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Abstract. Planar branched polymers, as studied by Brydges and Imbrie, are connected sets of n
labelled unit disks. We provide analytic descriptions of the subspace of branched polymers with
fixed tangency graph. Using this, we compute the volumes of the subspaces whenever the tangency
graph is a tree with diameter at most 3 and verify that they occupy a rational fraction of the
total space of branched polymers with the same order. Under a natural embedding of the space
of branched polymers with fixed tangency graph into Euclidean space, we show that the connected
components of the embedding are convex whenever the tree has diameter at most 3. By relating
branched polymers to self-avoiding walks, we find that the nth root of an appropriately rescaled
version of the volumes converges to a constant. Finally, we examine trees that are impossible as
tangency graphs, demonstrating that the set of maximum degrees of the smallest such trees (in a
subgraph sense) is precisely {3, 4, 5, 6}.

1. Introduction

A branched polymer of order n in Rd is a connected set of n labelled unit (d−1)-spheres with
disjoint interiors, where the sphere labelled as 1 is centered at the origin (Figure 1). Each branched
polymer has an underlying tangency graph defined as the graph T on n vertices corresponding
to the n disks, with edges between vertices with tangent corresponding disks.

4
2

1

5

7

6

3

Figure 1. A branched polymer in R2, also called a planar branched polymer.

Branched polymers are models of objects of the same name in chemistry. The models are typically
defined as trees on a lattice, usually Zd, in a generalization of self-avoiding walks. However, Brydges
and Imbrie [1] as well as Kenyon and Winkler [8] displayed several properties of this continuous
version of polymers, creating a new mathematical model for these scientific objects.

We can create a natural parametrization of the space of branched polymers of order n, as used
by Kenyon and Winkler [8]. First specify a labelled tree that serves as a spanning tree of the
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tangency graph, then specify (n − 1) d-dimensional angles corresponding to the angles of the
vectors between centers of tangent spheres. Under such a parametrization, we are able to define
the (n − 1)-dimensional space Bd(n) of branched polymers of order n as defined by Kenyon and
Winkler [8]. We are additionally able to consider a notion of volume using these coordinates.
This parametrization may be ambiguous for polymers whose tangency graphs contain cycles and
hence have multiple spanning trees, but the space of such polymers has volume zero under these
coordinates so there is no issue.

In this paper, we restrict our attention to the case d = 2 of planar branched polymers. For each
tree T , let BP(T ) denote the space of branched polymers with tangency graph T and any labelling
of T . Note that B2(n) is the disjoint union of BP(T ) over all trees T of order n, as well as some
sets with volume zero, so the following equation holds:

Vol(B2(n)) =
∑
T

Vol(BP(T )).

Brydges and Imbrie [1] proved the following key theorem using non-constructive techniques:

Theorem 1.1. For all n ∈ N,
Vol(B2(n)) = (n− 1)! · (2π)n−1.

Kenyon and Winkler [8] gave an elementary proof of Theorem 1.1 using the following lemma
which stemmed from the original proof by Brydges and Imbrie:

Lemma 1.2 (Invariance Lemma). Consider a generalization of branched polymers in which the
(d− 1)-spheres instead have radii given by some vector r = (r1, . . . , rn), and let B2

r(n) be the space
of branched polymers of order n with this radius vector. Then Vol(B2

r(n)) is independent of r.

The invariance lemma can be interpreted as a statement that as the radius vector changes,
volume flows between the different BPr(T ) (defined similarly to BP(T ) but for arbitrary radius
vector) through the boundaries. The boundaries of BPr(T ) with codimension k correspond to
branched polymers whose tangency graph has k cycles and T as a spanning tree. Thus volume can
flow out of BPr(T ) through a codimension-1 boundary piece to BPr(T

′) for a tree T ′ formed by
adding an edge to T and deleting a different edge from the resulting cycle.

In the case of r = (1, . . . , 1), Kenyon and Winkler posed the question of determining Vol(BP(T ))
for each T , also asking if they are always rational multiples of (2π)n−1. As shown in Figure 2, there
are two types of branched polymers of order 4, with their volumes being rational multiples of (2π)3.
The goal of this paper is to investigate this question as well as the structure of BP(T ).

Figure 2. Up to isomorphism, there are two trees on 4 vertices—the path graph and the star
graph. The path graph has volume 40π3 while the star graph has volume 8π3, so the total volume
of B2(4) is 48π3 = 3! · (2π)3.

To analyze the space BP(T ), it is helpful to define BPL(T ) to be the space of branched polymers
with tangency graph T and fixed labelling (up to automorphism) of T . Note that all BPL(T ) are
congruent for varying labellings of a fixed T , so it will not matter which labelling we choose. For
brevity, let VL(T ) denote the volume of BPL(T ).

Let Aut(T ) be the automorphism group of T . Then by considering the group action of the
symmetric group on the set of labelled trees with n vertices and applying the orbit-stabilizer
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theorem, there are n!
|Aut(T )| labellings of T . But observe that BP(T ) is composed of one copy of

BPL(T ) for each labelling of T , so

Vol(BP(T )) =
n!

|Aut(T )|
· VL(T ).

Thus to address the questions about Vol(BP(T )), it suffices to examine VL(T ).
This paper is split into several sections. In Section 2, we provide a useful way to partition

BP(T ) into smaller subspaces and a more concrete definition of coordinates which can be used to
parametrize BPL(T ). Using these coordinates, we create a natural embedding of BPL(T ) into the
hypercube [0, 2π)n−1. In Section 3, we provide an analytic description of the boundary of BPL(T ),
demonstrating that certain faces of the boundary of the embedding are actually hyperplanes. Using
this fact, we compute the volume of BP(T ) whenever diamT ≤ 3 and verify that it is a rational
multiple of (2π)n−1. This characterization of the boundary additionally allows us to demonstrate
that the embedding of BPL(T ) is convex whenever diamT ≤ 3 but is not when T is the path graph
of length at least 4. In Section 4, we prove a result on the order of growth of VL(T ), namely the
existence of a connective constant for the sequence of volumes for path graphs, by relating branched
polymers to self-avoiding walks. In Section 5, we exhibit some trees T for which BP(T ) has volume
zero, demonstrating that the set of maximum degrees of the smallest such trees (in a subgraph
sense) is precisely {3, 4, 5, 6}.

