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Abstract

The complexification of a real hyperplane arrangement H determines
a stratification S(0) of the complex numbers. A perverse sheaf is a cochain
complex of sheaves with cohomology locally constant on these strata, sat-
isfying two other conditions. We state an equivalence of categories proven
by Kapranov and Schechtman between perverse sheaves and a certain set
of quiver representations, and explicitly lay out one direction of the cor-
respondence. We categorize the simple objects of the category of quiver
representations for the hyperplane arrangement A1, and find some of these
simple objects for A2.
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1 Introduction

Let H be a real hyperplane arrangement on Rn. This gives us stratification of
Rn, which we can define based on the intersections of various sets of hyperplanes.
These strata also have a naturally induced partial order based on inclusion of
closures.

In the mid-1970’s, Goresky and MacPherson introduced intersection homol-
ogy to study properties of surfaces with singularities. Given a stratification of
the surface, one is able to relate the homology of the entire surface with the
intersection homology of the various strata. Goresky, MacPherson, and Deligne
continued to develop this theory and developed what are now known as perverse
sheaves. See [4] for a more detailed history.

A perverse sheaf on Cn is a cochain complex of sheaves on Cn which satis-
fies a few additional properties, especially regarding its cohomology. Perverse
sheaves are defined with respect to the complexification of our real hyperplane
arrangement H.

Although perverse sheaves are normally very complicated objects, the fol-
lowing theorem of [3] allows us to describe them using linear algebra.

Theorem 1. There exists an equivalence of categories between perverse sheaves
and quiver representations that satisfy the properties of monotonicity, transitiv-
ity, and invertibility.

In this paper, we detail the construction in [3] on how to produce a perverse
sheaf from a double representation. We look at A1 and classify the irreducible
representations, using the equivalence of categories to describe the simple per-
verse sheaves. We also look at A2 and describe the irreducible representations
involving small vector spaces.

1.1 Outline

Section 2 defines quivers, quiver representations, and related concepts. Sections
3-4 discuss hyperplane arrangements and their complexifications, and define the
stratifications of Rn and Cn based on these arrangements. Section 5 discusses
sheaves and other necessary related concepts, and section 6 defines perverse
sheaves.

At this point the most important theorem of [3] is described in section 7. This
regards the equivalence of categories described above. In section 8 we describe
in more detail the functor bringing quiver representations to perverse sheaves
in this equivalence. In section 9, we classify the irreducible representations of
A1 and calculate the corresponding simple objects in the category of perverse
sheaves, and in section 10 we calculate the irreducible representations of A2

with the limitation of two-dimensional vector spaces.
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2 Quiver Representations

A quiver is a directed graph that allows self-loops and multiple edges. A
representation of a quiver Q is a map that associates a vector space Vi with
each vertex i of the quiver, and a linear map Ah : Vi → Vj with each arrow
h : i→ j of the quiver.

A subrepresentation of a representation of Q is a representation that
assigns subspaces V ′i of Vi to each vertex i, and assigns linear maps A′h by
restricting the domain of Ah to V ′i for each h, such that A′hV

′
i ⊂ V ′j for each

h : i→ j. A subrepresentation is called proper if it is not equal to the original
representation.

A representation is irreducible if it has no nonzero proper subrepresenta-
tions.

A homomorphism φ between two representations (Vi, Ah) and (V ′i , A
′
h)

of Q is a collection of linear maps φi : Vi → V ′i such that if h : i → j is an
edge of Q, then φjAh = A′hφi. A homomorphism is an isomorphism if all the
φi are isomorphisms. Two representations are isomorphic if there exists an
isomorphism between them.

3 Hyperplane Arrangements

A hyperplane arrangement is a set of hyperplanes passing through the origin
in a finite-dimensional vector space. It is a real hyperplane arrangement if the
space is Rn, and a complex hyperplane arrangement if the space is Cn. Each
hyperplane is determined by a fixed linear equation.

Let H be a hyperplane arrangement in Rn. A flat of H is something of the
form

L =
⋂
Hi∈S

Hi, S ⊂ H.

Now consider the open part of L, which is

L \
⋃
Hi /∈S

Hi.

The connected components of this are called faces of H. Note that faces of H
can be of any dimension.

The faces of H create a stratification C of Rn. We give C a poset structure by
saying that if A,B ∈ C, then A ≤ B if A ⊂ B. This means that the intersection
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of all the hyperplanes in H is the smallest element of the poset, and faces of
codimension zero are maximal elements.

Each face A ∈ C is assigned a unique sign vector (aH)H∈H, where aH ∈
{+,−, 0} is the sign of A determined by the equation of H.

