies between two burger

types above height −2ka
√
n are less than 2ε

√
n for both stacks, so |Dijn | is at most 4ε

√
n,

as desired.
Next, we observe that all three events happen with high probability if we choose a and

n properly. For fixed ε > 0, we first choose a large enough so that 1 happens with high
probability using Lemma 5.4. Then by Lemma 4.6, we choose n large enough so that 2 and
3 happen with high probability.

Thus we conclude that limn→∞ P[|n−1/2Dijn | > ε] = 0 for all ε > 0, i.e., n−1/2Dijn converge
to 0 in probability.

It remains to check that Var[n−1/2Dijn ] = E[n−1(Dijn )2] tends to 0 as n→∞. This follows
from the fact that n−1(Dijn )2 tends to 0 in probability together with the uniform bounds on
the tails given by Lemma 5.4.

The following two lemmas are proved in exactly the same way as in [11], so we omit the
proofs.

Lemma 6.2. If Var[Dijn ] = o(n), then n−1/2max{|Dijl | : 1 ≤ l ≤ nt} converges to zero in
probability as n→∞ for any fixed t > 0.

The trick of the proof is to first divide the time interval into small subintervals, then
observe the convergence at the end points, and finally use approximation to complete the
proof. Note that by Lemma 6.2, we immediately obtain that An converges in law to a
one-dimensional Brownian motion on compact intervals.

Lemma 6.3. If χ < 2 and Var[Dijn ] = o(n), then

lim
n→∞

E[|Dij(−n,−1)|1J>n] = 0.

Interested readers may refer to the proof of the original lemma which involves introducing
new measures via Radon-Nikodym derivatives and recentering the sequence. The original
proof also uses the fact that one-dimensional random walk conditioned to stay positive scales
to a three-dimensional Bessel process, which is explained by [10].

Letting n→∞ in (3.11) and using Lemma 6.3 and (3.8), we deduce that

lim
n→∞

E[Dij(0)Dlm(−n,−1)] = E[Dij(0)Dlm(−J,−1)] = −p(χ+ k − 2)

k(k − 1)
.

Following the same computation as in (3.14), we obtain that

Var(Dijn ) =
2n

k
− 2np(χ+ k − 2)

k(k − 1)
+ o(n).

By Lemma 6.1, we must have 2n
k

= 2np(χ+k−2)
k(k−1) , i.e., p = k−1

χ+k−2 . Hence χ < 2 implies that

p > 1− 1/k, which gives us the promised dichotomy (6.1).
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7 The case χ = 2

It finally remains to prove the main theorem in the case χ = 2. First, if p = 1 − 1/k, then
Var[Dijn ] = o(n) by (3.14), so the convergence follows from our argument in Section 6.

Next, we may assume p < 1 − 1/k, so that Var[Dijn ] 6= o(n). By the contrapositive of
Lemma 6.1, we must have E[|E|] = ∞. Then we can apply the second part of Lemma 4.6,
which asserts that the number of F symbols in X(1, n) is small relative to the total number
of orders in X(1, n) as n gets large. To be more precise, the number of F in X(1, btnc) is
o(
√
n) with probability tending to one as n→∞ by Lemma 4.6 and Lemma 5.5. Therefore,

for t1 + t2 = t3, the laws of Abt1nc and Abt2nc add to the law of Ab(t1+t2)nc up to an error of
o(
√
n) with high probability.
On the other hand, since the variances of the random variables n−1/2Atn converge to

constants as n → ∞ for fixed t, at least subsequentially the random variables n−1/2Atn
converge in law to a limit. Moreover, if we choose a finite collection of t values, namely
0 < t1 < t2 < · · · < tm <∞, the joint law of (n−1/2Abt1nc, n

−1/2Abt2nc, . . . , n
−1/2Abtmnc) also

converges subsequentially to a limit law.
Now we combine the two observations above. We have that the law of n−1/2Abtnc is equal

to the law of the sum of l independent copies of n−1/2Abtn/lc plus a term which is o(1) with
high probability (since we have multiplied by n−1/2). Hence, the subsequential weak limit of
n−1/2Abtnc must equal the sum of l i.i.d. random variables. In particular, since l is arbitrary,
the limit law has to be infinitely divisible. Notice that the process n−1/2Abtnc is almost
surely continuous in t, so we conclude that the subsequential limit discussed above has to
be a Gaussian with mean zero. We refer to [8] and [2] for more background on infinitely
divisible processes, Lévy processes and Gaussian processes.

The covariance matrix of n−1/2An is already given by our calculation in Section 3, and
Lemma 5.4 guarantees that n−1/2Abtnc are tight, so the subsequential limit has the correct
covariance matrix. We conclude that the limit indeed has the Gaussian distribution given
in Theorem 2.3. Moreover, our argument implies that any subsequence of n−1/2Atn has a
further subsequence converging in law to this Gaussian distribution, so the whole sequence
converges to this law. See [5] for more details.

The same is true if we choose a finite collection of ti’s, so the finite-dimensional joint
law of (n−1/2Abt1nc, n

−1/2Abt2nc, . . . , n
−1/2Abtmnc) converges to a limit law, which is exactly

the law of (Wt1 ,Wt2 , . . . ,Wtm), where Wt is the k-dimensional Brownian motion (B1
αt, B

2
t )

described in Theorem 2.3.
The transition from a discrete collection of ti’s to a compact interval follows in the same

way as in the proof of Lemma 6.2. As the maximum gap between ti’s gets smaller, the
probability that (the norm of) the fluctuation in some interval [ti, ti+1] exceeds ε tends to
zero as n → ∞ for both n−1/2Abtnc and Wt where t ∈ [0, tm]. Hence the two processes are
uniformly close on the interval [0, tm] with probability tending to one as n→∞. Therefore,
Theorem 2.3 is fully proved.
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[3] Edouard Brézin, Claude Itzykson, Giorgio Parisi, and Jean-Bernard Zuber. Planar
diagrams. Communications in Mathematical Physics, 59(1):35–51, 1978.

[4] Amir Dembo. Moderate deviations for martingales with bounded jumps. Elect. Comm.
in Probab, 1:11–17, 1996.

[5] Rick Durrett. Probability: theory and examples. Cambridge university press, 2010.

[6] Cornelius Marius Fortuin and Piet W Kasteleyn. On the random-cluster model: I.
introduction and relation to other models. Physica, 57(4):536–564, 1972.

[7] Gerard Hooft. A planar diagram theory for strong interactions. Nuclear Physics B,
72(3):461–473, 1974.

[8] Ioannis Karatzas and Steven E Shreve. Brownian motion and stochastic calculus, volume
113. springer, 1991.

[9] Jean-François Le Gall, Grégory Miermont, et al. Scaling limits of random trees and
planar maps. Probability and statistical physics in two and more dimensions, 15:155–
211, 2012.

[10] James W Pitman. One-dimensional brownian motion and the three-dimensional bessel
process. Advances in Applied Probability, pages 511–526, 1975.

[11] Scott Sheffield. Quantum gravity and inventory accumulation. arXiv preprint
math.PR/1108.2241v1, 2011.

[12] WT Tutte. A census of planar maps. Canad. J. Math, 15(2):249–271, 1963.

17


	Introduction
	Model setup and the main theorem
	Computation of the covariance matrix and the critical value
	First calculations
	Computation of 
	The covariance matrix and the phase transition

	Excursion words revisited
	Bounded increments and large deviation estimates
	The case 
	The case 