Acknowledgements. The author would like to thank Vishal Patil for providing mentorship, re-
sources, and guidance throughout the project, as well as suggesting the research topic. The author
would also like to thank the MIT Department of Mathematics, in particular Slava Gerovitch, David
Jerison, and Ankur Moitra, for organizing the UROP+ program through which this research was
produced. This research was funded by the John Reed fund as a summer UROP project in the
MIT Department of Mathematics.

2. Preliminaries

In this section, we describe a partitioning of BP(T ) into smaller subspaces which will make
analyzing the space easier. We then provide a parametrization of polymers with fixed tangency
graph.

To do this, we begin by generalizing the notion of a branched polymer by defining a crossing
polymer to be the same as a branched polymer but allowing overlapping interiors (Figure 3).

Figure 3. A crossing polymer and branched polymer with the same tangency graph.

In a similar vein to branched polymers, we will let CPL(T ) be the space of crossing polymers with
tangency graph T and fixed labelling (up to automorphism) of T , so that BPL(T ) is a subspace of
CPL(T ). By constructing a crossing polymer in CPL(T ) inductively, we have that CPL(T ) ∼= Tn−1,
the (n− 1)-dimensional torus.
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2.1. Partitioning BP(T ) into smaller subspaces. The space BP(T ) can be partitioned into
subspaces in a useful manner. First, we can divide BP(T ) into n!

|Aut(T )| congruent subspaces of the

form BPL(T ) as described in Section 1. We can further refine the partition by splitting BPL(T )
into its connected components.

Here, we say that two branched polymers are in the same connected component if it is possible
to rotate the disks while remaining in BP(T ) to get from one to the other (Figure 4). We will
see in Section 2.2 that this notion of connected coincides with the standard topological notation of
connected when we parametrize BPL(T ).
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Figure 4. Two branched polymers in BPL(T ) that are in different connected components, where
T is the star graph on 4 vertices.

Based on the possible ways to cyclically permute the disks tangent to a single disk, the total
number of connected components of BPL(T ) is at most∏

v∈V (T )

(deg v − 1)!

where the permutations around each vertex v contribute (deg v − 1)! to the product.
In general, the connected components might be non-congruent (Figure 5). There exist trees

where all connected components of BPL(T ) are congruent though; for example, both connected
components of the graph T shown in Figure 4 are congruent.

Figure 5. Two elements of BPL(T ) for the same T in non-congruent connected components.

2.2. Parametrization. We describe two parametrizations of the space CPL(T ) that we will use. In
both parametrizations, we assume that the vertex labelled as 1 is a leaf and all parents are labelled
smaller than their children when rooting the tree at 1. Furthermore, let Ok for k = 1, . . . , n denote
the center of the disk labelled as k.

The first parametrization, essentially the one given by Kenyon and Winkler, is straightforward

and intuitive. For v = 2, . . . , n, let θ̂v denote the argument of the vector
−−−→
OpOv, where p is the

parent of v (Figure 6). Then the argument parametrization of CPL(T ) is the parametrization
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(θ̂2, . . . , θ̂n) ∈ Tn−1. It is also convenient to define θ̂uv for every edge uv to be the argument of the

vector
−−−→
OuOv. It is straightforward to check that

θ̂uv =

{
θ̂v if u < v

θ̂u − π if v < u

where equality holds modulo 2π (working in the torus). Given these angles θ̂v and θ̂uv taken modulo
2π, we can define the representatives of the angles to be θv ∈ [0, 2π) and θuv ∈ [0, 2π) such that

θv ≡ θ̂v (mod 2π) and similarly with θuv.
The other parametrization concerns the argument with respect to the parent edge. Let ϕ̂2

denote the counterclockwise angle from the vector (−1, 0) to
−−−→
O1O2. For v = 3, . . . , n, let ϕ̂v denote

the counterclockwise angle from
−−−→
OpOq to

−−−→
OpOv, where p is the parent of v and q is the parent

of p (Figure 6). Then the previous edge parametrization of CPL(T ) is the parametrization
(ϕ̂2, . . . , ϕ̂n) ∈ Tn−1. It is also convenient to define ϕ̂uvw for every path uvw of length 2 to be the

counterclockwise angle from
−−−→
OvOu to

−−−→
OvOw. It is straightforward to check that

ϕ̂uvw =


ϕ̂w if u < v < w

2π − ϕ̂u if w < v < u

ϕ̂w − ϕ̂u if v < u,w

where equality holds modulo 2π. Note that v > u,w never holds because this would mean that v
has a child (either u or w) with smaller label than itself. We can define ϕv and ϕuvw similarly to
how we defined θv and θuv. We will later see that ϕv ∈ (0, 2π) for all v > 2, so we actually have
the exact equality:

ϕuvw =


ϕw if u < v < w

2π − ϕu if w < v < u

ϕw − ϕu if v < u,w and ϕw ≥ ϕu
2π + ϕw − ϕu if v < u,w and ϕw < ϕu

Remark 2.1. A small angle chase reveals that ϕ̂uvw = θ̂vw − θ̂vu, so ϕ̂v = θ̂v − θ̂p + π for v ≥ 3.
Consequently, the previous edge parametrization leads to the same notion of volume as the argument
parametrization and thus as referred to by Kenyon and Winkler [8].

1 2

3

4

5

6

7

8

9

θ5

θ8

ϕ5

ϕ6

Figure 6. A branched polymer and the two parametrizations (argument parametrization in the
middle, previous edge parametrization on the right).
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Using the previous edge parametrization, there is a natural volume-preserving map from CPL(T )
to [0, 2π)n−1 sending (ϕ̂2, . . . , ϕ̂n) to (ϕ2, . . . , ϕn). Let BPEL (T ) ⊂ [0, 2π)n−1 be the image of BPL(T )
under this map into Euclidean space. This embedding of BPL(T ) is important not only because it
preserves volume, but also because it preserves connectivity. That is, each connected component
of BPL(T ) (in the sense of rotation as described above) corresponds precisely with a connected
component of BPEL (T ) (in the topological sense).

