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Abstract

We establish a sharp Sobolev inequality on bounded domians with remainder term in weak
Lq norm for a wide range of q. Through this, we can get a lower bound for the exponent in the
quantitative sharp Sobolev Inequality.

The key step in the present paper is to show that for radial functions with certain compact
support, the distance between the functional and the extremals of the Sobolev Inequality can
be bounded from below in terms of weak Lq norm of the functional.
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1 Introduction and Main Theorem

1.1 Introduction

The sharp form of Sobolev Inequality in Rn, proved by Talenti in [1], tells us that, for any
n ≥ 2, 1 < p < n, the following inequality holds for every u ∈W 1,p (Rn):

S (p, n) ‖u‖p∗ ≤ ‖∇u‖p (1)

Here, p∗ is the number such that 1
p∗ = 1

p −
1
n , that is, p∗ = np

n−p and,

S (p, n) :=
√
πn1/p

(
n− p
p− 1

)(p−1)/p(Γ (n/p) Γ (1 + n− n/p)
Γ (1 + n/2) Γ (n)

)1/n

(2)

is the sharp Sobolev constant.
As proved by Brothers and Ziemer in [2], the extremals to (1) is the family {ga,b,x0}a∈R,b>0,x0∈Rn

defined by

ga,b,x0 (x) := a
(

1 + (b|x− x0|)p
′
)(p−n)/p

(3)

Here, p′ is number such that 1
p + 1

p′ = 1, that is, p′ = p
p−1 .

It is noteworthy that the extremals are not compactly supported. And therefore it is natural
to consider what remainder terms can be introduced to (1) when the integral is taken over certain
bounded domain. Some of the most important results and techniques in this field are in [3], [4] [5],
and [6].

The following theorem is proved by Egnell, et al. in [6]:

Theorem 1.1. For open, bounded Ω ⊂ Rn, 1 < p < n, q < n(p−1)
n−p , there exists a constant

A = A (p, q, n,Ω) > 0, such that for every u ∈W 1,p
0 (Ω) the following holds :

‖∇u‖pp − Sp‖u‖
p
p∗ ≥ A‖u‖

p
q (4)

Moreover, such inequality does not hold when q = n(p−1)
n−p .

Here are some side-notes on our notations:
1. Unless otherwise noted, S = S (p, n) is the sharp Sobolev constant as in (2), where p, n will

refer to the proper p, n as in the context.
2. We will refer to the value n(p−1)

n−p as q? (n, p). When the values of p, n are clear, we will write
it as q? for short.

3. When the domain of u is clear under context, we will write ‖u‖Ls(domain of u) as ‖u‖s.
Alternatively, it can be taken as: we are always defining u to be 0 wherever it is undefined and by
‖u‖s we mean ‖u‖Ls(Rn). Also, we will write ‖ · ‖Lp(Ω) as ‖ · ‖p(Ω) for short.

4. Because the present paper is focused on radial and radially decreasing functions, we will call
radial and radially decreasing as radially decreasing for short and write ga,b,0 as ga,b.

5. ωn will refer to the volume of the unit n-ball.

In the case p = 2, the endpoint inequality of Theorem 1.1 was proved to hold in the weak sense by
Brezis and Lieb in [3].
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Theorem 1.2. For open, bounded Ω ⊂ Rn, q = q? (n, 2), there exists a constant B > 0, depending
only on n,Ω, such that the following holds for every u ∈ H1

0 (Ω):

‖∇u‖22 − S2‖u‖22∗ ≥ B‖u‖2q,w (5)

where ‖u‖q,w denotes the weak Lq norm defined as:

‖u‖q,w := sup
A
|A|−1/q′

∫
A
|u (x) |dx (6)

with A taken over all A ⊂ Rn of finite measure.