Given any poset Σ, we can define an operation ? for any a, b ∈ Σ

a ? b =

{
b if a < b,

a otherwise.

We consider {+,−, 0} as a poset with 0 < +, 0 < −, and + and − incompa-
rable. Then if C,D ∈ C with sign vectors (CH)H∈H and (DH)H∈H, we define
the operation ◦ as follows:

C ◦D = (CH ? DH)H∈H.

An ordered triple (A,B,C) of faces in C is called collinear if there exists a
straight line that intersects all three in the given order. In other words, there
must exist a ∈ A, b ∈ B, c ∈ C such that b lies on the line segment [a, c].

A double representation of a stratification C assigns a finite-dimensional
vector space EC to each face C ∈ C, and two maps

γC′C : E′C → EC , δCC′ : EC → E′C

for each C,C ′ ∈ C such that C ′ ≤ C, such that the γC′C form a representation
of the poset (C,≤) and the δCC′ form a representation of the poset (C,≥).
Throughout this paper, the base field will be C. The category of complex
double representations of C will be denoted Rep(2)(C).

4 Complexification

Given a real hyperplane H, its complexification HC is the complex hyperplane
with the same equation.

Given a hyperplane arrangement H in Rn, the complexified arrangement
HC is the arrangement in Cn made up of the complexifications of the hyperplanes
in H.

The complexification LC of a real flat L of H is the intersection of the same
hyperplanes in the complexified hyperplane arrangement:

LC =
⋂
H⊃L

HC.

In the complex stratification S(0), as defined in [3], the strata are the
open parts of the complexified flats:

L◦C = LC\
⋃
H 6⊃L

HC.
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Although we will mostly use S(0) in this paper, we will also define the S(2)

stratification. Here, the strata are of the form iC1 + C2, for C1, C2 ∈ C.
There exists an S(1) stratification, but we will not need it for this paper.

5 Sheaves

Let X be a topological space. A presheaf F of abelian groups on X is a
structure that assigns the following:

1. To each open set U ⊂ X, an abelian group F(U),

2. To each inclusion V ⊂ U of open sets, a restriction map ρUV : F(U) →
F(V ),

satisfying the following conditions:

• F(∅) = 0,

• ρUU = idU ,

• For W ⊂ V ⊂ U open sets, ρUW = ρVW ρUV .

For any U , the elements of F(U) are called sections. If V ⊂ U and s ∈
F(U), ρUV (s) is sometimes denoted as s|V .

A presheaf is called a sheaf if it satisfies the following conditions:

3. If U is an open set, s ∈ F(U), and Vi is an open covering of U such that
s|Vi

= 0∀i, then s = 0.

4. If U is an open set, {Vi} is an open cover of U , and if si ∈ F(Vi) are
such that si|Vi∩Vj

= sj |Vi∩Vj
for all i and j, then there exists an element

s ∈ F(U) such that s|Vi = si for all i.

Condition 3 implies that s in condition 4 is unique, since if s, s′ both satisfy
4, then s− s′ restricts to 0 on all Vi, so it is zero.

A morphism φ : F → G of sheaves consists of a morphism φ(U) : F(U)→
G(U) for each U , such that the φ(U) commute with restriction maps in F and
G. This means that for each V ⊂ U , the following diagram commutes:

F(U) G(U)

F(V ) G(V )

φ(U)

ρUV ρ′UV

φ(V )

Here ρ and ρ′ are the restriction maps in F and G, respectively.
A morphism is an isomorphism if it has a two-sided inverse.
The following proposition is proven in [2].
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Proposition 1. Given a presheaf F , there is a sheaf F+ and a morphism
θ : F → F+ such that for any sheaf G and morphism φ : F → G, there exists a
unique morphism ψ : F+ → G such that φ = ψ ◦ θ. The pair (F+, θ) is unique
up to unique isomorphism.

Here, F+ is called the sheaf associated to the presheaf F .
A sheaf F ′ is called a subsheaf of a sheaf F if the following two conditions

hold:

• For each open set U , F ′(U) ⊂ F(U),

• For all pairs of nested open subsets V ⊂ U , ρ′UV = ρUV |F ′(U).

If F ′ is a subsheaf of F , then the quotient sheaf F/F ′ is the sheaf as-
sociated to the presheaf that assigns F(U)/F ′(U) to each open set U , with
restriction maps induced by restriction maps in F .

Let U ⊂ X be an open set with the subspace topology, and let F be a sheaf
on X. We define the restriction F|U of F to U by letting F|U (V ) = F(V ) for
each open V ⊂ U . The restriction maps in F|U are the same as in F .