These connected components can very easily be described by the coordinates. If v1, . . . , vd−1 are
all of the children of a vertex, then each of the (d − 1)! orderings of the numbers ϕv1 , . . . , ϕvd−1

corresponds to a different subset of connected components.

2.3. Important families of trees. There are a few important families of trees. We will use Pk
to denote the path graph on k vertices and Sa to denote the star graph on a+ 1 vertices (a leaves
adjacent to a “center” vertex). We will also use Sa,b to denote the graph on a + b + 2 vertices
formed by joining Sa and Sb with an edge between their centers (Figure 7).

Figure 7. The graphs P5 (top), S5 (bottom left), and S2,3 (bottom right).

3. The space BPL(T )

Using the parametrization provided in Section 2, we provide an analytic description of BPL(T )
as a subspace of CPL(T ). We then show that boundaries of BPEL (T ) corresponding to paths in T
of length at most 3 are hyperplanes. This allows us to compute Vol(BP(T )) whenever diamT ≤ 3.
We then analyze the convexity of the connected components of BPEL (T ), showing that BPEL (T ) is
convex whenever diamT ≤ 3 but BPEL (Pn) is not convex for n ≥ 5.

3.1. Boundary of BPL(T ). Using the parametrizations of CPL(T ), there is an easy analytic
description of the subspace BPL(T ).

For ` ≥ 2, define the constraint function C` : R`−1 → R to be

C`(x1, . . . , x`−1) :=
`− 1

2
+

∑
1≤j≤k≤`−1

(−1)k−j+1 cos

 k∑
i=j

xi

 .

Lemma 3.1. Let P ∈ CPL(T ). Then P ∈ BPL(T ) if and only if

C`(ϕv0v1v2 , ϕv1v2v3 , . . . , ϕv`−2v`−1v`) > 0

holds for all paths v0v1 . . . v` of length ` ≥ 2 in T .

Proof. For ` ≥ 2, define the function F` : R` → R to be

F`(y1, . . . , y`) :=
`− 1

2
+

∑
1≤j<k≤`

cos(yk − yj).

This function satisfies the relation

F`(θv0v1 , θv1v2 , . . . , θv`−1v`) = C`(ϕv0v1v2 , ϕv1v2v3 , . . . , ϕv`−2v`−1v`).
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To see why, recall from Remark 2.1 that

ϕvi−1vivi+1 ≡ θvivi+1 − θvivi−1 ≡ θvivi+1 − θvi−1vi + π (mod 2π).

Thus

cos(θvk−1vk − θvj−1vj ) = cos

k−1∑
i=j

(θvivi+1 − θvi−1vi)


= cos

k−1∑
i=j

(ϕvi−1vivi+1 − π)


= (−1)k−j cos

k−1∑
i=j

ϕvi−1vivi+1

 .

Summing over 1 ≤ j < k ≤ ` and shifting indices proves the relation.
Thus it suffices to prove that P ∈ BPL(T ) if and only if F`(θv0v1 , θv1v2 , . . . , θv`−1v`) > 0 holds for

all paths v0v1 . . . v` of length ` ≥ 2 in T . Observe that

8F`(y1, . . . , y`) = 4`− 4 + 8
∑

1≤j<k≤`
cos(yj) cos(yk) + sin(yj) sin(yk)

=

2
∑̀
j=1

cos(yj)

2

+

2
∑̀
j=1

sin(yj)

2

− 4.

When (y1, . . . , y`) = (θv0v1 , θv1v2 , . . . , θv`−1v`), this expression is equal to (Ov0Ov`)
2 − 4. This is

because
−−−−−−→
Ovj−1Ovj = (2 cos(θvj−1vj ), 2 sin(θvj−1vj )), so summing up the vector for j = 1, . . . , ` gives

that

−−−−→
Ov0Ov` =

2
∑̀
j=1

cos(θvj−1vj ), 2
∑̀
j=1

sin(θvj−1vj )

 .

It follows that the distance Ov0Ov` is greater than 2 if and only if F`(θv0v1 , θv1v2 , . . . , θv`−1v`) > 0.
The lemma follows. �

The first two constraint functions are actually linear constraints.

Lemma 3.2. Suppose that x1 ∈ [0, 2π). Then

C2(x1) > 0 ⇐⇒ π

3
< x1 <

5π

3
.

Suppose that x1, x2 ∈ (0, 2π). Then

C3(x1, x2) > 0 ⇐⇒ π < x1 + x2 < 3π.

Proof. The linear equivalent of C2 is clear because C2(x1) = 1
2 − cos(x1). We turn our attention to

C3. Observe that

C3(x1, x2) = 1− cos(x1)− cos(x2) + cos(x1 + x2)

= 2 cos2
(
x1 + x2

2

)
− 2 cos

(
x1 + x2

2

)
cos

(
x1 − x2

2

)
= 2 cos

(
x1 + x2

2

)(
cos

(
x1 + x2

2

)
− cos

(
x1 − x2

2

))
= −4 cos

(
x1 + x2

2

)
sin
(x1

2

)
sin
(x2

2

)
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where standard trigonometric identities are applied. By the constraints, both sine terms are pos-
itive, so we require cos

(
x1+x2

2

)
< 0 with 0 < x1+x2

2 < 2π. This gives that π < x1 + x2 < 3π as
desired. �

Remark 3.3. It is fine to assume that x1 and x2 are in (0, 2π) instead of [0, 2π) for C3 because
we will only ever see the condition C3(x1, x2) > 0 when we also are working with the conditions
C2(x1) > 0 and C2(x2) > 0.

Remark 3.4. The fact that C2 > 0 and C3 > 0 are linear constraints stems from the fact that
equilateral triangles and quadrilaterals have linear angle conditions. In particular, the interior
angles of equilateral triangles are all π

3 and adjacent interior angles of equilateral quadrilaterals
(also known as rhombi) sum to π.

Figure 8 displays the plots of BPEL (T ) as subsets of [0, 2π)n−1 for all trees T of order 4 and 5,
with the irrelevant variable ϕ2 factored out.

Figure 8. Plots of BPEL (T ) for all trees of order 4 and 5. From left to right and first row to second
row, the graphs are P4, S3, P5, S4, and S2,1. Here, the first parameter ϕ2 is omitted because
there is no constraint involving it. In the plots, ϕ3 is on the x-axis, ϕ4 is on the y-axis, and ϕ5 (if
applicable) is on the z-axis.

