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Abstract

In this paper, we investigate the super RSK correspondence, first introduced by Pak and Postnikov
(1994), which generalizes both the RSK correspondence and the dual RSK correspondence. The bijection
relates objects that are known as oscillating supertableau and (intransitive) supergraphs. We prove a
number of theorems that were stated in the original paper of Pak and Postnikov, but whose proofs are
missing in the literature. We also prove a generalized Cauchy identity associated to the super RSK
correspondence. We believe this idea will lead to the notion of a super Schur process, generalizing the
Schur process of Okounkov and Reshetikhin (2003).



1 Introduction

The Robinson-Schensted-Knuth (RSK) correspondence is an important bijection between matrices A with
nonnegative integer entries and pairs of semistandard Young tableaux (P,Q) which provides bijective proofs
of certain symmetric function identities and identities derived from the representation theory of the sym-
metric group. The RSK correspondence can be considered in terms of a row-insertion algorithm, as it was
originally defined by Schensted [13] and Knuth [6] or in terms of the growth diagrams of Fomin [3]. The
growth diagram approach naturally gives three more variants of the RSK correspondence, the dual RSK
correspondence, the RSK’ correspondence, and the Burge correspondence, as explained in [7].

The RSK correspondence and its variants have a number of enumerative applications. Greene’s theorem
[5] relates the shape of the output tableaux to the length of increasing and decreasing subsequences in a
permutation. It plays a role in the combinatorics of plane partitions [15, Sec. 7.20] as well. William Burge
used several variants of the RSK correspondence to study the enumeration of undirected multigraphs with
certain prescribed vertex degrees [1]. We combine the variants of the RSK correspondence into a super RSK
correspondence in a way that lets us enumerate a more general class of multigraphs than those studied by
Burge, and in doing so fill in enumerative proofs of identities derived by Pak and Postnikov [9] by algebraic
means.

The output of the RSK algorithm is a pair of semistandard Young tableaux, but these tableaux can
also be viewed as a walk up Young’s lattice, where horizontal strips are added at each step. Dual RSK pro-
duces a conjugate-semistandard tableau and a semistandard tableau; the conjugate-semistandard tableau
can be though of as walking up Young’s lattice, adding vertical strips at each step. For the super RSK
correspondence, we consider a generalized setting in which either vertical or horizontal strips can be added
or subtracted; the specialization to only horizontal strips of the super RSK correspondence, which we call
oscillating RSK, is well known ([7], [11, Chapter 4]). These bijections, Theorem 4.1 and Theorem 4.2,
provide combinatorial proofs of two results of Postnikov and Pak [9, Thms. 7.1 and 8.5].

In addition to giving bijective proofs of Pak and Postnikov’s identities, we give an analogue of the
Cauchy identity for the super RSK correspondence. The Schur process of Okounkov and Reshitikin [8]
is related to a specialization of this Cauchy identity, suggesting that a “super Schur process” could be
defined. Using notation that will be defined in Section 5, our super Cauchy identity (Proposition 5.2) is

∑
λ

∏
i∈I

s(λi)∗εi/((λi−1)∗εi
(
Xi
)∏
j∈J

s(λj−1)∗εj /((λj)∗εj (Y
j)

 =
∏

i∈I,j∈J
H
(
Xi, Y j , εiεj

)
,

where the sum is over all oscillating supertableaux (λ)ε of length n starting and ending at ∅. When n = 1
and ε1 = 1, this identity specializes to the usual Cauchy identity.

Section 2 covers background about partitions, Young tableaux, and the RSK correspondence. Most of
the material is well-known, but Section 2.2 . Section 3 introduces local rules for the RSK correspondence
and other related correspondences, laying out the framework in which all four variants can be realized. Sec-
tion 4 introduces the super RSK correspondence and proves that it is a bijection. Section 5 gives a Cauchy
identity for the super RSK correspondence, related to the Schur process. Section 6 gives combinatorial
proofs of commutation relations on representation-theoretic operators of Pak and Postnikov, applying our
super RSK correspondence and giving an algebraic interpretation of the addititon and deletion of vertical
and horizontal strips.
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Figure 1: The Young diagram for the partition λ = (4, 3, 1).
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2 Preliminaries

2.1 Partitions, Young Tableaux, and Symmetric Functions

We recall some basic definitions and introduce the notation we will use. Our terminology and exposition
will closely follow that in [15].

We denote by N the set {0, 1, 2, . . .} of natural numbers, and by P the set of positive integers. For a nat-
ural number n, we say an ordered k-tuple λ = (λ1, λ2, . . . , λk) of positive integers with λ1 ≥ λ2 ≥ · · · ≥ λk
is a partition of n, denoted |λ| = n, if n = λ1 + λ2 + · · ·+ λk. We also write λ ` n, and we write `(λ) = k
to denote the number of parts of λ. When convenient, we consider λ with one or more trailing zeroes, so
that if `(λ) = k, λk is the last nonzero term in λ. Lastly, denote by λ̂k the sum λ1 + λ2 + · · ·+ λk.

We define the Young diagram corresponding to λ = (λ1, λ2, . . . , λk) to be the collection of points (i, j)
with i ≤ k and j ≤ λi. We visualize the points in Young diagrams as squares, which may be filled with
positive integers. If T is the Young diagram corresponding to λ and T ′ is the reflection of T in its main
diagonal, we say that the partition λ′ corresponding to T ′ is the conjugate of λ. The corners of a Young
diagram are those cells (i, j) for which neither (i+ 1, j) nor (i, j + 1) are cells in the diagram. We can also
view a Young diagram as an infinite sequence in the alphabet {R,U} that starts with infinitely many Us
and ends in infinitely many Rs; the portion in between encodes the boundary of the Young diagram as a
sequence of right and up moves.

A Young diagram with positive integers in its boxes is called a Young tableau if the entries are weakly
increasing along rows and columns. The shape of a Young tableau T , denoted shT is the partition λ
corresponding to its Young diagram, while the type of a Young tableau is the sequence of multiplicities of
the positive integers as entries in the tableau.

A Young tableau is a semistandard Young tableau if its entries are strictly increasing along columns and
weakly increasing along rows. If λ ` n and the entries in the semistandard Young tableau T are distinct
elements of {1, 2, . . . , n}, we say that T is a standard Young tableau. Figure 1 shows a Young diagram of
shape (4, 3, 1), while Figure 2 shows a Young tableau of shape (4, 3, 1) and type (2, 2, 4) and a standard
Young tableau of shape (4, 3, 1). A semistandard Young tableau T can be interpreted as a sequence of
partitions ∅ = λ0, λ1, . . . , λn = shT in which λi is formed from λi−1 by adding a number of i’s into the
squares of the Young diagram for λi that were not in the Young diagram for λi−1.

We can define a partial order on the set Par of partitions by inclusion of Young diagrams, so that
(5, 3, 2, 2) ≥ (4, 3, 2, 1), while (4, 3, 2, 1) and (5, 3, 1, 1) are incomparable. Algebraically, λ ⊆ µ if λi ≥ µi for
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Figure 2: A semistandard Young tableau and a standard Young tableau of shape λ.

all i. This poset is a lattice, denoted Y, and is known as Young’s lattice.

The most interesting basis for the algebra of symmetric functions (over Q), denoted Λ, is the set of
Schur functions, which can be defined as

sλ =
∑

sh(T )=λ

xT ,

where xT for a tableau of type (t1, t2, · · · ) is defined as xt11 x
t2
2 · · · .

2.2 Intransitive Graphs and Oscillating Tableaux

For partitions λ, µ with λ ≥ µ, define the skew shape λ/µ as the set-theoretic difference of the Young dia-
grams for λ and µ. We call those skew shapes with no column containing more than one square horizontal
strips and those with no row containing more than one square vertical strips.