Unfortunately, the generalization of Theorem 1.2 to other p, to the best of our knowledge, is
still open. We will rephrase it as the following:

Conjecture 1.3. For open, bounded Ω ⊂ Rn, 1 < p < n, q = q? (n, p), there exists a constant
D > 0, depending only on n, p,Ω, such that the following holds for every u ∈W 1,p

0 (Ω):

‖∇u‖pp − S2‖u‖pp∗ ≥ D‖u‖
p
q,w (7)

The motivation for this project was Conjecture 1.3 and our attempt was to use the results
proved by Cianchi et al. in [7], which are the following two theorems:

Definition 1.4. Fix n ≥ 2 and 1 < p < n, then for every radially decreasing u ∈ W 1,p (Rn), we
define

λ (u) :=


inf
a,b

{
‖u− ga,b‖p

∗

p∗

‖u‖p
∗

p∗
: ‖ga,b‖p∗ = ‖u‖p∗

}
if u 6= 0

0 if u = 0

Theorem 1.5. For n ≥ 2, 1 < p < n, there exists κ, β > 0, such that the following holds for every
radially decreasing u ∈W 1,p (Rn):

S‖u‖p∗
(

1 + κλ (u)β
)
≤ ‖∇u‖p (8)

Moreover, (8) holds for some (β, κ) with β = 3 + 4p− 3p+1
n . When p = 2, β = 2/2∗ = (n− 2) /n is

such a β as proved by Bianchi and Egnell in [8].

With a slight abuse of notation, we will define λ for general u:

Definition 1.6. Fix n ≥ 2 and 1 < p < n, then for every u ∈W 1,p (Rn), we define

λ (u) :=


inf
a,b,x0

{
‖u− ga,b,x0‖

p∗

p∗

‖u‖p
∗

p∗
: ‖ga,b,x0‖p∗ = ‖u‖p∗

}
if u 6= 0

0 if u = 0
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Theorem 1.7. For n ≥ 2, 1 < p < n, there exists κ, α > 0, such that the following holds for every
u ∈W 1,p (Rn):

S‖u‖p∗ (1 + κλ (u)α) ≤ ‖∇u‖p (9)

When p = 2, α = 2/2∗ = (n− 2) /n is such a α, as proved by Bianchi and Egnell in [8]

Observe that the sharp α in Theorem 1.7 is greater than or equal to the sharp β in Theorem
1.5.

Though we did not solve Conjecture 1.3 completely, we found an inequality similar to (7) for a wide
range of q, which could imply Conjecture 1.3 if we can improve the β in Theorem 1.5 to p/p∗.

Reversely, we will prove that (7) does not hold for any q > q? and use the Main Theorem to
conclude that p/p∗ is a lower bound for the β in Theorem 1.5.

1.2 Main Theorem and the organization of the present paper

Main Theorem. For open, bounded Ω ⊂ Rn, 1 < p < n, 1 < q < p∗, if β is a value for which (8)
holds, then there exists θ = θ (n, p, q, β) > 0 and C = C (θ, p, q, n,Ω, β) > 0 such that the following
inequality holds for every u ∈W 1,p (Ω),

‖∇u‖p ≥ S‖u‖p∗ + C‖u‖θq,w‖u‖1−θp∗ (10)

More specifically, we can take θ as follows:

θ =


βp∗ if q ≤ n(p−1)

n−p
β

(p− 1)
(

1
q −

1
p∗

) otherwise

As a corollary, we have that

‖∇u‖pp ≥ Sp‖u‖
p
p∗ + C ′(Ω)‖u‖θq,w‖u‖

p−θ
p∗ (11)

We will first focus on radially decreasing functions with compact support and estimate λ (u)
(as in Definition 1.4) in terms of ‖u‖q,w from below. The key in this step is to analyze the relation
between ‖g‖q,w and ‖g‖p∗((Rn−Ω)), where the latter can be controlled in terms of ‖u− g‖p∗ . Then,
we will combine this upper bound on ‖u‖q,w with Theorem 1.5 to obtain the Main Theorem. After
that, we will prove by direct computation that (7) does not hold for any q > q?. And finally, by
combining the previous step with our Main Theorem, we will conclude that p/p∗ is a lower bound
for the β in Theorem 1.5.
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2 Proof of the Main Theorem

2.1 Preliminaries

For given p, q, n,Ω, we first fix κ and β for which (8) holds.
By extending u to be 0 outside of Ω and applying the rearrangement inequality (for example,

see [1]), we may assume WLOG that u is radially decreasing, nonnegative and is not constantly
zero, and Ω is a ball.