Combining Lemmas 3.1 and 3.2 gives the following result:

Corollary 3.5. Consider a branched polymer in BPL(T ). Then π
3 < ϕv0v1v2 <

5π
3 for any path

v0v1v2 of length 2 in T and π < ϕv0v1v2 + ϕv1v2v3 < 3π for any path v0v1v2v3 of length 3 in T .

It follows from these linear constraints that for any tree with diameter at most 3, the set BPEL (T )
is the union of polytopes. Consequently, the volume VL(T ) can be computed with a straightforward
integral. We defer the calculation to Appendix A and present the values in Table 1.
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n T VL(T ) Aut(T ) Vol(BP(T ))

1 P1 1 Triv (2π)0

2 P2 = S1 2π Dih1 (2π)1

3 P3 = S2
8π2

3 Dih1 2(2π)2

4 S3 2π3 Sym3 2(2π)2

P4 = S1,1
10π3

3 Dih1 4(2π)3

5 S4
16π4

27 Sym4
5
27(2π)4

S2,1
184π4

81 Sym2
230
27 (2π)4

6 S5
2π5

81 Sym5
1

216(2π)5

S3,1
47π5

81 Sym3
235
108(2π)5

S2,2
322π5

243 Dih1 × S2
2

805
216(2π)5

7 S4,1
8π6

405 Sym4
7

108(2π)6

S3,2
104π6

405 Sym3 × Sym2
91
54(2π)6

8 S4,2
4π7

729 Sym4 × Sym2
35
972(2π)7

S3,3
98π7

3645 Dih1 × Sym2
3

343
2916(2π)7

9 S4,3
8π8

76545 Sym4 × Sym3
1

972(2π)8

Table 1. The volumes for each tree with diameter at most 3 and positive volume.

Since the only trees of order 5, up to isomorphism, are S4, S2,1, and P5, we can use Table 1 to
compute that

Vol(BP(P5)) =

(
24− 5

27
− 230

27

)
(2π)4 =

413

27
(2π)4

and thus VL(P5) = 1652π4

405 . We believe that this is the only tree with diameter at least 4 whose
volume is known.

3.2. Convexity of connected components. One interesting inquiry about the shape of BPEL (T )
is on the convexity of its connected components. If the connected components are convex, then opti-
mization problems on the branched polymers can be resolved using known optimization algorithms
on convex sets.

If a connected component is the intersection of half-spaces, then it is a convex polytope. By Corol-
lary 3.5 of Lemma 3.2, this is true of every connected component of BPEL (T ) whenever diamT ≤ 3,
so the connected components are convex whenever diamT ≤ 3. Unfortunately, convexity breaks
apart whenever diamT ≥ 4.

Lemma 3.6. Under the argument parametrization, the (connected) set BPEL (Pn) ⊂ [0, 2π)n−1 is
not convex for n ≥ 5.

Proof. We will essentially exhibit two branched polymers in BPL(Pn) such that the midpoint of their
representatives in [0, 2π)n−1 is not in BPEL (Pn). Consider the crossing polymers with previous edge
parametrizations (π, 5π3 ,

4π
3 ,

4π
3 ,

2π
3 , π, π, . . . , π) and (π, 7π5 ,

7π
5 ,

7π
5 ,

4π
5 , π, π, . . . , π). It is straightfor-

ward to verify that both are indeed branched polymers whose representatives in [0, 2π)n−1 are in

BPEL (Pn), the closure of BPEL (Pn) (Figure 9).
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34

567 1 2
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567

Figure 9. Two branched polymers in BPEL (P7).

However, the “midpoint” of these two branched polymers—the labelled crossing polymer with
previous edge parametrization (π, 23π15 ,

41π
30 ,

41π
30 ,

11π
15 , π, π, . . . , π)—does not have representative in

BPEL (Pn) (Figure 10). Indeed, it can be computed that C4(ϕ3, ϕ4, ϕ5) ≈ −0.08037, which violates
Lemma 3.1.

1 2

3
4

567

Figure 10. The midpoint is not in BPEL (P7).

Since the closure of a convex set is convex, the set BPEL (Pn) cannot be convex. �

Remark 3.7. This counterexample can be adjusted to provide a direct proof that BPEL (Pn) is not
convex without having to resort to the closure. Indeed, subtracting a small positive constant ε from
ϕ3 provides two branched polymers whose midpoint is not a branched polymer.

See Figure 11 for a zoomed in view of BPEL (T ) which displays the non-convexity.

Figure 11. Plot of BPEL (P5), zoomed in to the region [ 7π
5
, 5π

3
]× [ 4π

3
, 7π

5
]× [ 4π

3
, 7π

5
].

Lemma 3.6 can be adapted to show that connected components of BPEL (T ) are not convex for
some trees T besides path graphs. For example, the connected component corresponding to the
polymer on the left in Figure 5 is not convex by this construction.

However, it is not true in general that diamT ≥ 4 implies that all connected components of
BPEL (T ) are not convex. Indeed, the connected component corresponding to the polymer on the
right in Figure 5 is the intersection of half-spaces and is thus convex. To see why, observe that the
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path of length 4 cannot ever be realized in a branched polymer in this connected component. As
such, the condition C4 never kicks in, causing the connected component to be the intersection of
half-spaces.

4. Asymptotics of VL(T )

In this section, we give two inequalities implying a submultiplicative-type (with respect to tree
concatenation) behavior of VL(T ). These inequalities connect the study of branched polymers with
tangency graph Pn to that of self-avoiding walks on a lattice, allowing us to analyze the asymptotics
of VL(T ).

4.1. Submultiplicative-type inequalities. Let G− e denote deletion of edge e and G/e denote
contraction of vertex pair e (in contraction, e is not necessarily an edge).

Lemma 4.1. Let T be a tree and uv ∈ E(T ). Let T1, T2 be trees such that T −uv = T1 tT2. Then

VL(T ) ≤ 2πVL(T1)VL(T2).