We define an oscillating tableau to be a sequence of partitions (λ0, λ1, . . . , λk), each differing from the
previous by a horizontal strip, and the weight of an oscillating tableau to be the vector β = (β1, β2, . . . , βk),
where βk = |λk| − |λk+1|. Given a vector ε of length k whose entries are either −1 or 1, we define an oscil-
lating supertableau of weight βε as a sequence of partitions with exponents (λ0, λ

ε1
1 , . . . , λ

εk
k ), each differing

from the previous by a strip, either horizontal or vertical, determined by the εi. We write λ−1 as λ for clarity.

We interpret λi in an oscillating supertableau as stating that λi/λi−1 or λi−1/λi, depending on the
sign of βi, is a horizontal strip and λi in an oscillating supertableau as stating that λi/λi−1 or λi−1/λi,
depending on the sign of βi, is a vertical strip.

Pak and Postnikov [9] define a representation of the group Sp × Sq in terms of a group action on a
certain type of 2-colored multigraph that we define next.

Definition 2.1. Let δ = (δ1, δ2, . . . , δk) be a vector of integers with sum 0 all of whose partial sums are
nonpositive, and let ε be a vector of length k whose entries are either −1 or 1. An intransitive supergraph
of type δε is a directed mutligraph with k vertices such that

1. If εi = 1, the vertex i is colored black; if εi = −1, the vertex i is colored white.

2. If δi ≥ 0, the indegree of vertex i is δi, and the outdegree is 0. If δi ≤ 0, the outdegree of vertex i is
−δi, and the indegree is 0.

3. If i ≥ j, there are no edges from vertex i to vertex j.

4. If εi 6= εj , there is at most one edge from vertex i to vertex j.

An intransitive supergraph with all black vertices is called an intransitive graph.

Figure 3 shows an intransitive graph of type δ = (−2, 1,−1, 0,−2, 2, 3), while Figure 4 shows an
intransitive supergraph of type δε, where δ = (−3, 2, 1, 1,−2,−1, 4) and ε = (−1,−1, 1,−1, 1, 1, 1).
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Figure 3: An intransitive graph of type δ = (−2, 1,−1, 0,−2, 2, 3)

Figure 4: An intransitive supergraph of type δε, where δ = (−3, 2, 1, 1,−2,−1, 4) and ε =
(−1,−1, 1,−1, 1, 1, 1)

2.3 The RSK Correspondence

The dimension of the irreducible representation of Sn corresponding to the partition λ (i.e. the dimension
of the Specht module Sλ) is given by fλ, the number of standard Young tableaux of shape λ (for more
about the representation theory of Sn, see [12]). Letting RegSn denote the regular representation of Sn,
we have

n! = dim Reg(Sn) =
∑
λ`n

(
fλ
)2
. (*)

This identity can also be proved using a bijection between permutations in Sn and pairs of standard Young
tableaux of the same shape; that bijection is due to Robinson [10] and Schensted [13]. The correspondence
operates using a row-insertion algorithm that generalizes to take N-matrices as inputs and return pairs of
semistandard Young tableaux of the same shape.

Definition 2.2. Given a semistandard Young tableau T and an integer K, define the row insertion
procedure as follows:

1. Set i = 1 and k = K.

2. If there is no entry in row i of T that is greater than k, append a cell containing k to the end of row
i of T , and return T .

3. Otherwise, find the leftmost entry j in row i of T that is greater than k, set ` = j and replace the
cell containing j with a cell containing k.

4. Set k = ` and i = i+ 1.

5. Go to step 2.

We are now in position to define the RSK correspondence. Given an N-matrix A, we form the two-line
array A of A by placing in lexicographic order aij copies of i

j . For example, we have

A =

1 2 1
1 1 0
2 1 0

→ (
1 1 1 1 2 2 3 3 3
1 2 2 3 1 2 1 1 2

)
= A

Definition 2.3. Given an N-matrix A, the RSK correspondence (or sometimes RSK algorithm) produces
a pair of semistandard Young tableaux P and Q of the same shape by the following procedure:
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Figure 5: RSK applied to the matrix A.

1. Build the two-line array A = ( u1 u2 ··· umv1 v2 ··· vm ) from A.

2. Initialize empty tableaux P and Q.

3. For i from 1 to m:

(a) Insert vi into P by row insertion. Denote by C the cell in which the insertion stopped.

(b) Append a cell containing ui to the cell C of Q.

4. Return (P,Q).

We call the tableau P the insertion tableau and the tableau Q the recording tableau.

The RSK correspondence is invertible because the row insertion procedure is invertible. If all the rows
and columns of A have exactly one 1 each, then A is a permutation matrix, all the ui are distinct, and all
the vj are distinct, causing P and Q to be standard Young tableaux. This gives us the desired bijection to
prove (*).

Observing that ∏
i,j

1

1− xiyj

is the generating function for N-matrices with given row sum vectors α = (α1, α2, . . . ) given by the expo-
nents on x1, x2, . . . and column sum vectors β = (β1, β2, . . . ) given by the exponents on y1, y2, . . . , while
the right-hand side is the generating function for pairs of semistandard Young tableau of the same shape,
the RSK correspondence proves the following:

Proposition 2.1 (Cauchy identity). ∏
i,j

1

1− xiyj
=
∑
λ

sλ(x)sλ(y).
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Schensted’s motivation for studying the Robinson-Schensted corrrespondence was the question of the
length of the longest increasing and decreasing subsequences of permutations; using the row insertion
algorithm given in Section 2.3, he was able to determine the length of the longest increasing and decreasing
subsequences in a permutation w [13, Theorems 1 and 2]. This result was extended by Curtis Greene to
count the length of the longest k increasing or decreasing subsequences [5]. This theorem is most naturally
stated in terms of the RSK correspondence, for which we need to define how we generalize the notions of
length and increasing or decreasing subsequences.

Definition 2.4. An SE-path in a matrix A is a sequence of entries aij in which each entry is located
weakly to the right of and weakly below the previous entry. An Se-chain in A is a sequence of entries in
which each entry is located strictly to the right of and weakly below the previous entry; define an nE-chain
similarly, where the uppercase E denotes weakly right and the lowercase n denotes strictly above. Lastly,
define an ne-chain as a sequence of entries in which each entry is located strictly right of and strictly above
the previous entry.

Definition 2.5. Define the weight of a path or chain to be the sum of the entries in the path or chain.
Define the mass of a path or chain to be the number of nonzero entries in the path or chain. Note that
“mass” is not a standard term; in the literature (e.g. [7, sec 4]), the word “weight” is applied to both these
notions.

Increasing subsequences in a permutation correspond to SE-paths in its permutation matrix and de-
creasing subsequences correspond to ne-chains in its permutation matrix.

Theorem 2.1 (Greene, [5]). Let A be an N-matrix, and suppose A
RSK−−−→ (P,Q). Let λ = shP = shQ.

Then λ̂k is the maximum sum of the weights of k disjoint SE-paths and λ̂′k is the maximum sum of the
masses of k ne-chains where an entry aij = e can be in no more than e of the chains.

One can verify that the example in Figure 5 satisfies this property.

3 The Local Approach to RSK

3.1 Growth Diagrams

Greene’s theorem gives us a “global” description of the process of row-insertion. Both this description

and the row insertion algorithm obscure the fundamental symmetry property that A
RSK−−−→ (P,Q) implies

At
RSK−−−→ (Q,P ). In this section we lay out a “local” approach to RSK using the growth diagrams of Fomin

[3].

To find the output of RSK for a given matrix A, we write it as the entries of a rectangular Young
tableau. We label the corners of the squares of the Young tableau with partitions, with corners along the
top and left edges of the Young diagram labeled with ∅ and the remaining corners filled according a set
of chosen local rules, applying the rules on squares in a linear extension of the Young diagram. To fix
the notation, when considering an individual square the partitions on the corners and the entry inside the
square will be denoted as in Figure 6.