Rescaling and normalization arguments allow us to assume Ω = B (0, 1) and ‖u‖p∗ = 1. Note
that, even though (10) is not scale-invariant, C is changed only up to a constant independent of u.

Now, for such u, (10) is equivalent to

‖∇u‖p ≥ S + C‖u‖θq,w (12)

Because ‖u‖q,w ≤ ‖u‖p∗ |Ω|
1
q
− 1
p∗ = |Ω|

1
q
− 1
p∗ and (8) holds, for any ε > 0, we may take the C in (12)

to be small enough such that (12) would hold for all u ∈ W 1,p
0 (Ω) with λ (u) ≥ ε. Therefore, we

will assume WLOG that λ (u) < ε, where ε > 0 is a small constant to be determined.

2.2 Bound ‖u‖q,w using λ (u)

Claim 2.1. λ (u) > 0

Proof. We argue by contradiction.
By the definition of λ, if λ(u) = 0, then there exists a sequence of extremals {gm} such that the

Lp
∗
-norm of each gm = gam,bm is 1, and gm → u in Lp

∗
. Note that we have

‖u− gm‖p∗ ≥ ‖χ(Rn−Ω)gm‖p∗ (13)

and that ‖gam,bm‖p∗ = 1 implies that we can write gam,bm as a one-parameter family of functions:
gbm . we have ‖χ(Rn−Ω)gm‖p∗ → 0, which implies bm →∞. However, when bm →∞, gbm point-wise
converges to 0 but u cannot be 0. Hence, gm does not converge to u. Therefore, λ (u) is always
positive

Consequently, we can take an extremal gb such that ‖u− gb‖p
∗

p∗ ≤ 2λ (u).
Then, we have the following bound on ‖u‖q,w:

‖u‖q,w ≤ ‖u− gb‖q + ‖gb‖q,w ≤ C1λ (u)
1
p∗ + ‖gb‖q,w (14)

where the first inequality holds by the triangle inequality and the fact that weak Lq-norm is bounded
by Lq-norm. And the second inequality holds by Hölder’s inequality.

Let us first calculate ‖gb‖q,w in terms of b. As gb is radially decreasing, we know that for all A ⊂ Rn
with the same measure,

∫
A |gb|dx is maximized when A is a ball centered at the origin. Therefore,

sup
A⊂Rn,|A|<∞

|A|−1/q′
∫
A
|gb|dx = sup

A=B(0,R)
|A|−1/q′

∫
A
|gb|dx
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Hence,

‖gb‖q,w = sup
R

(ωnR
n)
− 1
q′

∫ R

0
a
(

1 + (br)p
′
)1−n

p
rn−1dr

= sup
R

(ωnR
n)
− 1
q′
a

bn

∫ bR

0

(
1 + rp

′
)1−n

p
rn−1dr

∼ sup
Q

(
Q

b

)− n
q′ a

bn

∫ Q

0

(
1 + rp

′
)1−n

p
rn−1dr

∼ b
n
q′−n+ n

p∗ sup
Q

(Q)
− n
q′

∫ Q

0

(
1 + rp

′
)1−n

p
rn−1dr (15)

∼ b
n
q′−n+ n

p∗

= b
n
q′−

n
(p∗)′ (16)

For the supremum in (15), we have the following two estimations:

lim
Q→0

(Q)
− n
q′

∫ Q

0

(
1 + rp

′
)1−n

p
rn−1dr ∼ lim

A=B(0,Q),Q→0
|A|−1/q′

∫
A
|gb|dx

≤ lim
A=B(0,Q),Q→0

(

∫
A
|gb|qdx)1/q = 0

and

lim
Q→∞

(Q)
− n
q′

∫ Q

0

(
1 + rp

′
)1−n

p
rn−1dr ≤ lim

Q→∞
(Q)

− n
q′

∫ ∞
0

(
1 + rp

′
)1−n

p
rn−1dr (17)

because the integral
∫∞

0

(
1 + rp

′
)1−n

p
rn−1dr converges, the right hand side of (17) is 0.