Proof. We provide a volume-preserving injection from BPL(T ) to BPL(T1) × (−π, π] × BPL(T2).
Take an arbitrary branched polymer P in BPL(T ). Let P1 denote the set of disks in P corresponding
to T1 and P2 denote the set of disks in P corresponding to T2. Let C1, C2 be the centers of the disks
corresponding to the endpoints of the edge that was removed, with C1 ∈ P1 and C2 ∈ P2. Then

our injection is P 7→ (P1,Arg
−−−→
C1C2,P2) where Arg represents principal argument (Figure 12). �

Remark 4.2. We can actually replace the constant 2π with 4π
3 as long as |V (T )| > 2 since 2π

3 of

the full range of angles for Arg
−−−→
C1C2 is invalid.

C1

C2

7→
C1 C2

Figure 12. The injection exhibited in the proof of Lemma 4.1, demonstrated on T = P6. The

arrow pointing away from C1 represents the angle of the vector
−−−→
C1C2.

A similar inequality stems from edge contraction.

Lemma 4.3. Let T be a tree. Let T1, T2 be trees for which there exist u ∈ V (T1) and v ∈ V (T2)
such that T = (T1 t T2)/uv. Then

VL(T ) ≤ VL(T1)VL(T2).

This can be proven using a similar injection as in the proof of Lemma 4.1.

4.2. Connective constant. Using the submultiplicative-type inequality on VL(T ), we are able to
deduce the existence of a connective constant for branched polymers, akin to that of self-avoiding
walks on a lattice as done by Hammersley and Morton [6]. To do this, we will use a lemma of
Fekete [3].

Lemma 4.4. Let {an}n≥1 be a subadditive sequence of real numbers, i.e. am+n ≤ am + an for all
m,n ∈ N. Then

lim
n→∞

an
n

= inf
n≥1

an
n
.
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Given Fekete’s lemma, we can show the existence of a connective constant.

Theorem 4.5. There exists a constant µ ∈ [2π3 ,
4π
3 ] for which

lim
n→∞

n
√
VL(Pn) = µ.

Proof. We can take T = Pm+n, T1 = Pm, and T2 = Pn in Lemma 4.1 to get that

2πVL(Pm+n) ≤ 2πVL(Pm) · 2πVL(Pn).

Taking the logarithm gives that an = log(2πVL(Pn)) is subadditive. Applying Lemma 4.4, we
deduce that

lim
n→∞

log(2πVL(Pn))

n
exists and is in [−∞,∞).

Exponentiating, we deduce that lim
n→∞

n
√
VL(Pn) = µ for some µ ≥ 0.

Now, we show that

2π ·
(

2π

3

)n−2
≤ VL(Pn) ≤ 2π ·

(
4π

3

)n−2
for n ≥ 2, which would imply the bounds on µ.

We first show the upper bound. Observe that VL(Pn+1) ≤ 4π
3 VL(Pn) for n ≥ 2. Indeed, ϕn+1

must be between π
3 and 5π

3 . Combined with the fact that VL(P2) = 2π, the upper bound follows.
Now, we show the lower bound. Situate a coordinate axes such that O1 is at the origin and O2

is on the positive x-axis. The key claim is that by taking θk ∈ (0, 2π3 ) for k = 3, . . . , n, we generate
a valid polymer. By induction, it suffices to show that OkOn > 2 for each k ≤ n− 2.

Observe that |θn− θn−1| < 2π
3 by construction, so ϕn = π+ θn− θn−1 lies strictly between π

3 and
5π
3 . By Lemmas 3.1 and 3.2, this implies that On−2On > 2 so it remains to show the inequality for
k ≤ n− 3. We casework on the number of m > k such that θm > π

6 .

• There are no such indices m > k. Then both coordinates of
−−−−→
Oi−1Oi are non-negative for

i > k. It follows that both coordinates of
−−−→
OkOn are at least the corresponding (non-negative)

coordinates of
−−−−−→
On−1On, so OkOn > On−1On = 2.

• There is exactly one such index m > k. Then the x-coordinate of
−−−−→
Oi−1Oi is at least

√
3

for i > k besides m, while the x-coordinate of
−−−−−−→
Om−1Om is greater than −1. Thus the

x-coordinate of
−−−→
OkOn is greater than

(n− k − 1) ·
√

3 + 1 · (−1) ≥ 2
√

3− 1 > 2,

so OkOn > 2.

• There are at least two such indices m > k. Observe that the y-coordinate of
−−−−→
Oi−1Oi is

always non-negative for i > k. Furthermore, if θm > π
6 then the y-coordinate of

−−−−−−→
Om−1Om

is greater than 1. It follows that the y-coordinate of
−−−→
OkOn is greater than 2, so OkOn > 2.

Thus a valid polymer is generated this way, implying the lower bound. �

It is conjectured (e.g. Jensen [7]) that if cn is the number of self-avoiding random walks of length
n on a lattice Λ, then

cn ∼ Aµnnγ−1

where A and µ depend on Λ but γ is a universal constant. Because of the resemblance between
branched polymers with tangency graph Pn and self-avoiding walks, we conjecture that a similar
asymptotic holds for VL(Pn). Based on experimental data, the value of µ appears to be around
0.58.
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5. Zero-volume trees

We say that a tree T is a zero-volume tree if VL(T ) = 0. Note that T being a zero-volume
tree implies that there is no branched polymer with tangency graph T . This is because BPEL (T ) is
an open subset of [0, 2π)n−1, and non-empty open sets have positive volume. Contrast this with
general graphs G; for example, VL(K3) = 0 where K3 is the triangle graph, but there exist branched
polymers with tangency graph K3.

If T is a zero-volume tree, then any tree T ′ that contains T as a subgraph is also a zero-volume
tree. We say that a tree T is a primitive zero-volume tree if no proper subgraph of T is zero-
volume. Then the set of zero-volume trees is precisely the set of trees which have some primitive
zero-volume tree as a subgraph. Thus to analyze zero-volume trees, it suffices to identify the
primitive zero-volume trees.

We show that the values that ∆(T ) takes on over all primitive zero-volume trees T are {3, 4, 5, 6},
where ∆(T ) is the maximum degree of T . To do this, we provide several zero-volume trees using
two main methods. One way is to find a circle of small radius which must enclose any branched
polymer with given tangency graph and create a contradiction using this. Another method, stronger
than the first, is to use a constructive geometric argument by adding up angles and arriving at a
contradiction.