The (forward) local rule for RSK is the procedure for finding λ given the other three partitions µ, ν,
and ρ at the corners of the square and the entry m inside it. Our presentation will follow that in [7], but
not using French notation.

Definition 3.1. The (forward) RSK local rule is the following procedure, which takes as input three
partitions µ, ν, and ρ (with trailing zeroes as needed) and a natural number m and returns a partition λ:

1. Set i = 1 and CARRY = m.

6



µ

ρ

λ

ν

m

Figure 6: The notational convention for growth diagrams.

∅

∅
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1

2

4

3

41

53

4

42

531
2

1

1

1

0

0

1 2 1

Figure 7: The RSK growth diagram for the matrix A of Section 2.3

2. Do

(a) Set λi = max(µi, νi) + CARRY.

(b) If λi = 0, return λ. Otherwise, set CARRY = min(µi, νi)− ρi and i = i+ 1.

Figure 7 shows the resulting array when the RSK local rule is applied to the matrix A of Section 2.3.
Because the partitions µ ⊆ λ and ν ⊆ λ differ by a horizontal strip, the sequences of partitions along the
bottom and right edges, ∅ ⊂ 4 ⊂ 53 ⊂ 531 and ∅ ⊂ 4 ⊂ 42 ⊂ 531 can be read as a pair of semistandard
tableau 

1 1 1 1 2

2 2 2

3

,

1 1 1 1 2

2 2 2

3

 ,

which is exactly the image of A under RSK.

Because the RSK local rule is symmetric with respect to transposition, transposing the matrix A
transposes the entire RSK growth diagram for A. Reading the recording tableau from the right edge and
the insertion tableau gives us a symmetry result about RSK.

Proposition 3.1.

A
RSK−−−→ (P,Q) ⇐⇒ At

RSK−−−→ (Q,P ).

The growth diagram records information for all the submatrices of A, so that we can read off that(
1 2
1 1

)
RSK−−−→

(
1 1 2 2

2
,

1 1 1 2

2

)

3.2 Other RSK-Like Correspondences

If we choose local rules other than those for RSK, we can produce different correspondences between
matrices and Young tableaux. The first of these is dual RSK (sometimes referred to as RSK* in the
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literature, defined by Knuth [6] via the a modified insertion procedure, given below with the differences
from Definition 2.2 italicized.

Definition 3.2. Given a tranpose-semistandard Young tableau T and an integer K, define the dual row
insertion procedure as follows:

1. Set i = 1 and k = K.

2. If there is no entry in row i of T that is greater than or equal to k, append a cell containing k to the
end of row i of T , and return T .

3. Otherwise, find the leftmost entry j in row i of T that is greater than or equal to k, set ` = j and
replace the cell containing j with a cell containing k.

4. Set k = ` and i = i+ 1.

5. Go to step 2.

The dual RSK correspondence is a bijection between 0, 1-matrices and pairs of semistandard Young
tableau of conjugate shapes. The restriction to 0, 1-matrices is necessary to guarantee that the recording
tableau Q is semistandard.

Definition 3.3. Given a 0, 1-matrix A, the dual RSK correspondence produces a pair of Young tableaux
P and Q by the following procedure:

1. Build the two-line array A = ( u1 u2 ··· umv1 v2 ··· vm ) from A.

2. Initialize empty tableaux P and Q.

3. For i from 1 to m:

(a) Insert vi into P by dual row insertion. Denote by C the cell in which the insertion stopped.

(b) Append a cell containing ui to the cell C of Q.

4. Return (P,Q).

Figure 8 gives an example of the dual RSK algorithm applied to the matrix

B =

1 0 1
1 1 0
1 0 0

 .

The dual RSK correspondence provides a bijective proof of an analogue of Proposition 2.1.

Proposition 3.2 (dual Cauchy identity).∏
i,j

(1 + xiyj) =
∑
λ

sλ(x)sλ′(y).

We can define a local rule for the dual RSK correspondence, where we place the 0, 1-matrix in the
growth diagram. In this growth diagram, horizontally-adjacent partitions will differ by a vertical strip and
vertically adjacent partitions will differ by a horizontal strip. Our presentation will follow [7].

Definition 3.4. The (forward) RSK* local rule is the following procedure, which takes as input three
partitions µ, ν, and ρ (with trailing zeroes as needed) and a number m ∈ {0, 1} and returns a partition λ:

1. Set i = 1 and CARRY = m.
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1 1
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Figure 8: Dual RSK applied to the matrix B.
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Figure 9: The dual RSK growth diagram for the matrix B.

2. Do

(a) Set λi = max(µi + CARRY, νi).

(b) If λi = 0, return λ. Otherwise, set CARRY = min(µi + CARRY, νi)− ρi and i = i+ 1.

Figure 9 shows the resulting array when the dual RSK local rule is applied to the matrix B. As before,
we can read the transpose-semistandard insertion tableau P from the bottom row and the semistandard
recording tableau Q from the right column. While there is no symmetry property for dual RSK easily
derived from the local rules, there is an analogue of Greene’s theorem for dual RSK.

Theorem 3.1 (dual Greene’s). Let B be an 0, 1-matrix, and suppose B
RSK∗−−−−→ (P,Q). Let λ = shP = shQ.

Then λ̂k is the maximum sum of the weights (or masses) of k disjoint Se-paths and λ̂′k is the maximum
sum of the masses (or weights) of k nE-chains where an entry aij = e can be in no more than e of the
chains.

Reflecting the local rule for dual RSK (i.e. swapping the roles of µ and ν) gives another correspon-
dence, the RSK’ correspondence, in whose growth diagram horizontally-neighboring partitions differ by a
horizontal strip and vertically-neighboring partitions differ by a vertical strip.

A fourth local rule, for a correspondence known as dual RSK’ or the Burge correspondence (as the
same correspondence was used in [1] to enumerate certain classes of graphs), takes N-matrices as in-
puts. In growth diagrams for dual RSK’, horizontally-neighboring partitions differ by a vertical strip and
vertically-neighboring partitions differ by a vertical strip. A direct local rule for the Burge correspondence
can be found in [7]. The Burge correspondence can also be computed using the RSK correspondence and
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the Schützenberger involution [16] or by an insertion procedure [4].

In addition to the direct forward and backward local rules for these four correspondences, these cor-
respondences can all be viewed in the same context as Schensted growth diagrams, where the N-matrices
or 0, 1-matrices are expanded into permutation matrices, and then the same local rule is applied. In this
setting, adjacent partitions can differ in rank by at most 1. This local rule for permutation matrices works
as follows:

• If |ρ| = |µ| = |ν| and m = 0, then λ = ρ

• If |ρ| = |µ| = |ν| and m = 1, then λ1 = ρ1 + 1 and λi = ρi for i > 1.

• If |ρ| = |µ| < |ν|, then λ = ν. Similarly, if |ρ| = |ν| < |µ|, then λ = µ.

• If |ρ| < |µ| = |ν| and µ 6= ν, then λ = µ ∪ ν, the union of the two Young diagrams.

• If |ρ| < |µ| = |ν| and µ = ν, then λ is obtained from µ by appending a 1 to the end of µ.

To get a permutation matrix from an N-matrix or 0, 1-matrix, the nonzero entries in a row or column
are expanded into 1s and arranged either from top left to bottom right or from top right to bottom left.
The RSK, dual RSK, RSK’, and dual RSK’ correspondences can be described neatly in this way [7].

• For RSK, arrange entries in each row and column from top left to bottom right. Entries n that are
greater than 1 are expanded into n× n diagonal block matrices of ones.

• For dual RSK, arrange entries in each row from top left to bottom right, but arrange entries in each
column from top right to bottom left.

• For RSK’, arrange entries in each row from top right to bottom left, but arrange entries in each
column from top left to bottom right.

• For dual RSK’, arrange entries in each row and column from top right to bottom left. Entries n that
are greater than 1 are expanded into n× n antidiagonal block matrices of ones.