Given a group A, the constant sheaf A determined by A is the sheaf
defined as follows. Giving A the discrete topology, we let A(U) be the group
of continuous maps from U into A. If f ∈ A(U), and V ⊂ U is open, then the
restriction map is defined as ρUV f = f |V . If U is connected, then we can see
based on this definition that A(U) is isomorphic to A.

A sheaf F on X is called locally constant if for each p ∈ X, there exists a
neighborhood U of p such that F|U is a constant sheaf on U .

The stalk Fp of F at p ∈ X is defined as the direct limit of the groups F(U)
for all open sets U containing p, under the restriction maps ρ. We can see Fp as
a collection of elements of the form 〈U, s〉, where U is an open set containing p
and s ∈ F(U). Two such elements 〈U1, s1〉 and 〈U2, s2〉 are equal if and only if
there exists an open set V containing p with V ⊂ U1∩U2 such that s1|V = s2|V .

Let f : X → Y be a continuous map of topological spaces. If G is a sheaf
on Y , then we define the inverse image or pullback sheaf f−1G by assigning
f−1G(U) the direct limit

lim
V⊃f(U)

G(V ),

where the direct limit is taken over all open sets V containing f(U). Note that
if X is an open subset of Y and f is the inclusion map, then f−1G = G|X .

Proposition 2. The pullback functor f−1 is exact.

Proof. Sheaf functors are exact if and only if they are exact on the stalks ([2],
page 65). It is known that if p ∈ X, q ∈ Y such that f(p) = q, then (f−1G)p =
Gq. Clearly this implies that f−1 is exact on stalks, so it is exact.
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6 Perverse Sheaves

A cochain complex of sheaves, or just a complex, is a collection F : {Fi}i∈Z
with morphisms di : Fi → Fi+1, such that di+1 ◦ di = 0 for all i. Equivalently,
im(di) ⊂ ker(di+1).

We call ker(di+1)/im(di) the ith cohomology sheaf Hi(F) of a complex
of sheaves.

Let F be a sheaf. If for every stratum C ∈ S(n) and inclusion map i : C →
Cn the sheaf i−1F is locally constant, F is called S(n)-smooth. It is called
S(n)-constructible if it is S(n)-smooth and it has finite-dimensional stalks. A
complex of sheaves is S(n)-smooth or S(n)-constructible if all of its cohomology
sheaves are S(n)-smooth or S(n)-constructible, respectively.

The category Db
S(0)ShCn is a full subcategory of the bounded derived cate-

gory, the definition of which is beyond the scope of this paper. The reader can
consult [6] for more on this. What’s important for us is that an element of this
category is represented by a S(0)-constructible cochain complex of sheaves.

The category of perverse sheaves, Perv(Cn), is defined in [3] as the full
subcategory of Db

S(0)ShCn with the following two conditions:

(P−) For each p the sheaf Hp(F) is supported on a closed complex subspace of
codimension ≥ p.

(P+) If l : Z → X is a locally closed embedding of a smooth analytic sub-
manifold of codimension p, then the sheaf Hq(l!F) = HqZ(F)|Z is zero for
q < p.

Although we haven’t defined the exceptional inverse image functor l!, what’s
important for us is that if Z is open in X, then l! is exactly our inverse image
functor l−1. These two properties give rise to the following fact about perverse
sheaves.

Proposition 3. A perverse sheaf F can have nonzero cohomology on the open
part of the stratification only in degree zero.

Proof. Property (P−) implies that for any p > 0, Hp(F ) is supported on a
closed complex subspace of positive codimension, which means it is zero on the
open part U . Therefore, Hp(F )|U 6= 0 only if p ≤ 0.

If we let Z be the open part of the stratification, then (P+) states that
Hq(l!F) = 0 for q < 0. However, since Z is an open set, l!F is simply the
pullback of the inclusion map from Z to X applied to F . Since this is an exact
functor, it commutes with Hq: l−1Hq(F) = Hq(l−1F). This implies that F
has zero cohomology on the open part in degrees less than zero.

Putting these two facts together, we obtain our desired result.

7 Main Theorem

Theorem 8.1 of [3] states that the category of perverse sheaves on H is equiv-

alent to the full subcategory of Rep(2)(C) of representations with the following
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properties:

• Monotonicity: For any C ′ ≤ C, γC′CδCC′ = IdEC
.

– Because of this, we can define φAB : EA → EB by φAB = γCBδAC ,
for any C ∈ C with C ≤ A,C ≤ B. This is well-defined because for
all C,

γCBδAC = γCBγ0CδC0δAC = γ0BδA0.