5.1. Disk packing arguments. Zero-volume trees can come from the branched polymer being
“too crowded,” i.e. violating a disc packing inequality. For a positive integer m, let r(m) denote
the radius of the smallest circle in which m unit disks can be packed.

For example, Graham [4] proved that r(7) = 3, with optimal configuration as shown in Figure
13.

Figure 13. The optimal packing of 7 unit disks in a circle.

From this, it follows that no branched polymer can have tangency graph S6. Indeed, the triangle
inequality implies that any branched polymer in BP(S6) must lie within a circle of radius 3. But
the optimal packing of 7 disks forces such a branched polymer to instead have a tangency graph
with cycles. Thus S6 is zero-volume. This forces ∆(T ) ≤ 5 for any tree T with positive volume.

Additionally, since Sa for a < 6 has positive volume, the following theorem is true:

Theorem 5.1. The tree S6 is a primitive zero-volume tree.

This argument to identify zero-volume trees can be generalized by the following lemma:

Lemma 5.2. If r(n) > diamT + 1 where n is the order of T , then T is zero-volume.

Proof. Let d = diamT . The key claim is that a branched polymer with tangency graph T fits
inside a circle of radius d + 1. Take a path v0v1 . . . vd of length d in T . We will prove that if O is
the midpoint of broken line Ov0Ov1 . . . Ovd , then the center of every disk lies in a closed circle of
radius d centered at O. Casework on whether d is even or odd.

• Suppose d = 2k is even, then O is Ovk . By construction, the eccentricity of vk is k. Since
each edge in T corresponds to a segment between disk centers of length 2, there is a broken
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line from O to every disk center with length at most 2k = d and thus a straight line with
length at most d.
• Suppose d = 2k + 1 is odd, then O is the midpoint of OvkOvk+1

. By construction, the
eccentricity of vk is k+ 1. Furthermore, if the distance from vk to another vertex is exactly
k + 1, then the path must use edge vkvk+1—otherwise the distance from vd to this other
vertex is 2(k+ 1) = d+ 1. It follows that there is a broken line from O to every disk center
with length at most 2k + 1 = d and thus a straight line with length at most d.

Thus the distance from O to every disk center is at most d, so applying the triangle inequality again
provides that the distance from O to every point in a disk is at most d+ 1. The contrapositive of
the lemma statement follows directly. �

An immediate bound on r(n) is that r2 ≥ n (by comparing areas). A slightly less obvious bound
comes from the fact that the densest packing of circles in the plane is the hexagonal packing. As

shown by Tóth [2], we actually have r2 ≥
√
12
π n. This inequality was strengthened by Groemer [5]

to
n
√

12 ≤ πr2 − (2−
√

3)πr +
√

12− π · (
√

3− 1).

Using these bounds, we can identify some zero-volume trees. A d-quasi-regular tree is a tree
for which every vertex has degree in {1, d}. The complete d-quasi-regular tree of height h is
the d-quasi-regular tree generated by a level structure with levels 0 through h such that level k for
k ≥ 1 has the maximal d · (d− 1)k−1 vertices (Figure 14).

Figure 14. The complete 4-quasi-regular tree of height 2.

Observe that the complete d-quasi-regular tree of height h has 1 + d · (d−1)
h−1

d−2 vertices and

diameter 2h. By applying Lemma 5.2 and the bound r(n) ≥
√
n, we have the following results.

Corollary 5.3. The complete 3-quasi-regular tree of height 6 is zero-volume.

Corollary 5.4. The complete 4-quasi-regular tree of height 3 is zero-volume.

These results demonstrate the existence of zero-volume trees with ∆(T ) = 3 and ∆(T ) = 4,
respectively.

5.2. Constructive geometric arguments. Some geometric arguments utilizing angle conditions
can also be employed to find zero-volume trees. For example, Theorem 5.1 can alternatively be
proven by noting that the six angles between consecutive leaves must each be greater than π

3 while
their sum is 2π, leading to a contradiction.

We can prove a similar result on one of the trees with diameter 3.

Theorem 5.5. The tree S4,4 is a primitive zero-volume tree.

Proof. First, observe that all possible connected components of BPL(S4,4) must be congruent. This
is true because there is a correspondence between elements of different connected components that
preserves the geometric shape of the branched polymer, thus preserving the shape of the connected
component.
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Suppose that there exists a branched polymer with S4,4 as its tangency graph. Consider the
labelling of S4,4 in Figure 15 and look at the connected component with edges ordered in the same
order as in the diagram.

1

2

3

4

5

6

7

8

9

10

Figure 15. Labelling and ordering of S4,4.

Recall Corollary 3.5 of Lemma 3.2, which states that π
3 < ϕv0v1v2 <

5π
3 for any path v0v1v2 of

length 2 and π < ϕv0v1v2 + ϕv1v2v3 < 3π for any path v0v1v2v3 of length 3. Using the conversion
between ϕuvw and ϕv, we require

ϕ3, ϕ4 − ϕ3, ϕ5 − ϕ4 >
π

3
(ϕ6 − ϕ5) + ϕ7 > π

ϕ8 − ϕ7, ϕ9 − ϕ8, ϕ10 − ϕ9 >
π

3
ϕ6 + ϕ10 < 3π.

However, adding up all seven inequalities in the first three lines contradicts the fourth line, so S4,4
is zero-volume. From Table 1, it follows that S4,4 is a primitive zero-volume tree. �

Now, we exhibit a refinement of Corollary 5.4 which provides a primitive zero-volume tree with
∆(T ) = 4.

Theorem 5.6. The complete 4-quasi-regular tree of height 2 is a primitive zero-volume tree.

To prove this, we will first need two geometric lemmas whose proofs we defer to Appendix B.

Lemma 5.7. Consider a branched polymer with tangency graph S4 such that the center is labelled
as 2 and the leaves are labelled as 1, 3, 4, 5 in counterclockwise order. Then ∠O3O1O5 >

π
3 .

Lemma 5.8. Consider a branched polymer with tangency graph P5 labelled in order. Suppose that
ϕ2, ϕ3, ϕ4 < π. Then ∠O1O3O5 >

π
6 .

Given these two lemmas, we can now prove Theorem 5.6.