Figure 10 gives examples of these growth diagrams for the matrix

A =

1 0 0
0 1 1
1 0 1



4 The Super RSK Correspondence

In this section we present two bijections

Φλµβ : OT (λ, µ, β)→
⋃
δ≺β

G(δ)×OT
(
λ, µ,nor(β − δ)

)
and

Φsuper
λµb : OST (λ, µ, βε)→

⋃
δ≺β

SG(δ)×OST
(
λ, µ,nor(β − δ)ε

)
which give us combinatorial proof of Theorems 7.1 and 8.7 in the preprint [9].
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Figure 10: Schensted growth diagrams for RSK, dual RSK, RSK’, and dual RSK’, in that order, for the
matrix A.
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Figure 11: The unfilled growth diagram for the oscillating tableau 32, 42, 22, 32, 21.

4.1 Φλµβ

Definition 4.1. Let λ and µ be partitions with |λ| = p and |µ| = q, respectively, and let β ∈ Zk such that
−p+β1 + · · ·+βi ≤ 0 for all 1 ≤ i < k and −p+

∑
β = −q. Let G denote the set of all intransitive graphs

(of arbitrary type), and let OT (λ, µ) denote the set of all oscillating tableaux from λ to µ (of arbitrary
weight). Define the map

Φ̃λµβ : OT (λ, µ, β)→ G×OT (λ, µ)

by the following procedure:

1. Build the Young shape τ from T based on the signs of the βi, where we read the signs as an {R,U}
sequence by having positive signs correspond to Us and negative signs to R, with the entries ti
appearing on the bottom-right corners of the border squares of the tableau.

2. Apply the backward local rule for RSK on the Young shape τ , using the ti as initial inputs and
working in a reverse linear extension of the squares of τ . This will produce a filling T of τ (read
from the entries found to be in the squares of τ by the backward local rule), as well as a sequence
S of partitions read from the lower-left corner of τ to the upper right. The sequence S starts with
s0 = t0 = λ and ends with sk = tk = µ, so S is an oscillating tableau in OT (λ, µ).

3. Assign distinct integers from {1, 2, . . . , k} to the rows and columns of τ based on where in the {R,U}
sequence the edge at the end of the row or column falls; for example, a tableau with {R,U} sequence
RURU would have columns labeled 1 and 3 (from left to right) and rows labeled 2 and 4 (from bottom
to top). Represent these numbered rows and columns with a graph whose vertices are labeled by the
integers {1, 2, . . . , k}, with N directed edges (i, j) if there is an N in the cell corresponding to the
intersection of column i and row j; denote this graph by γ. Color the vertex i of γ white if εi = −1
and black otherwise. The graph γ has type δ, where δi is the number of edges entering vertex i (where
a negative number of edges entering is a number of edges leaving). Because the partial sums of δ are
nonpositive, the sum of the entries of δ is 0, there is no more than one edge between a black vertex
and a white vertex, and there are no edges (i, j) for j < i, γ meets the requirements of Definition 2.1
and is an intransitive graph.

4. Then let Φ̃λµβ(T ) = (γ, S).

Given two vectors δ and β in Zk, we write δ ≺ β if 0 ≤ δi ≤ βi or 0 ≥ δi ≥ βi for all 1 ≤ i ≤ k. Given
a vector of integers, with the zeroes tagged either “row” or “column,” let norα denote the vector formed
by shifting all the positive entries and zeroes tagged “row” in-place (i.e. not changing their relative order)
to the beginning, leaving the negative entries and those zeroes tagged “column” in their original order at
the end. For example nor(−3, 1,−1, 0row, 1, 4,−2, 1) = (1, 0, 1, 4, 1,−3,−1,−2). Note that this definition
differs from that in [9], but all results they prove with their definition, in particular Lemma 7.2, still hold
with this definition.
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Figure 12: The filled-in growth diagram; the outside contains the oscillating tableau 32, 22, 21, 21, 21.

Figure 13: The graph in G(δ) corresponding to the oscillating tableau 32, 42, 22, 32, 21.

Example 4.1. The unfilled growth diagram in Figure 11 corresponds to the oscillating tableau 32, 42, 22, 32, 21
of type β = (−1, 2,−1, 2). After filling in the growth diagram with the backwards RSK local rule, we get
the growth diagram in Figure 12. The interior of the growth diagram contains the adjacency information
for the graph in Figure 13, a graph in G(δ) for δ = (−1, 1,−1, 1), while the left and top edges give us the
oscillating tableau 32, 22, 21, 21, 21, an oscillating tableau of type nor(β − δ) = (1, 1, 0, 0). In other words,
we have

Φ(32)(21)(−1,2,−1,2) (32, 42, 22, 32) =
(
Figure 13, (32, 22, 21, 21, 21)

)
.

Proposition 4.1. The image of Φ̃λµβ is a subset of⋃
δ≺β

G(δ)×OT
(
λ, µ,nor(β − δ)

)
We will denote by Φλµβ the map

Φλµβ : OT (λ, µ, β)→
⋃
δ≺β

G(δ)×OT
(
λ, µ,nor(β − δ)

)
given by Φλµβ(T ) = Φ̃λµβ(T ).

Proof. Let T = (λ = t0, t1, . . . , tk = µ) be an oscillating tableau of weight β. Apply the map Φ̃λµβ to T ,
producing a filled growth diagram T , along whose left and top edges can be read the oscillating tableau
S = (λ = s0, s1, . . . , sk = µ). Let the intransitive graph corresponding to T be γ ∈ G(δ) for some δ ∈ Zk.

By the local rule for RSK, we know that |λ| − |µ| = |ν| − |ρ| + m. Inductively, applying this fact
along a column, we have that if ζ0 and ξ0 are two horizontally-adjacent partitions in a column C of an
RSK growth diagram and ζ1 and ξ1 are two horizontally-adjacent partitions in that column located some
number of rows beneath ζ0 and ξ0, we have that (ξ1 − ζ1) − (ξ0 − ζ0) is equal to the sum of entries in C
located between the rows containing ξ0 and ξ1. A similar result holds for vertically-adjacent partitions in
row R and sums of entries in R.

Applying this to the filling T and the oscillating tableau T and S, we have that, if ti and ti+1 are
horizontally adjacent, then we have that (|ti+1| − |ti|) − (|sj+1| − |sj |) is the sum of the entries in the
column of T corresponding to vertex i + 1 of the graph γ. Similarly, for vertically-adjacent ti and ti+1,
(|ti+1| − |ti|)− (|sj+1| − |sj |) is the sum of the entries in the row of T corresponding to vertex i+ 1 of the
graph. But the sum of the entries in those columns (respectively, rows) of T correspond to the number of
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edges going out of (resp. into) vertex i+1 if it is a column (resp. row); with the convention that outdegree
is represented as a negative number, we thus have that (|ti+1| − |ti|)− (|sj+1| − |sj |) = δi+1.

Now the oscillating tableau S is read along the left and top borders of T , so that all the vertical edges,
which correspond to positive entries and whose zero entries we tag with “row,” in the weight η of S, occur
before any vertical edges, which correspond to negative entries (and zero entries we tag with “column”)
in η. Because we know that ηj = sj+1 − sj corresponding to βi differs from βi by δi, we know that
η = nor(β − δ). So S is of weight nor(β − δ) as desired, and the map

Φλµβ : OT (λ, µ, β)→
⋃
δ≺β

G(δ)×OT
(
λ, µ,nor(β − δ)

)
is well-defined.

Theorem 4.1. The map Φλµβ is a bijection.

Proof. Let S = (λ = s0, s1, . . . , sk = µ) be an oscillating tableau of weight η ∈ Zk such that η is a normal
sequence (in particular, its zeroes are tagged “row” and “column”), and let γ be an intransitive graph of
type δ. We want to produce a map Ψλµη such that Ψλµη(γ, s) ∈ OT (λ, µ, β) where η = nor(β − δ).