Here, 0 denotes the minimal element of C.

• Transitivity: If (A,B,C) is a collinear triple of faces, then φBCφAB =
φAC .

• Invertibility: If C1, C2 are two d-dimensional faces on opposite sides of
the same d− 1-dimensional face, then φC1C2

is an isomorphism.

8 Quiver Representation to Perverse Sheaf

Our goal for this section is to describe the above correspondence in one direction,
from quiver representations to perverse sheaves.

8.1 Linear Algebra Data

Let F be a sheaf on Rn or Cn that is constant on the strata given by the
hyperplane arrangement H. (For Cn we use the S(2) stratification here.) Then
Proposition 1.8 of [3] states that F is uniquely determined by its linear algebra
data, which is defined as follows.

First, for each stratum σ we associate the vector space Fσ of the stalk on
any point of that vector space. (This is well-defined because F is constant on
the strata.) For strata σ′, σ with σ′ ≤ σ, we define a generalization map as
follows.

Take some x′ ∈ σ′, and take a neighborhood U ′ of x′ small enough that
F(U ′) = Fσ′ . Then take x ∈ σ ∩ U ′, and let U ⊂ U ′ be a neighborhood of
X that is small enough that F(U) = Fσ. Then the generalization map γσ′σ is
simply the restriction map ρU ′U .

We will also define the inverse map, to reconstruct the sheaf based on its
linear algebra data. Given an open set U ⊂ X, sections of F(U) are uniquely
determined by their stalks at every point of U . Therefore, in order to determine
the sections of F(U), it is sufficient to determine which stalks are compatible
with each other.

We know as above that there for each point x ∈ U , there should be some
neighborhood U ′ ⊂ U of x such that Fx = F(U ′). Therefore, each stalk corre-
sponds to a section of a small neighborhood of that point. In order for stalks
to be compatible, these sections have to restrict to the same value on their
intersections.
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Trivially, stalks at two points x, x′ ∈ U are compatible if their corresponding
neighborhoods do not intersect. If they do intersect, say that x ∈ σ and x′ ∈ σ′,
where σ′ ≤ σ. Then based on the above calculation, they agree if and only if
x = γσ′σx

′. This condition is sufficient to construct all sections of F(U), so we
are done.

8.2 The Correspondence

We will now describe how to obtain a perverse sheaf given a quiver representa-
tion.

Let Q be a double quiver satisfying the properties in section 7. For each
C ∈ C we will define a sheaf EC(Q) on Cn that is S(2)-smooth. Since the S(2)

strata are contractible, EC(Q) is in fact constant on them, rather than just
locally constant. Therefore, we can define EC(Q) based on its linear algebra
data:

EC(Q)|iC1+D =

{
EC◦D if C1 ≤ C,
0 otherwise.

We now define the generalization maps:

γ
EC(Q)
iC′

1+D
′,iC1+D

= γC◦D′,C◦D, C
′
1 ≤ C1 ≤ C,D′ ≤ D.

We require C ′1 ≤ C1 ≤ C,D′ ≤ D here because we need C ′1 ≤ C1, D
′ ≤ D

in order for iC ′1 +D′ ≤ iC1 +D, and if C1 6≤ C, then EC(Q)|iC1+D is zero and
the generalization map is trivial.

Having defined EC(Q), we now define for any C ′, C ∈ C with C ′ <1 C a
sheaf morphism

δCC′ : EC(Q)→ EC′(Q).

We start by defining the action of δCC′ on stalks of the form iC ′ + D for any
D ∈ C as

δCC′ |iC′+D = γC′K′δKC′ : EC◦D → EC′◦D.

Here, K = C ◦D and K ′ = C ′ ◦D, for convenience.
For any iC ′′+D where C ′′ ≮ C ′, δCC′ must be zero, since E ′C(Q)|iC′′+D = 0.

If C ′′ < C ′, then E ′C(Q)|iC′′+D = E ′C(Q)|iC′+D by definition. The same is true
in EC(Q), so the above definition is sufficient to define δCC′ . This is a sheaf
morphism because the maps of stalks commute with generalization maps ([3],
page 661).

The definition of δCC′ allows us to assemble the following complex:

Θ(Q) =

 ⊕
codim(C)=0

EC(Q)⊗ or(C)
δ−→

⊕
codim(C)=1

EC(Q)⊗ or(C)
δ−→ . . .

δ−→ E0(Q)

 .