Proof of Theorem 5.6. First, observe that all possible connected components of the complete 4-
quasi-regular tree of height 2 must be congruent. This is true for the same reasons as mentioned
in the proof of Theorem 5.5 (a correspondence exists between elements of different connected
components that preserves the shape of the connected component).

Suppose that there exists a branched polymer with this tree as its tangency graph. Consider the
labelling of the graph in Figure 16 and look at the connected component with edges ordered in the
same order as in the diagram.
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1 2

3

4

5

7

8

6

10
11 9

13

14

12

16
1715

Figure 16. Labelling and ordering of the complete 4-quasi-regular tree of height 2.

Observe that the branched polymers induced by {1, 2, 6, 7, 8}, {1, 3, 9, 10, 11}, etc. are all S4.
Thus by Lemma 5.7, we have

∠O6O1O8,∠O9O1O11,∠O12O1O14,∠O15O1O17 >
π

3

when these angles are measured counterclockwise. Additionally observe that the branched polymers
induced by {8, 2, 1, 3, 9}, {11, 3, 1, 4, 12}, etc. satisfy the conditions in Lemma 5.8. It follows by this
lemma that

∠O8O1O9,∠O11O1O12,∠O14O1O15,∠O17O1O6 >
π

6

when these angles are measured counterclockwise. Adding these eight inequalities results in 2π on
both sides of the strict inequality, which is a contradiction. Thus the complete 4-quasi-regular tree
of height 2 is zero-volume.

To show that the tree is a primitive zero-volume tree, it suffices to show that the tree formed by
removing one leaf has positive probability. Figure 17 demonstrates why this is true.

Figure 17. The 4-quasi-regular tree of height 2, upon removing a leaf, no longer remains zero-volume.

Consequently, the 4-quasi-regular tree of height 2 is a primitive zero-volume tree. �

By combining the results in this section, we have the following theorem:

Theorem 5.9. Let m be a positive integer. There exists a primitive zero-volume tree with ∆(T ) =
m if and only if m ∈ {3, 4, 5, 6}.
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Proof. The constructions for m ∈ {4, 5, 6} are provided by Theorems 5.6, 5.5, and 5.1, respectively.
For m = 3, observe that there exists a zero-volume tree with ∆(T ) = 3 by Corollary 5.3. Some
subgraph of this tree must be a primitive zero-volume tree. But this primitive zero-volume tree
cannot have ∆(T ) ≤ 2, so it must have ∆(T ) = 3.

Observe that m ≤ 2 is impossible as the only trees with ∆(T ) ≤ 2 are the path graphs, which
have positive volume. In addition, any tree with ∆(T ) ≥ 7 has S6 as a proper subgraph and hence
cannot be a primitive zero-volume tree. The theorem follows. �

Remark 5.10. In these constructive arguments using angles, the key is understanding the bound-
ary of BPL(T ). Indeed, to prove each of Theorems 5.1, 5.5, and 5.6, the argument essentially
identifies a polymer that “should be” a limit point of BPL(T ) (Figure 18).

Figure 18. This branched polymer “should be” a limit point of BPL(T ) where T is the com-
plete 4-quasi-regular tree of height 2. However, there is no room to “wiggle around” the tangent
disks, suggesting that BPL(T ) is actually empty. This intuitive argument can be formalized by
algebraically describing the lack of space, which is what occurs in the proof of Theorem 5.6.

Remark 5.10 suggests a method for generating zero-volume trees: Let H be a finite subtree of
the infinite triangular lattice graph, and add all neighbors of H not already in H to this tree as
leaves. Then the resulting tree may be zero-volume.

Indeed, this method works when we choose a single vertex as H (resulting in S6), or P2 (resulting
in S4,4), or the X-shaped formation of S4 (resulting in the complete 4-quasi-regular tree of height
2).

However, this method does not work in general. Choosing the V -shaped formation of P3 and
adding the neighbors as in Figure 19 does not generate a zero-volume tree.

Figure 19. The method to generate zero-volume trees fails in this case.
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Appendix A. Trees with diameter at most 3

Using the relations in Corollary 3.5 of Lemma 3.2, it is straightforward to compute the volume
VL(T ) for every tree T with diamT ≤ 3. We will use the previous edge parametrization, defining
some auxiliary variables which will make computation easier.

The only tree with diameter 1 is the trivial graph, which has volume 1. The trees with diameter
2 are Sa for a ≥ 2. In order for Sa to have positive volume, we require a ≤ 5 by Theorem 5.1.

We now compute VL(Sa). Note that all (a − 1)! connected components are identical. Consider
the labelling and connected component such that the center of the star is labelled as 2 and the
leaves labelled as 1, 3, 4, . . . , a+ 1 in counterclockwise order. Then the constraints are that

π

3
< ϕ3, ϕ4 − ϕ3, . . . , ϕa+1 − ϕa, 2π − ϕa+1 <

5π

3
.

Define φ3 = ϕ3 and φk = ϕk − ϕk−1 for k = 4, . . . , a+ 1. Then we require

φ3, . . . , φa+1 >
π

3
and φ3 + · · ·+ φa+1 <

5π

3
.

The (a−1)-dimensional space satisfying these conditions is the interior of a standard (a−1)-simplex

with side length 2π − aπ
3 . Since a standard d-simplex with side length s has volume sd

d! , we deduce
that

VL(Sa)

(a− 1)!
= 2π ·

(2π − aπ
3 )a−1

(a− 1)!

where the factor of 2π comes from ϕ2, so

VL(Sa) = 2π · (2π − aπ

3
)a−1.

Now, we turn our attention to the trees with diameter 3, which are Sa,b for a, b ≥ 1. For Sa,b to
have positive volume, we require a, b ≤ 4 by Theorem 5.1. Furthermore, a = b = 4 is impossible by
Theorem 5.5. Henceforth we assume that 4 ≥ a ≥ b ≥ 1 and b < 4.

We now compute VL(Sa,b). Note that all a!b! connected components are identical. Consider the
labelling and connected component such that the center of the subgraph Sa is labelled as a + 2
and the center of the subgraph Sb is labelled as 2, with the neighbors of vertex a + 2 labelled as
2, a + 3, a + 4, . . . , a + b + 2 in counterclockwise order and the neighbors of vertex 2 labelled as
1, 3, 4, . . . , a+ 1 in counterclockwise order (Figure 20).

a+ 2

2

a+ 3

. . .

a+ b+ 2 1

a+ 1

. . .