First, we build a Young diagram τ from γ. We interpret the sequence of signs on terms in δi as a
{R,U} sequence as in the defintion of Φ̃λµβ and build a Young diagram τ . We obtain a filling T of τ by
placing in the square corresponding to vertices a and b the number of edges from a to b.

We have the upper-left edge S and the filling T of a growth diagram. Applying the forward local rule
for RSK, we can read off the lower-right edge a tableau T = (λ = t0, t1, . . . , tk = µ) of weight β ∈ Zk. As
before, if ti and ti+1 are horizontally adjacent corresponding to horizontally-adjacent entries sj and sj+1

in S, (|ti+1| − |ti|)− (|sj+1| − |sj |) is the sum of the entries in the column T between ti and ti+1. By the
construction of T , we have that (|ti+1| − |ti|) − (|sj+1| − |sj |) = −δi+1, and similarly if ti+1 and ti are
vertically adjacent, (|ti+1| − |ti|) − (|sj+1| − |sj |) = −δi. So, noting that our sign convention has positive
outdegree represented as negative, we have ηj = βi − δi.

Since each βi + δi equals a distinct ηj and increasing i corresponds to farther right or up in τ , so that
if i2 > i1, the corresponding indices for η satisfy j2 > j1, we have η = nor(β − δ). So the map Ψλµη is a
well-defined map from G(δ)×OT

(
λ, µ,nor(β − δ)

)
to G(λ, µ, β).

The correspondence between pairs of an oscillating tableau of normal weight and an intransitive graph
and fillings of Young diagrams is a bijection, as is the local rule for RSK. Since we’ve shown that Ψλµη

is well-defined, this tells us that the map Ψλµη defined above inverts the portion of Φλµβ whose image
oscillating tableaux are of weight η. Each possible image tableau weight η has a corresponding Ψλµη, so
the map Φλµβ is a bijection as desired.

We will refer to the procedure taking as input a graph γ and a normal oscillating tableau S, or,
equivalently, an N-tableau and a normal oscillating tableau, as the oscillating RSK correspondence.

Φsuper
λµβ

Definition 4.2. Given ε, ε′ ∈ {−1, 1}, we define an associated super RSK local rule. Let ρ, µ, ν be
partitions such that if ε = −1, ρ and ν differ by a vertical strip, if ε = 1, ρ and ν differ by a horizontal
strip, if ε′ = −1, ρ and µ differ by a vertical strip, and if ε′ = 1, ρ and µ differ by a horizontal strip. Let
m ∈ N if εε′ = 1 and m ∈ {0, 1} otherwise. Define the super RSK local rule to be:

• if ε = 1 and ε′ = 1, the RSK local rule.
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• if ε = −1 and ε′ = 1, the dual RSK local rule.

• if ε = 1 and ε′ = −1, the RSK’ local rule.

• if ε = −1 and ε′ = −1, the dual RSK’ local rule.

Detailed descriptions of these local rules may be found in [7, Sec. 4].

Pictorially, we let the color white for vertices in oscillating graphs and rows and columns of Young
diagrams correspond to an exponent of −1 and the color black correspond to an exponent of 1 in what
follows. We denote βε by b. In the description in terms of Schensted growth diagrams, black rows and
columns expand from top left to bottom right, while white rows and columns expand from bottom right
to top left.

Given a pair of colors ε and ε′, we can define the backward super RSK local rule by picking the back-
ward local rule corresponding to ε and ε′. This means that, given a column coloring ε and a row coloring
ε′, and southwest and northeast corner partitions (µ, ν), the super RSK local rule is a bijection between
pairs (ρ,m) of a partition and either an element of {0, 1} or N and partitions λ.

Definition 4.3. Let λ and µω, ω ∈ {−1, 1}, be partitions with |λ| = p and |µ| = q, respectively, let β ∈ Zk
such that −p+ β1 + · · ·+ βi ≤ 0 for 1 ≤ i < k and −p+

∑
β = −q, and let ε ∈ {−1, 1}k with ω = εk. Let

βε = b. Let SGε denote the set of all intransitive supergraphs (of arbitrary type δ colored by ε) , and let
OST (λ, µω) denote the set of all oscillating supertableaux from λ to µω (of arbitrary weight). Define the
map

Φ̃super
λµb : OST (λ, µω, b)→ SGε ×OST (λ, µω)

by the following procedure:

1. We interpret the sequence of signs on terms in δi as a {R,U} sequence as in the defintion of Φ̃λµβ

and build a Young diagram τ . Color the columns and rows of τ white if the corresponding εi is −1
and color them black otherwise.

2. Apply the backward local rule for super RSK on the Young shape τ , using the ti as initial inputs
and working in a reverse linear extension of the squares of τ . This will produce a filling T of τ (read
from the entries found to be in the squares of τ by the backward local rule), as well as a sequence
S of partitions read from the lower-left corner of τ to the upper right. The sequence S starts with
s0 = t0 = λ and ends with sk = tk = µω, so S is an oscillating supertableau in OST (λ, µ).

3. Assign distinct integers from {1, 2, . . . , k} to the rows and columns of τ based on where in the {R,U}
sequence the edge at the end of the row or column falls; for example, a tableau with {R,U} sequence
RURU would have columns labeled 1 and 3 (from left to right) and rows labeled 2 and 4 (from bottom
to top). Represent these numbered rows and columns with a graph whose vertices are labeled by the
integers {1, 2, . . . , k}, with N directed edges (i, j) if there is an N in the cell corresponding to the
intersection of column i and row j; denote this graph by γ. Color the vertex i of γ white if εi = −1
and black otherwise. The graph γ has type δ, where δi is the number of edges entering vertex i (where
a negative number of edges entering is a number of edges leaving). Because the partial sums of δ are
nonpositive, the sum of the entries of δ is 0, there is no more than one edge between a black vertex
and a white vertex, and there are no edges (i, j) for j < i, γ meets the requirements of Definition ??
and is an intransitive supergraph.

4. Then let Φ̃super
λµb (T ) = (γ, S).
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Figure 14: The unfilled growth diagram for the oscillating supertableau 3, 41, 421, 31, 2.
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Figure 15: The filled-in growth diagram; the outside contains the oscillating supertableau 3, 3, 1, 1, 2.

Example 4.2. The unfilled colored growth diagram in Figure 14 corresponds to the oscillating supertableau
3, 41, 421, 31, 2 of type b = (−2,−2, 3, 2); subscripts on entries in squares denote which of the four local
moves (classical RSK, dual RSK, RSK’, or dual RSK’) are to be applied. After filling in the growth
diagram with the backwards super RSK local rule, we get the growth diagram in Figure 15. The interior of
the growth diagram contains the adjacency information for the graph in Figure 16, a graph in SG(δε) for
δ = (−2,−1, 3, 0) and ε = (−1, 1,−1, 1), while the left and top edges give us the oscillating supertableau
3, 3, 1, 1, 2, an oscillating supertableau of type nor ((β − δ)ε) = (0, 2, 0,−1). In other words, we have

Φsuper

(3)(2)(−2,−2,3,2

(
3, 41, 421, 31, 2

)
=
(
Figure 16, (3, 3, 1, 1, 2)

)
.

Proposition 4.2. The image of Φ̃super
λµb is a subset of⋃

δ≺β
SG(δ)×OST

(
λ, µω,nor ((β − δ)ε)

)
Denote by Φsuper

λµb the map

Φsuper
λµb : OST (λ, µω, b)→

⋃
δ≺β

SG(δε)×OST
(
λ, µω, nor ((β − δ)ε)

)
given by Φsuper

λµb (T ) = Φ̃super
λµb (T ).