Therefore, the supremum in (15) is equal to the supremum of the same expression over a certain
compact interval. Hence, the supremum is attained at some Q = Q0 and thus it is finite. Moreover,
we can see that

sup
A⊂Rn,|A|<∞

|A|−1/q′
∫
A
|gb|dx =

(
|A|−1/q′

∫
A
|gb|dx

)∣∣∣∣
A=B(0,Q0/b)

(18)

Then, it is natural to estimate b in terms of λ (u):

2λ (u) ≥ ‖u− gb‖p
∗

p∗ ≥ ‖χ
C
Ωgb‖

p∗

p∗

= nωn

∫ ∞
1

ap
∗
(

1 + (br)p
′
)−n

rn−1dr

= nωn
ap
∗

bn

∫ ∞
b

(
1 + rp

′
)−n

rn−1dr

Note that ‖gb‖p∗ = 1 implies
ap
∗ ∼ bn (19)

Hence, ∫ ∞
b

(
1 + rp

′
)−n

rn−1dr . λ (u) (20)
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As λ (u) < ε for ε chosen to be sufficiently small, we may assume that b > 1. Thus,∫ ∞
b

(2r)−np
′
rn−1dr ≤

∫ ∞
b

(
1 + rp

′
)−n

rn−1dr . λ (u)

This implies ∫ ∞
b

rn−1−np′dr . λ (u) ,

which is to say,

b & λ (u)
1

n−np′ (21)

Combining (21) and (16), we now have:

‖gb‖q,w . λ (u)
1

1−p′

(
1
q′−

1

p∗′

)
= λ (u)

(p−1)
(

1
q
− 1
p∗

)
(22)

Moreover, by (14) and (22),

‖u‖q,w . λ (u)
1
p∗ + λ (u)

(p−1)
(

1
q
− 1
p∗

)
. λ (u)

min{ 1
p∗ ,(p−1)

(
1
q
− 1
p∗

)
}

(23)

Denote the above exponent min{ 1
p∗ , (p− 1)

(
1
q −

1
p∗

)
} by γ, then ‖u‖

β
γ
q,w . λβ. Hence, taking θ = β

γ

and we can deduce (10) from (8).
This finishes our proof of the Main Theorem.

Note that if (8) holds for β = p/p∗, we can take q = q?. Then, β
γ = p, which is to say (11) holds

for q = q?, θ = p, which coincides with (7). That is, to prove Conjecture 1.3 holds, we only need to
show that (8) holds for β = p/p∗. As this value is achieved when p = 2, our Main Theorem offers
a new proof for Theorem 1.2.

3 Application: A lower bound for β

In this section, we will show that (7) does not hold for any q > q?, which will be rephrased as the
following lemma. And then, we will apply our Main Theorem to show that p/p∗ is a lower bound
for the β in Theorem 1.5.

Lemma 3.1. There exists some open, bounded Ω ⊂ Rn such that for any C > 0, there exist some
u ∈W 1,p

0 Ω such that:
‖∇u‖pp − Sp‖u‖

p
p∗ < C‖u‖pq,w

Proof. We will prove by construction. Take Ω = B (0, 1) and consider the family {ub}b>0 defined
by ub (x) := (gb (x)− gb (1))+, where gb is the unique extremal ga,b such that ‖ga,b‖p∗ = 1 and for
r ∈ R, we define gb (r) = gb (rv) where v ∈ Rn is arbitrary unit vector. As gb is radial, there is no
ambiguity on the definition of gb (r). And we claim that this family {ub} will be a counter-example
to (7).