Here, or(C) is a one-dimensional orientation vector space. An orientation
of C is defined by an open cover (Ui) and diffeomorphisms φi : Ui ∼= (0, 1)n or
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Ui ∼= (0, 1)n−1×(0, 1] such that φjφ
−1
i : φi(Ui∩Uj)→ φj(Ui∩Uj) has a positive

Jacobian. By picking an orientation, we get an isomorphism or(C) ∼= C. There
are only two possible isomorphisms based on the orientation, which send 1 ∈ C
to additive inverse elements of or(C).

The orientation of C induces an orientation on its boundary, since it should
correspond to the {1} × (0, 1)n−1 of the Ui ∼= (0, 1)n−1 × (0, 1] maps.

For C ′ <1 C, the map from or(C) to or(C ′) is defined by a map C → C,
through the isomorphisms of each space with C. This map is ±Id. It is positive
if the orientation on C induces the same orientation on C ′ as we have chosen;
it is negative if it is the opposite. The reader can consult [5] for more detail on
this.

This definition makes Θ(Q) into a complex. It is shown in [3] that this is a
perverse sheaf.

9 The Arrangement A1

Given the above equivalence of categories, we wish to find the simple objects
of the category of quiver representations, so that we can classify the simple
objects of the category of perverse sheaves. In quiver representations, the simple
objects are the irrreducible representations. We will focus on the simplest case,
that of the hyperplane arrangement A1, and mention some of the irreducible
representations of A2 later.

9.1 Irreducible Representations of A1

The hyperplane arrangement An is an arrangement in n-dimensional space. It
is defined as the intersection in n+ 1-dimensional space of the hyperplane x1 +
· · ·+ xn+1 = 0 with the hyperplane arrangement consisting of the hyperplanes
xi − xj = 0 for every 1 ≤ i < j ≤ n+ 1.

We wish to find the irreducible elements of the full subcategory described
above for the hyperplane arrangement A1. It is clear that A1 is the one-
hyperplane arrangement consisting of the origin in R1. Therefore we have three
vector spaces as defined above, corresponding to the positive reals, the neg-
ative reals, and zero. We will call them E+, E−, and E0, respectively. The
corresponding quiver is represented by the diagram below.

E− E0 E+

δ−0

γ0−

γ0+

δ+0

Monotonicity implies that when C ′ ≤ C, E′C has at least as many dimensions
as EC , since δCC′ is a section of γC′C . For A1, this implies that E0 has at least
as many dimensions as each of E+ and E−. Additionally, invertibility implies
that E+ and E− have the same number of dimensions.
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We denote by 0—1—0 the representation where E+, E− = 0 and E0 is one-
dimensional. It is clear that this is the only nonzero irreducible representation
where E+, E− = 0. It is represented more completely by the following diagram.

0 C 0

Assume that E+, E− 6= 0. Then φ+−φ−+ is an automorphism of E+, since
φ+− and φ−+ are isomorphisms by invertibility. Since E+ is a complex vector
space, this automorphism has an eigenvector v+. Then v+ induces a subrepre-
sentation with E′+, E

′
− one-dimensional and E′0 either one- or two-dimensional.

Therefore, the only irreducible representations of A1 with nonnzero E+, E− have
dimensions 1—1—1 or 1—2—1.

Assume E+, E− are one-dimensional. If E0 is one-dimensional, then mono-
tonicity implies that the representation is isomorphic to assigning every map to
the identity map on C. This implies that there is only one class of irreducible
representations in the 1—1—1 case, which is shown below.

C C C
Id

Id

Id

Id

If E0 is two-dimensional, the automorphism φ−+φ+− : E+ → E+ need not
be the identity map on C. We will show that the image of 1 under this automor-
phism uniquely identifies an isomorphism class of irreducible representations.

Clearly, any two representations with different values of φ−+φ+−(1) cannot
be isomorphic, because an isomorphism of representations holds under composi-
tions of maps. Therefore, we are left with showing that any two representations
with the same value are isomorphic.

Let (E+, E0, E−) be an irreducible representation ofA1 with E0 two-dimensional.
Fix a basis element 1+ of E+, and let δ+01+ = v1, the first basis element of E0.
Define 1− ∈ E− as γ0−v1.

We know that δ−01− is not a multiple of v1, because then E0 would be
one-dimensional. Therefore, let v2 = δ−01−. Now we can define c = γ0+v2.

Clearly whenever c is the same between two representations, the above bases
provide an isomorphism. Therefore, we have proven that c uniquely determines
the isomorphism class. Additionally, this construction makes it clear that c can
be any nonzero complex number.