Figure 16: The supergraph in G (δε) corresponding to the oscillating supertableau 3, 41, 421, 31, 2.
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Proof. The proof mirrors that of Proposition 4.1, using the super RSK correspondence instead of the
oscillating RSK correspondence, with the colors of the rows and columns of the filling T determined by
the colors on the oscillating supertableau T .

Theorem 4.2. The map Φsuper
λµb is a bijection.

Proof. Let S = (λ = s0, s1, . . . , sk = µω) be an oscillating supertableau of weight e = ηε
′

where η ∈ Zk
and ε ∈ {−1, 1}k such that η is a normal sequence (in particular, its zeros are tagged “row” and “col-
umn”), and let γ be an intransitive supergraph of type δε. We want to produce a map Ψsuper

λµe such that

Ψsuper
λµe (S, γ) ∈ OST (λ, µω, b) where b = βε and e = nor ((β − δ)ε).

First, we build a colored Young diagram τ from γ. If δi < 0, we add a column on the right in the Young
diagram, and if δi > 0, we add a row on the top in the Young diagram; δi of zero add rows or columns
based on the tag on the zero. The square corresponding to column vertex a and row vertex b is in τ if
a < b. We fill τ with a filling T by placing in the square corresponding to vertices a and b the number of
edges from a to b, and we color the rows and columns of τ white or black based on the colors ε appearing in ε

We have the upper-left edge S and the filling T of a growth diagram. Applying the super RSK local rule
using the coloring of the tableau, we can read off the lower-right edge a tableau T = (λ = t0, t1, . . . , tk = µω)
of weight b = βε for β ∈ Zk and ε ∈ {−1, 1}k. As before, if ti and ti+1 are horizontally adjacent correspond-
ing to horizontally-adjacent entries sj and sj+1 in S, (|ti+1| − |ti|)− (|sj+1| − |sj |) is the sum of the entries
in the column T between ti and ti+1. By the construction of T , we have that (|ti+1|−|ti|)−(|sj+1|−|sj |) =
−δi+1, and similarly if ti+1 and ti are vertically adjacent, (|ti+1| − |ti|)− (|sj+1| − |sj |) = −δi. So, noting
that our sign convention has positive outdegree represented as negative, we have ηj = βi − δi.

Each βi + δi equals a distinct ηj and increasing i corresponds to farther right or up in τ , so that if
i2 > i1, the corresponding indices for η satisfy j2 > j1, and thus η = nor(β − δ). Checking the color-
ings ε and ε′, ε′j = εi as well, so that e = nor ((β − δ)ε). So the map ψsuperλµe is a well-defined map from

SG(δε)×OST
(
λ, µω,nor ((β − δ)ε)

)
to OST (λ, µω, b).

The correspondence between pairs of an oscillating supertableau of normal weight and an intransitive
supergraph and fillings of colored Young diagrams is a bijection, as is the local rule for RSK. Since we’ve
shown that Ψsuper

λµe is well-defined, this tells us that the map Ψsuper
λµe defined above inverts the portion of

Φsuper
λµb whose image oscillating tableaux are of weight η. Each possible image tableau weight η has a

corresponding Ψsuper
λµe , so the map Φsuper

λµb is a bijection as desired.

We will refer to the procedure taking as input a supergraph γε and a normal oscillating supertableau
Sε
′
, or, equivalently, a colored N-tableau and a normal oscillating supertableau, as the super RSK corre-

spondence.

5 A Cauchy Identity for Super RSK

The Cauchy identity 2.1 allows us to define a probability measure on Y by setting

SM(λ) =
sλ(X)sλ(Y )∏
i,j (1− xiyj)−1

,

and specializing the symmetric functions suitably. The probability measure SM is known as the Schur
Measure.
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Okounkov and Reshetikhin generalized the Schur measure to a probability measure on the space of
oscillating tableau tableau known as the Schur process [8]. The fact that it is a probability measure is
connected to the natural Cauchy identity for oscillating RSK, as the transition weight in the Schur process
from λi−1 to λi is proportional to a specialization of either sλi−1/λi(X

i), where Xi is a vector of variables,
or sλi/λi−1

(Xi).

Let λ = (λ0 = ∅, λ1, λ2, · · · , λn = ∅) be an oscillating tableau of length n. Define the set I to be the
set of indices i such that λi ≥ λi−1 and J to be the set of indices j such that λj ≤ λj−1. Letting Xi and
Y j denote vectors of variables for i ∈ I and j ∈ J , define

F (X,Y ) =
∏
i,j

1

1− xiyj
, W(λ) =

∏
i∈I

sλi/λi−1

(
Xi
)∏
j∈J

sλj−1/λj (Y
j).

Proposition 5.1. ∑
λ

W(λ) =
∏

i∈I,j∈J
F (Xi, Y j),

where the sum is over all oscillating tableau λ of length n.

We can define a dual Schur measure by setting

dSM(λ) =
sλ(x)sλ′(y)∏
i,j (1 + xiyj)

and specializing the symmetric functions suitably. The proof that this gives a probability measure relies
on the Cauchy identity for dual RSK (Proposition 3.2).

Let ε be a vector in {−1, 1}n and let λε = (λ0 = ∅, λ1, λ2, · · · , λn = ∅)ε be an oscillating supertableau
of length n. Define the set I to be the set of indices i such that λi ≥ λi−1 and J to be the set of indices
j such that λj ≤ λj−1. From ε, we know that for i in I, λi differs from λi−1 by a seqeunce of horizontal
strips if εi = 1 and a sequence of vertical strips if εi = −1 and, similarly, for j in J , λj−1 differs from λj

by a sequence of horizontal strips if εj = 1 and a sequence of vertical strips if εj = −1. Let {Xi|i ∈ I} and
{Y j |j ∈ J} be two sets of sets of indeterminates.

Letting (λ)∗i = λ if i = 1 and (λ)∗i = −1 if i = −1, define

G(X,Y ) =
∏

i∈I,j∈J
(1 + xiyj) , SW

(
λε
)

=
∏
i∈I

s(λi)∗εi/((λi−1)∗εi
(
Xi
)∏
j∈J

s(λj−1)∗εj /((λj)∗εj (Y
j).

Define

H(X,Y, ε′) =

{
F (X,Y ) if ε′ = 1
G(X,Y ) if ε′ = −1

We can now state the super Cauchy identity.

Proposition 5.2. Fix ε ∈ {−1, 1}n. We have∑
λ

SW
(
λε
)

=
∏

i∈I,j∈J
H
(
Xi, Y j , εiεj

)
,

where the sum is over all oscillating supertableaux (λ)ε of length n starting and ending at ∅.

Proof. Each term H(Xi, Y i, εiεj) on the right hand side is the generating function in the variables Xi, Y j .
If εiεj = 1, it is the generating function of N-matrices of finite support, while if εiεj = −1, it is the gen-
erating function for 0, 1-matrices of finite support. Considering an individual term of the product on the
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Figure 17: The correspondence in the superCauchy identity; Fij (respectively, Gij) denotes that F (Xi, Y j)
(respectively, G(Xi, Y j)) is the generating function for fillings of that block.

right-hand side, we have |I||J | matrices of finite support. If we extend all of these matrices to be square
matrices of the same size, we can glue the matrices together such that all the matrices coming from terms
with Xi for fixed i are vertically adjacent, ordered in decreasing order of the index j on Y j and all the
matrices coming from terms with Y j for fixed j are horizontally adjacent, ordered in increasing order of
the index i on Xi. The result of this gluing is a Young tableau with |J | rows and |I| columns. We color
column i with εi and row j with εj , so we have a colored Young tableau T .