Let us first compute ‖u‖pq,w. As remarked in (18), the supremum in expression (6) is attained
when A = B(0, Q0/b) where Q0 is a fixed constant. Therefore, we can fix some sufficiently big

M > 0 such that B(0, Q0/b) ⊂ B(0, 1/3) and 1 + bp
′ ≥ 2p

′
(

1 +
(
b
3

)p′)
holds for every b > M .
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Then,

gb (r) ≥ gb (1/3) = a

(
1 +

(
b

3

)p′)(p−n)/p

≥ 2(n−p)/(p−1)gb (1) for all r ≤ 1/3

and hence gb (x)− gb (1) & gb (x) for any |x| ≤ 1/3. Thus we know, as b→∞,

‖ub‖q,w & ‖gb‖q,w

As |ub (x) | ≤ |gb (x) | point-wise, we have ‖ub‖q,w ≤ ‖gb‖q,w. Therefore,

‖ub‖q,w ∼ ‖gb‖q,w (24)

By (16) and (24), we can deduce that as b → ∞, ‖ub‖pq,w ∼ b
p
(
n
q′−

n
(p∗)′

)
, which is asymptotically

greater than b
p
(

n
(q?)′−

n
(p∗)′

)
∼ ‖ub‖pq?,w ∼ b(p−n)/(p−1).

In fact, for this family of u, as b→∞, we have

‖∇ub‖p − S‖ub‖p∗ ∼ ‖ub‖pq?,w (25)

but for our purpose, it suffices to prove

‖∇ub‖p − S‖ub‖p∗ . ‖ub‖pq?,w (26)

Using the fact that ‖ub‖q?,w . ‖ub‖p∗ ≤ ‖gb‖q∗,w = 1, we can derive from (26) that

‖∇ub‖pp − Sp‖ub‖
p
p∗ . ‖ub‖

p
q?,w

And the lemma will follow immediately.
We now compute the left hand side of (26):

‖∇ub‖p − S‖ub‖p∗
= ‖∇gb‖p(Ω) − S‖gb − gb (1) ‖p∗(Ω)

= ‖∇gb‖p(Ω) − S‖gb‖p∗(Ω) +
(
S‖gb‖p∗(Ω) − S‖gb − gb (1) ‖p∗(Ω)

)
=
(
‖∇gb‖p(Rn) − S‖gb‖p∗(Rn)

)
+ S

(
‖gb‖p∗(Rn) − ‖gb‖p∗(Ω)

)
−
(
‖∇gb‖p(Rn) − ‖∇gb‖p(Ω)

)
+
(
S‖gb‖p∗(Ω) − S‖gb − gb (1) ‖p∗(Ω)

)
= S

(
1− ‖gb‖p∗(Ω)

)︸ ︷︷ ︸
Ib

−
(
‖∇gb‖p(Rn) − ‖∇gb‖p(Ω)

)︸ ︷︷ ︸
Jb

+S
(
‖gb‖p∗(Ω) − ‖gb − gb (1) ‖p∗(Ω)

)︸ ︷︷ ︸
δb

(27)

For Ib, we have

‖gb‖p∗(Ω) =

(
nωn

∫ 1

0
ap
∗
(

1 + (br)p
′
)−n

rn−1dr

)1/p

=

(
nωn

ap
∗

bn

∫ b

0

(
1 + rp

′
)−n

rn−1dr

)1/p
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Using the fact that 1 = ‖gb‖p∗(Rn) =

(
nωn

ap
∗

bn

∫∞
0

(
1 + rp

′
)−n

rn−1dr

)1/p

, we have, for b sufficiently

large, that

1− ‖gb‖p∗(Ω) = 1−


∫ b

0

(
1 + rp

′
)−n

rn−1dr∫∞
0 (1 + rp′)

−n
rn−1dr


1/p

= 1−

1−

∫∞
b

(
1 + rp

′
)−n

rn−1dr∫∞
0 (1 + rp′)

−n
rn−1dr


1/p

∼ 1

p


∫∞
b

(
1 + rp

′
)−n

rn−1dr∫∞
0 (1 + rp′)

−n
rn−1dr

 (28)

∼
∫ ∞
b

(
1 + rp

′
)−n

rn−1dr

∼
∫ ∞
b

r−p
′n+n−1dr

∼ b−n/(p−1) (29)

where the comparability in the third line follows from

lim
B→0

1− (1−B)α

B/α
= 1 for any α > 0

Because we will bound Jb by −Jb ≤ 0, estimating it is irrelevant to our goal. However, interested
readers may take the similar approach as in the estimation for Ib to derive that

Jb ∼ b−n/(p−1)+p′ (30)