Figure 20. Labelling and ordering of Sa,b.
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Then the constraints are that

π

3
< ϕ3, ϕ4 − ϕ3, . . . , ϕa+1 − ϕa <

5π

3
π < (ϕa+2 − ϕa+1) + ϕa+3 < 3π

π

3
< ϕa+4 − ϕa+3, . . . , ϕa+b+2 − ϕa+b+1 <

5π

3
π < ϕa+2 + ϕa+b+2 < 3π.

Define α = ϕa+b+2 − ϕa+3, β = ϕa+1, θ = ϕa+3, and ω = ϕa+2 − ϕa+1. Additionally define
φ3 = ϕ3 and φk = ϕk − ϕk−1 for k = 4, . . . , a, a+ 4, . . . , a+ b+ 1. Suppose that a, b > 1. Then the
constraints become the following conditions:

(1) (a− 1)π3 < α < 4π
3

(2) (b− 1)π3 < β < 4π
3

(3) π
3 < θ < 5π

3 − α
(4) π

3 < ω < 5π
3 − β

(5) π < θ + ω < 3π − α− β
(5’) consequently, α+ β < 2π
(6) φ3, . . . , φa >

π
3

(7) φ3 + · · ·+ φa < α− π
3

(8) φa+4, . . . , φa+b+1 >
π
3

(9) φa+4 + · · ·+ φa+b+1 < β − π
3

Let R be the 2-dimensional region defined by conditions 1, 2, and 5’. For fixed α, β, let R1 be
the region defined by conditions 3, 4, and 5; let R2 be the region defined by conditions 6 and 7; let
R3 be the region defined by conditions 8 and 9. Then the volume of the connected component is

2π ·
∫
R×R1×R2×R3

dV = 2π ·
∫
R

Vol(R1) Vol(R2) Vol(R3) dα dβ.

We can directly compute the three volumes in the integrand. We have that

Vol(R1) =
(7π3 − α− β)2

2
−

(π3 )2

2
− (π − α)2

2
· sgn(π − α)− (π − β)2

2
· sgn(π − β)

where sgn(x) is the signum function. Indeed, this formula can be verified by looking at each of
the cases depending on if α, β are less than or greater than π. Only two cases need to be checked:
α < π, β < π and α < π, β > π, as α > π, β < π is symmetrical to the second case and α > π, β > π
is impossible by condition 5’.

Now, note that R2 and R3 are standard simplexes, so

Vol(R2) =
(α− (a−1)π

3 )a−2

(a− 2)!
and Vol(R3) =

(β − (b−1)π
3 )b−2

(b− 2)!
.

Combining these volumes, we can integrate and thus compute VL(Sa,b) for a, b > 1.
In the case that a > 1 and b = 1, we can instead note that β is forced to be 0 and Vol(R3) = 1,

with the rest of the formula working the same way. When a = b = 1, we have that α = β = 0
and Vol(R2) = Vol(R3) = 1, so the integral instead just requires plugging in (α, β) = (0, 0) to the
formula for Vol(R1).

Thus we can compute VL(T ) whenever diamT ≤ 3. The information is collected in Table 1.

Appendix B. Proofs of Lemmas 5.7 and 5.8

In this appendix, we provide proofs of Lemmas 5.7 and 5.8. We freely apply Corollary 3.5 of
Lemma 3.2 to prove these lemmas.



20 ON THE SPACE OF PLANAR BRANCHED POLYMERS WITH FIXED TANGENCY GRAPH

Proof of Lemma 5.7. Observe that O2 is the circumcenter of 4O1O3O5. By a well-known fact
about circumcenters, ∠O3O2O5 = 2∠O3O1O5. But

∠O3O2O5 = ∠O3O2O4 + ∠O4O2O5 >
π

3
+
π

3
,

so ∠O3O1O5 >
π
5 as desired. �

Proof of Lemma 5.8. For convenience, let α = ϕ2, β = ϕ4, θ = ϕ3, and γ = ∠O1O3O5 (Figure 21).
Without loss of generality, assume that α ≥ β.

O1

O2

O3

O4

O5

α

β
γ

Figure 21. Interior angles of the path.

Then

γ = θ −
(π

2
− α

2

)
−
(
π

2
− β

2

)
= θ +

α+ β

2
− π.

First, observe that if α+ β ≥ 5π
3 or α− β ≥ π

3 , then we are done. Indeed, if the former is true,
then

γ = θ +
α+ β

2
− π > π

3
+

5π

6
− π =

π

6
,

and if the latter is true, then

γ = θ +
α+ β

2
− π > (π − β) +

α+ β

2
− π =

α− β
2
≥ π

6
.

Thus we may assume that α+ β < 5π
3 and α− β < π

3 . We also know that π
3 < β ≤ α < π.

Now, observe that O3O1 = 4 sin
(
α
2

)
and O3O5 = 4 sin

(
β
2

)
by the Law of Cosines. Now, the

Law of Cosines on 4O1O3O5 gives that

(O1O5)
2 = 16 sin2

(α
2

)
+ 16 sin2

(
β

2

)
− 32 sin

(α
2

)
sin

(
β

2

)
cos(γ).

Since O1O5 > 2, this implies that

cos(γ) <
sin2

(
α
2

)
+ sin2

(
β
2

)
− 1

4

2 sin
(
α
2

)
sin
(
β
2

) .

Verify the identity

sin2
(α

2

)
+ sin2

(
β

2

)
− 1

4
−
√

3 · sin
(α

2

)
sin

(
β

2

)
=

(√
3

2
+ cos

(
α+ β

2

))(√
3

2
− cos

(
α− β

2

))
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by applying standard trigonometric identities. Since 0 < α + β < 5π
3 and 0 ≤ α − β < π

3 , the
product on the right side is greater than 0. Then the identity and inequality imply that

sin2
(
α
2

)
+ sin2

(
β
2

)
− 1

4

2 sin
(
α
2

)
sin
(
β
2

) <

√
3

2
,

so cos(γ) <
√
3
2 . This implies that γ > π

6 as desired. �
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