By Theorem 4.2, we know that the super RSK correspondence gives a bijection between pairs (γ, S) of
an intransitive supergraph of type βη and an oscillating tableau in OST

(
∅, ∅, (0, 0, . . . , 0)η

)
and oscillating

supertableaux in OST (∅, ∅, βη). Since there is only one oscillating supertableau in OST
(
∅, ∅, (0, 0, . . . , 0)

)
,

and since the adjacency and vertex coloring information of γ can be encoded as a colored Young tableau,
we can consider the super RSK correspondence as giving a bijection between colored Young tableau with
column sum vector corresponding to the opposite of the sums of the negative portions of β and row sum
vector corresponding to the sums of the positive portions of β (zeros are allocated to either rows or columns
as needed) and oscillating supertableau in OST (∅, ∅, βη). A picture is shown in Figure 17.

Call the block of matrices corresponding to a set of variables Xi or Y j a supercolumn or a superrow,
respectively, and let m be the number of rows in a superrow. Applying the super RSK correspondence
to the colored Young tableau T (after writing ∅ along the left and top edges), we build an oscillating
supertableau T of type βη, where η consists of blocks of m copies of εk for 1 ≤ k ≤ n.

If i ∈ I and εi = 1, the skew shape λi/λi−1 one gets from supercolumn i can be viewed as a skew-
semistandard Young tableau by considering the sequence from λi−1 to λi in T as being a sequence of
insertions of rows of 1s, then 2s, and so on, where the number of ks to insert is the sum of column k in
supercolumn i, the column corresponding to Xi. This means that the generating function that encodes
the transition from λi−1 to λi is sλi/λi−1(Xi).

If i ∈ I and εi = −1, the skew shape λi/µi−1 one gets from supercolumn i can be viewed as a skew-
conjugate-semistandard Young tableau by considering the sequence from λi−1 to λi in T as being a sequence
of insertions of columns of 1s, then 2s, and so on, where the number of ks to insert is the sum of column k
in supercolumn i, the column corresponding to Xi. This means that the generating function that encodes
the transition from λi−1 to λi is s(λi)′/(λi−1)′(X

i).

Similarly, if j ∈ J , the skew shape λj−1/λj one gets from a superrow i can be viewed as a skew-
semistandard or skew-conjugate-semistandard (if εj = 1 or εj = −1, respectively) Young tableaux by
considering the backwards sequence from λj to λj−1 in T as a sequence of insertions of rows or columns,
respectively, of 1s, 2s, and so on, where the number of ks to insert is the sum of row k in superrow i, the
superrow corresponding to Y j . This means that the generating function that encodes the transition from
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λj−1 to λj is s(λj−1)∗εj /(λj)∗εj (Y
j).

Multiplying the generating functions for the transitions in our extended refined oscillating supertableau,
we get that the generating function for the entire refined semistandard tableau (λ, µ) is SW (λε). Since
there is a bijection between the colored tableau enumerated by the right-hand side of the equation and
refined oscillating supertableau whose generating functions are the left-hand side, we have∑

λ

SW
(
λε
)

=
∏

i∈I,j∈J
H
(
Xi, Y j , εiεj

)
as desired.

If ε is a vector of all 1s, we obtain a Cauchy identity whose terms resemble transition probabilities in
the Schur process; we get Proposition 5.1 as a corollary. Note that if we set n = 1, ε = (1, 1), the above
proof is identical to the proof of the Cauchy identity (Proposition 2.1), and if we set n = 1, ε = (−1, 1),
the above proof is identical to that of the dual Cauchy identity.

6 Increasing and Decreasing Operators

In this section, we apply the super RSK correspondence to fill in a proof of a statement due to Pak and
Postnikov [9] giving a set of commutation relations among certain operators on group representations.
These operators can be viewed as algebraic realizations of the addition and deletion of horizontal and
vertical strips.

Definition 6.1. Define the increasing operators I(n) and I(n) and the decreasing operators D(n) and
D(n) as follows, where invn(V ) denotes the space of Sn-invariants in the vector space V and skewn(V )
denotes the space of skew invariants of Sn in V (i.e. those v ∈ V with σv = −v for all σ ∈ Sn):

I(n) · V = ind
Sp+n
Sp

(V )

I(n) · V = ind
Sp+n
Sp×Sn (V ⊗ sgnn)

D(n) · V = invn

(
res

Sp+n
Sp×Sn V

)
D(n) · V = skewn

(
res

Sp+n
Sp×Sn V

)
Our main result of this section is the following set of commutation relations for these increasing and

decreasing operators:

Theorem 6.1 ([9, Thm. 9.1]). Let m,n ∈ N. Then if [A,B] denotes the commutator AB −BA, we have

1. [I(m), I(n)] = [I(m), I(n)] = [D(m), D(n)] = [D(m), D(n)] = 0.

2. [I(m), I(n)] = [D(m), D(n)] = 0.

3. [I(m+ 1), D(n+ 1)] = I(m)D(n) and [I(m+ 1), D(n+ 1)] = I(m)D(n).

4. [I(m+ 1), D(n+ 1)] = D(n)I(m) and [I(m+ 1), D(n+ 1)] = D(n)I(m).

We will give a combinatorial proof of these relations using the super RSK correspondence.
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6.1 The Combinatorial Realization

Let Rep(G) denote the set of equivalence classes of complex finite-dimensional representations of the fi-
nite group G. Denote by R the direct sum R = Rep(S0) ⊕ Rep(S1) ⊕ Rep(S2) ⊕ . . . . Let M be the
category whose objects are finite groups and whose morphisms from G to H are equivalence classes of
finite-dimensional representations of G×H; we can view Rep(G) as the set of morphisms from the trivial
group to G in this category. For a representation W of G × H, define 〈W 〉 as the operator which sends
V ∈ Rep(G) to V ◦W , which is in Rep(H).

For β ∈ Zk, ε ∈ {−1, 1}p+k+q, the group Sp × Sq acts on the set of intransitive supergraphs of type δ,
where

δi =


−1εi if 1 ≤ i ≤ p
βεii−p if p < i ≤ p+ k

1εi if p+ k < i ≤ p+ k + q

(**)

by having Sp permute the first p vertices and Sq permute the last q. This action gives a complex finite-
dimensional representation of Sp × Sq; letting b =

(
β
εp+1

1 , β
εp+2

2 , . . . , β
εp+k
k

)
, we denote this representation

by M(p,b, q). More properties of this representation are discussed in [9, Sec. 8]; Sections 5 and 6 of that
paper discuss the restriction of this representation to the case that ε is a vector of all 1s.

In [9, Sec. 9], Pak and Postnikov define this pair of increasing operators and a pair of decreasing opera-
tors on R by considering the operators

∑
−p+β+q=0〈M(p,b, q)〉 where b is a vector of length 1. Because there

is a natural composition operation on compatible intransitive graphs, the operator
∑
−p+β+q=0〈M(p,b, q)〉

for general b can be expressed as the composition, for 〈b〉 defined to be the sum
∑
−p+β+q=0〈M(p,b, q)〉,

〈b1〉 · 〈b2〉 · · · 〈bk〉, so it is enough to just consider the following four operators:

I(n) = 〈−n1〉, D(n) = 〈n1〉, I(n) = 〈−n−1〉, D(n) = 〈n−1〉.

Because R consists of all equivalence classes of representations of all finite symmetric groups, it has
a basis consisting of the set of all irreducible representations of all symmetric groups. Those irreducible
representations are the representations πλ for all the partitions λ ∈ Y. We identify the representation πλ
with the partition λ, so that our increasing and decreasing operators can be seen as acting on finite linear
combinations with complex coefficients of partitions λ.

Consider the operator 〈M(p,−n1, q)〉. As a representation, M(p,−n1, q) is spanned by all the intransi-
tive graphs of the form (∗∗) for β1 = −1 and εp+1 = 1. By Theorem 4.2, there is a bijection between these
intransitive graphs and oscillating supertableaux given by setting the upper-left boundary of a q × (p+ 1)
colored Young shape equal to ∅ and applying the super RSK correspondence. The last column of the
filled colored Young tableau, corresponding to the vertex with outdegree n, has column sum n, and, since
εp+1 = 1, it is a black column. This means that the partition µ at the lower-left corner of that column and
the partition λ at the lower-right corner of that column differ by a horizontal strip of size n.