We can see by simple calculation that any subrepresentation of such a rep-
resentation which contains a nonzero element of E+ or E− cannot be a proper
representation. Therefore, the only way for there to be a proper subrepresenta-
tion is if ker γ0+ = ker γ0−, so we have a subrepresentation of 0—1—0. Using
the above bases, ker γ0+ = span(−c, 1), and ker γ0+ = span(−1, 1). Therefore,
the representation is irreducible if and only if c 6= 1.

We now know that the 1—2—1 case has one isomorphism class per element
of C× other than 1, which is shown below.
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C C2 C
1 7→ (1, 0)

c← [ (0, 1)

(1, 0) 7→ 1

(0, 1)← [ 1

9.2 Fundamental Group Representations

Theorem 4.3.5 of [1] states that the simple objects in the category of perverse
sheaves, or equivalently quiver representations, are parametrized by pairs of
the form (S, V ), where S is one of the S(0) strata and V is an irreducible
representation of the fundamental group of S.

The S(0) stratification of C under A1 has two strata, 0 and C×. The funda-
mental group of 0 is the trivial group, which we will also denote by 0, the only
irreducible representation of which is the trivial representation. This gives the
pair that we will denote (0, 1) for simplicity.

The fundamental group of C× is Z. The irreducible complex representations
of Z biject with C×, based on the image of 1, since Hom(C,C) ∼= C. Therefore,
this gives us the pair (C×, c) for any c ∈ C×.

Given a simple object in the category of perverse sheaves, we can identify
which pair it corresponds to as follows. We know from section 6 that a perverse
sheaf only has nonzero cohomology on the open part in one place. We identify
this cohomology sheaf. If there is no such cohomology sheaf, then the perverse
sheaf corresponds to (0, 0).

If there is such a cohomology sheaf, it will have C in the open part. We
consider the operator on C given by traversing a loop around the origin. This
operator will correspond to an element of C×, which will determine our repre-
sentation of Z.

9.3 Corresponding Perverse Sheaves

We will use the functor Θ as described in section 8.2 to construct the perverse
sheaves that correspond to the irreducible representations calculated in section
9.1. We will also calculate the corresponding S(0) strata and fundamental group
representations, as discussed in section 9.2.

We will continue to denote the strata using the notation iC+D; for example,
the top left is i(+) + (−), and the positive x axis is i(0) + (+). Here, the real
strata are always in parentheses, to distinguish from operations.

In order to construct the corresponding perverse sheaves, we need to assign
an orientation to each of the strata of A1. We will do this as follows:

+

The orientation of the positive reals and the negative reals is represented by
an arrow in the direction from 0 to 1 under the map described in section 8.2.
The orientation of 0 is the orientation of a point, because it’s zero-dimensional.
Here, the orientation of the negative reals induces the + orientation on 0, while
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the orientation of the positive reals induces the opposite. Therefore, the map
from the negative reals to zero is δ−0⊗ Id, while the map from the positive reals
is δ+0 ⊗ -Id.

We will begin with the most simple case, 0—1—0. It is clear that E+(A1) =
E−(A1) = 0, because + ◦D = +,− ◦D = − for all D. Additionally, we can see
that E0(A1) is zero only at i(0) + (0), because 0 ◦D = D for all D. Therefore,
the corresponding perverse sheaf is a complex of all zeros, except for one sheaf
that is C at the origin, as below.

· · · 0 C 00

0

0

00

0 0

0 · · ·

The only cohomology sheaf which is nonzero anywhere is in degree 1. There,
the kernel is the whole sheaf, and the image of the previous map is zero, so the
cohomology is the whole sheaf as well. Since this sheaf is zero on the open part,
the above perverse sheaf corresponds to (0, 1).

We now move on to the representation 1—1—1. As always, E+(A1) is zero
at any stratum of the form i(−) + D. In any other case, E+(A1)|iC+D = C,
because E+ = E0 = E− = C. Symmetrically, E−(A1)|iC+D = C everywhere
except at C = +, where it is 0. For both of these, it is simple to calculate the
generalization maps, which are just Id when from C to C and 0 otherwise.

Simple calculation shows that in this case E0(A1)|i(0)+D = C as always, and
E0(A1)|iC+D = 0 if C 6= 0.

Therefore, we can see that the perverse sheaf here is nonzero in two places.
It is therefore just a map δ : E+ ⊕ E− → E0. The domain is a sheaf with stalks
of C off of the reals, and stalks of C2 on the reals. The range is as described
above.

It is clear that δ is zero on the stalks at points off of the real line. On the
real line, based on the above orientations, it is the map (c1, c2) 7→ −c1+c2. This
completes the description for the quiver representation 1—1—1, represented by
the following diagram.