And finally, as for δb, note that by the triangle inequality of Lp
∗

norm, we have

0 < δb ≤ ‖gb (1) ‖p∗(Ω) ∼ gb (1) = a
(

1 + bp
′
)(p−n)/p

∼ ab(p−n)/(p−1)

as shown in (19), a ∼ bn/p∗ = b(n−p)/p, and hence:

0 < δb . b
p−n
p(p−1) → 0 as b→∞ (31)

Therefore,

‖gb‖p
∗

p∗(Ω) − ‖gb − gb (1) ‖p
∗

p∗(Ω) = ‖gb‖p
∗

p∗(Ω) −
(
‖gb‖p∗(Ω) − δb

)p∗
≥ p∗

(
‖gb‖p∗(Ω) − δb

)p∗−1
δb (32)

where the inequality holds because for any A > ε > 0, α > 1,

Aα − (A− ε)α =

∫ A

A−ε

dxα

dx

∣∣∣∣
x=y

dy ∈
[
α (A− ε)α−1 ε, αAα−1ε

]
9



The upper bound in the above line will be used later.
Since the limit of ‖gb‖p∗(Ω) − δb as b→∞ is 1− 0 = 1, we know from (32) that

δb . ‖gb‖p
∗

p∗(Ω) − ‖gb − gb (1) ‖p
∗

p∗(Ω) (33)

The right hand side of (33) is:

nωn

∫ 1

0

((
a
(

1 + (br)p
′
)(p−n)/p

)p∗
−
(
a
(

1 + (br)p
′
)(p−n)/p

− a
(

1 + bp
′
)(p−n)/p

)p∗)
rn−1dr

≤ nωn
∫ 1

0

(
p∗
(
a
(

1 + (br)p
′
)(p−n)/p

)p∗−1

a
(

1 + bp
′
)(p−n)/p

)
rn−1dr

∼ ap∗
(

1 + bp
′
)(p−n)/p

∫ 1

0

(
1 + (br)p

′
) p−n

p
(p∗−1)

rn−1dr

= ap
∗
(

1 + bp
′
)(p−n)/p 1

bn

∫ b

0

(
1 + rp

′
) p−n

p
(p∗−1)

rn−1dr

≤ ap∗
(

1 + bp
′
)(p−n)/p 1

bn

∫ ∞
0

(
1 + rp

′
) p−n

p
(p∗−1)

rn−1dr (34)

.
(

1 + bp
′
)(p−n)/p

(35)

∼ bp
′ p−n
p = b(p−n)/(p−1) (36)

We can go from (34) to (35) as ap
∗ ∼ bn (see (19)) and the integral converges by a simple test.

Combining (36), (30), and (28), we have

‖∇ub‖p − S‖ub‖p∗ . b(p−n)/(p−1)

as desired.

Corollary 3.2. For 0 < β < p/p∗, there is no κ such that (8) holds.

Proof. Assume to the contrary that (8) holds for some β0 < p/p∗.

By taking q = p∗p(p−1)
p∗β0+p(p−1) ∈ (q?, p∗), which is the value such that θ = β1

(p−1)
(

1
q
− 1
p∗

) = p and

applying the Main Theorem, we have (11) holds for this q, which contradicts Lemma 3.1.

Hence, p/p∗ is a lower bound for the β in Theorem 1.5, as well as the α in Theorem 1.7.
In particular, we can conclude that when p = 2, the sharp exponent β in Theorem 1.5 and the

sharp exponent α in Theorem 1.7 are both 2/2∗ = (n− 2) /n.

4 Further Questions

As remarked earlier, the Main Theorem can yield Conjecture 1.3 if (8) holds for β = p/p∗. And we
know this is the smallest β possible. Therefore, it is natural to conjecture that p/p∗ is the sharp
exponent.

Conjecture 4.1. β = p/p∗ is the sharp exponent in Theorem 1.5.
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Conjecture 4.2. α = p/p∗ is the sharp exponent in Theorem 1.7.

And one can also ask if the converse is true. That is:

Question. Assuming that Conjecture 1.3 is true, can we conclude that (8) holds for β = p/p∗?
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