This means that if |µ| = p and |λ| = p + n, M(p,−n1, q) can take µ to λ if and only if µ and λ differ
by a horizontal strip of size n. Viewed in terms of the operation of I(n) on partitions, this says that
I(n) · µ =

∑
λ λ, where the sum is over all λ differing from µ by a horizontal strip of size n. So I(n)

corresponds to adding a horizontal strip of size n. By a similar argument, I(n) corresponds to adding a
vertical strip of size n, D(n) corresponds to removing a horizontal strip of size n, and D(n) corresponds
to removing a vertical strip of size n.

6.2 Proof of Theorem 6.1

Proof of Theorem 6.1. Part 1 of the theorem is proved in [9, Sec. 10] using a bijection ψ1 between semis-
tandard Young tableaux of shape λ/ν and weight (m,n) and semistandard Young tableaux of shape λ/ν
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and weight (n,m) given by a process of “toggling” the shape of the intermediate partition µ between ν
and λ. The toggling operation is equivalent to the toggling done in the local rule for RSK. This bijection
proves that I(m) and I(n) commute, its reverse proves that D(m) and D(n) commute, and transposing
all the tableaux proves that I(m) and I(n) commute and that D(m) and D(n) commute.

For proving part 2 of the theorem, view the operator I(m) as inserting a row of m 1s to get a skew
tableau T of shape µ/ν and the operator I(n) as inserting a row of n 2s to get a skew tableau T ′ of shape
λ/ν. To get a skew tableau of shape λ/ν where the column of n 1s was inserted and then a row of m 2s
was inserted, simply subtract all the entries of T ′ from 3 and reverse the order of every row. This shows
that I(m) and I(n) commute, and reversing this bijection shows that D(m) and D(n) commute.

For part 3, the operator I(m + 1)D(n + 1) corresponds on a super RSK growth diagram to a corner
square at the intersection of a black row with sum n + 1 and a black column with sum m + 1; travelling
along the lower-right edge of this square adds a horizontal strip of size m+ 1 and then deletes a horizontal
strip of size n + 1. This is an oscillating tableau of weight

(
−(m + 1)1, (n + 1)1

)
. By the super RSK

correspondence (or just the normal oscillating RSK correspondence), such a lower-right edge corresponds
to a pair of an oscillating tableau of weight

(
(n + 1 − k)1, (−m − 1 + k)1

)
and an intransitive graph of

type (−k1, k). We can view this as the corner square containing the entry k and having its upper-left
boundary of weight

(
(n + 1 − k)1, (−m − 1 + k)1

)
. Given a fixed partition µ at the lower-left corner of

this corner square containing k, the possible values of λ are those formed from applying D(j)I(i) to µ for
0 ≤ i, j ≤ min(m+ 1, n+ 1). Writing this algebraically, we have

I(m+ 1)D(n+ 1) =

min(m,n)∑
k=−1

D(n− k)I(m− k).

From here, we’ll proceed by induction. For m = 0 or n = 0, I(m) and D(m) or I(n) and D(n) are
equal to the identity operator, while for m or n less than 0, I(m) and D(m) or I(n) and D(n) are equal
to the 0 operator, so we have a base case. Suppose that [I(i), D(j)] = I(i− 1)D(j − 1) for all i ≤ m and
j ≤ n. We have

I(m+ 1)D(n+ 1) =

min(m,n)∑
k=−1

D(n− k)I(m− k)

I(m+ 1)D(n+ 1)−D(n+ 1)I(m+ 1) =

min(m,n)∑
k=0

D(n− k)I(m− k)

[I(m+ 1)D(n+ 1)] = D(n)I(m) +

min(m,n)∑
k=1

D(n− k)I(m− k)

= I(m)D(n)− I(m− 1)D(n− 1) +

min(m,n)∑
k=1

D(n− k)I(m− k)

by our inductive assumption. Now by our oscillating RSK argument above, we know

I(m− 1)D(n− 1) =

min(m−2,n−2)∑
k=−1

D(n− k)I(m− k),

which, upon reindexing the sum and substituting, tells us that

[I(m+ 1)D(n+ 1)] = I(m)D(n)
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as desired. Using the super RSK local rule in the case of a white row and a white column will similarly
prove [I(m+ 1), D(n+ 1)] = I(m)D(n).

For part 4, the operator I(m+ 1)D(n + 1) corresponds on a super RSK growth diagram to a corner
square at the intersection of a black row with sum n + 1 and a white column with sum m + 1; travelling
along the lower-right edge of this square adds a vertical strip of size m + 1 and then deletes a horizontal
strip of size n+ 1. This is an oscillating supertableau of weight

(
−(m+ 1)−1, (n+ 1)1

)
. By the super RSK

correspondence, such a lower-right edge corresponds to either a 0 or a 1 in the square and an oscillating
supertableau of weight either

(
(n + 1)1,−(m + 1)−1

)
or
(
n1,−m−1

)
. Writing this algebraically, we have

I(m+ 1)D(n+ 1) = D(n+ 1)I(m+ 1) +D(n)I(m), or

[I(m+ 1, D(n+ 1)] = D(n)I(m)

as desired. The other case in part 4 is similar.

7 Further Questions

Question 1. Fomin’s growth diagram construction can be generalized to a larger class of posets than just
Young’s lattice. We define an r-differential poset to be a poset P such that

1. P has an element 0̂ such that λ ≥ 0̂ for all λ ∈ P.

2. If λ and µ are two distinct elements in P, then if there are exactly k elements of P covered by both
λ and µ, then there are exactly k elements of P that cover both λ and µ.

3. If λ ∈ P is covers exactly k elements of P, it is covered by exactly k + r elements of P.

For example, Young’s lattice is a 1-differential poset. Differential posets were introduced by Richard Stan-
ley, who used increasing and decreasing operators on them to translate certain enumerative problems into
partial differential equations [14]. Fomin’s construction of dual graded graphs [3] is essentially equivalent.

The other interesting example of a 1-differential poset is the Young-Fibonacci lattice Z(1), whose ele-
ments are words in the alphabet {1, 2} with rank function given by the sum of the letters in the word and
the cover relation a ≤ b if either a = 2iv and b = 2i1v or a = 2i1v and b = 2i+1v. A Robinson-Schensted
algorithm, described in terms of insertion and in terms of growths, can be given for the Fibonacci lattice
[11, Chapter 5]. The automorphism group of the Fibonacci lattice Z(1) is S2 [2], with the nontrivial
automorphism being given by ω(w11) = w2, ω(w2) = w11, and ω(w) = w otherwise.

Since the horizontal and vertical strips inserted in the RSK correspondence are related by transpostion,
the nontrivial automorphism in the automorphism group of Young’s lattice, it would be interesting to see
how the super RSK correspondence generalizes to Z(1). In particular, the proper notion of a vertical and
horizontal strip might be found by studying the growth diagrams for the super RSK correspondence on
Z(1); the main difficulty appears to be finding a good way to represent the elements of Z(1) the way that
Young diagrams represent Y.

Question 2. Okounkov and Reshetikhin [8] calculate the correlation function for the Schur process,
giving a determinantal formula for the correlation function of the Schur process. It would be interesting to
try to find such a formula for the super Schur process. In particular, if one could express the correlation
function of the Schur process in terms of Schur functions in some indeterminates, one could get the
correlation function of the super Schur process by applying the involution ω on Λ which sends en to hn.
This would be analogous to the algebraic proof of the dual Cauchy identity from the Cauchy identity; the
skew Schur functions in the variables on which the involution is applied see their corresponding partitions
transposed, so that ωXisλ/µ

(
Xi
)

= sλ′/µ′
(
Xi
)
. Other results about the Schur process should also be able

to be lifted to the super Schur process by means of appropriate applications of the involution ω.
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