· · · C2 C2C2

C

C

CC

C C

d0
C CC

0

0

00

0 0

· · ·

By simple calculation, we can see that the only nonzero cohomology sheaf
is in degree zero. The image of the previous map is zero, so the cohomology is
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equal to the kernel of the displayed map. We can see that this is the following
sheaf.

C(1, 1) C(1, 1)C(1, 1)

C

C

CC

C C

We wish to calculate the image of 1 in C when we start (arbitrarily) in the
top left and go counterclockwise around the origin.

We know that γ−1i(0)+(−),i(+)+(−)(1) = {(1, 1)} in the above cohomology sheaf,

because γi(0)+(−),i(+)+(−) is a restriction of the same map in E+(A1)⊕ E−(A1).
By similar reasoning, we know that γi(0)+(−),i(−)+(−) sends (1, 1) to 1. Repeat-
edly using these steps yields that the image of 1 is after going around the origin
is 1, so we have the trivial representation of Z. Therefore, this perverse sheaf
corresponds to (C×, 1).

We will now consider 1—2—1. The analysis for E+ and E− is the same here
as in the previous case, and we obtain the same results. For E0, it is again only
nonzero on the reals. Here, since 0 ◦ D = D, we get E0|i(0)+D = ED, and the
generalization maps are the same maps as in the original representation.

Therefore, we get a similar complex as in the previous case. The dimensions
of the stalks are displayed below.

· · · C2 C2C2

C

C

CC

C C

d0
C2 CC

0

0

00

0 0

· · ·

The sheaf in degree 0 has along the x-axis three two-dimensional vector
spaces, each equal to E+ ⊕ E−. At i(0) + (−), the sheaf in degree 1 has E−.
We can therefore see that d0|i(0)+(−) = −φ+−⊕ Id, with the minus sign coming
from orientation. Using the basis from section 9.1, we can see that this is the
map (a1, a2) 7→ −ca1 + a2.

Using similar reasoning, we can see that d0|i(0)+(0) is the map (a1, a2) 7→
−(a1, a2), and d0|i(0)+(+) is the map (a1, a2) 7→ −a1 + a2.

Therefore, the cohomology in degree zero is as below.
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C(1, 1) C(1, 1)C(1, c)

C

C

CC

C C

Again, we wish to calculate the image of 1 in i(+) + (−) after going coun-
terclockwise around the origin. By similar reasoning as in the previous case,
1 ∈ i(+) + (−) goes to (1, c) ∈ i(0) + (−), and γi(0)+(−),i(−)+(−) brings (1, c) to
c ∈ i(−) + (−). The rest of the maps are the same as in 1—1—1, so the image
of 1 is c. Therefore, this perverse sheaf coresponds to the pair (C×, c).

This completes the description of the perverse sheaf in this case, so we are
done.

10 Irreducible Representations of A2

We will now discuss the irreducible representations of A2 that use vector spaces
of dimension of most 2.

As a subset of the hyperplane x+y+z = 0 in R3, the hyperplane arrangement
A2 looks like the diagram below.

x− y = 0

x− z = 0

x− z = 0

We will represent the poset of A2 using the following quiver. Throughout
this section, we will refer to the faces of A2 using these labels.
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O

A

B

CD

E

F

G

H

I

J

K

L

In the above diagram, the double-sided arrows represent an arrow in each
direction, as below.

=
δ

γ

We know by invertibility that the codimension zero faces, A through F , all
have the same dimension in the representation. Also by invertibility, we know
each codimension one face has the same dimension as its opposite (K/H, G/J ,
and L/I) . By monotonicity, O has at least as many dimensions as any of these.

We will organize by the dimension of the representation on the open part of
A2. We will only consider dimension zero and one below. This is because if the
open part has dimension two, then everything has dimension two, because of our
restriction. However, monotonicity implies that such a representation consists
entirely of isomorphisms for every map. Therefore, there is a subrepresentation
of all Cs, so it is not irreducible.

10.1 Open Part Dimension Zero

We will first consider the case that the representation is zero on the open part.
If no codimension 1 faces have nonzero representations, then the only possible
nonzero irreducible representation has C for the origin, and zero everywhere
else.

Now assume that at least one codimension 1 face has a nonzero representa-
tion, say L. We wish to show that if an irreducible representation is zero on the
open part, then it can only be nonzero along one line.

Assume for contradiction that L and I are nonzero, and G and J are also
nonzero. By transitivity, φLG = φLAφAG = 0, by the same reasoning φLJ = 0,
φIG = 0, and φIJ = 0. By definition, φLG = δLOγOG, so im(δLO) ⊂ ker(γOG).
Again, we can similarly conclude that im(δLO) ⊂ ker(γOJ), im(δIO) ⊂ ker(γOG),
and im(δIO) ⊂ ker(γOJ).

Because of the above result, the representation induced by EL is zero on G,
contradicting that the original representation was irreducible.

Since the representation can only be nonzero on one hyperplane, this case is
reduced to the A1 case. Thus, we have the following three cases:
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C

0

0

00

0

0

0

0

0

0

0

0

C

0

0

00

0

0

0

0

C
0

0

C

C2

0

0

00

0

0

0

0

C
0

0

C

Recall that we arbitrarily chose L and I to be nonzero. Therefore, we also
have the same three cases on either of the other two hyperplanes. As with A1,
the third of these cases has one isomorphism class per element of C× not equal
to 1.

10.2 Open Part Dimension One

We will begin by considering the case that an irreducible representation is C at
every vertex other than the origin, as in the diagram below. We will show that
it is isomorphic to the representation with C everywhere and the identity for
every map.

Cn

C

C

CC

C

C

C

C

C

C

C

C

Despite our restriction, n here can be any positive integer; we will show that
it must be 1 if the representation is irreducible.

First, we wish to show that on the above conditions, we can choose a basis
of each one-dimensional space such that all the maps not involving the origin
are the identity map. Choosing a basis for a one-dimensional vector space is
just choosing what value to call 1, so we will use this terminology.

Lemma 1. Let C,C ′ be two faces with the same dimension representation such
that C ′ <1 C. Then γC′C and δCC′ are inverses of each other.

Proof. Monotonicity implies that δCC′ is a section of γC′C . Since the two spaces
are the same dimension, γC′C = δ−1CC′ .

Fix some value 1A in A. We will define B 3 1B = φAB1A, and 1C through
1L likewise. We will show that the image in O of each of these is the same,
which will imply by monotonicity that we can take all the maps around the
outside to be the identity.
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By transitivity, we know that φAB = φGBφAG = γGBδAG. Therefore,

δBG1B = δBGγGBδAG1A = δAG1A.

This implies that

δAO1A = δGOδAG1A = δGOδBG1B = δBO1B .

This implies that the image in O of 1A through 1L is the same, as desired. If
the representation is irreducible, then it must be one-dimensional at the origin,
because otherwise there is a proper subrepresentation that is one-dimensional
everywhere. As above, this implies that every map is the identity on C.

C

C

C

CC

C

C

C

C

C

C

C

C

We will now consider the case that some of the codimension 1 spaces have
two-dimensional representations. We will split this case up by how many of the
hyperplanes have two-dimensional representations.

If only one hyperplane has a two-dimensional representation, then we have
the following diagram.

Cn

C

C

CC

C

C

C

C

C2

C

C

C2

Again, despite our restriction, n here can be anything; we will show that it
must be 2.

Note that there are two sets of five one-dimensional spaces that are separated
by the central hyperplane. By Lemma 1, in each set, all maps between these
five spaces are isomorphisms. Therefore, we can assume all these maps are the
identity map on C.

If the images in EL of 1A and 1F are constant multiples of each other, then
all of 1A through 1F have the same image in EO up to a constant factor. Since
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δIO is injective, this implies that the images in EI of 1C and 1D are consant
multiples of each other. Thus, we can see that 1A induces a subrepresentation
isomorphic to the representation with C at every vertex. Therefore, for the
representation to be irreducible, 1A and 1F have to have different images in EL,
and by the same reasoning 1C and 1D have to have different images in EI .

This implies that the images of EL and EI in EO are the sum of the images
in EO of 1A and 1F . This means that if n > 2, then there is a proper subrepre-
sentaion with EO two-dimensional. Therefore, n = 2 is the only option, so we
have the following representation.

C2

C

C

CC

C

C

C

C

C2

C

C

C2

By identifying each side of the hyperplane as above, and the three C2s with
each other, we can see that this reduces to the A1 case. Therefore, there is
exactly one isomorphism class here per element of C× not equal to 1.

We will now consider the case that more than one of the hyperplanes have
two-dimensional representations. This case looks like the diagram below, for
n = 1, 2.

C2

C

C

CC

C

C

C2

C2

Cn
C2

C2

Cn

We wish to show that no such representation exists.
Consider the map φGH . By definition,

φGH = γOHδGO.

However, by transitivity,
φGH = δBHγGB .

By Lemma 1, the right side of the first equation above is an isomorphism.
However, since EG is two-dimensional and EB is one-dimensional, γGB has a
nonempty kernel. This is a contradiction, so no such representation exists.
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