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Abstract

In this paper, we analyze the general properties of the Jacquet-
Shalika method. This method has applications to topics such as a
different proof of the Prime Number Theorem. Specifically, we look
at the constant terms of Eisenstein series twisted by Maass forms over
arbitrary proper parabolic subgroups. We then discuss a general frame-
work for applying the Jacquet-Shalika method to the non-vanishing of
certain functions, and we specialize to certain examples.

1 Introduction

The Prime Number Theorem (PNT) is a theorem in analytic number theory
that states the number of primes less than n is asymptotically equal to n

logn
as n→∞ [7]. In the Appendix we will prove the PNT can be deduced from
the following fact.

Proposition 1. The Riemann zeta function ζ(s) does not vanish on the
line <(s) = 1.

There are several known proofs of Proposition 1, including one involving
Merten’s lemma [7, Lemma 16.4]. There is also a very interesting proof
using the tools of modular forms and Eisenstein series. This proof was first
outlined by Jacquet and Shalika in [4] and relies on the computation of the
constant term of an Eisenstein series over SL2. In this paper, we will explain
how to generalize this method to SLn for n ≥ 2.

1.1 Organization of the Paper

Section 2 will discuss preliminaries, including notation and definitions to be
used throughout the paper. Section 3 will carry out the actual computation
of the constant terms in a general fashion. Finally, Section 4 will give some
special examples and applications of our formula.
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2 Preliminaries

2.1 L-functions

The zeta function is an example of an L-function.

Definition 1. An L-function is a series L(s) =
∑∞

n=1
an
ns that admits:

• An Euler product, i.e. a factorization
∏
p fp(p

−s) for some functions
fp

• A meromorphic continuation to the entire complex plane

• A functional equation Λ(s) = εΛ(1−s) for some ε and Λ(s) = F (s)L(s)
for some function F .

The zeta function is just the L-function when we take an = 1 for all n.

2.2 Eisenstein series

Definition 2. Let H be the upper half plane, i.e. those complex numbers
x+ yi with y > 0.

Definition 3. The standard Eisenstein series over H is

Es(z) =
1

2

∑
(m,n)=1

ys

|mz + n|2s
. (1)

The following expansion is well-known, see e.g. [3].

Proposition 2. Es(z) has a Fourier expansion

Es(z) = ys + φ(s)y1−s +
2πs
√
y

Γ(s)ζ(2s)

∑
n≥1

σs− 1
2
(n)Ks− 1

2
(2πn|y|)e2πix. (2)

where φ(s) =
√
π

Γ(s− 1
2

)ζ(2s−1)

Γ(s)ζ(2s) .
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2.3 Proof of Proposition 1

We will now prove Proposition 1. First, a general criterion that is stated in
[2].

Proposition 3. Let 〈f, g〉 =
∫
Gk\GA

f(x)g(x) dx be the Petersson inner
product. With this inner product, cuspidal Maass forms are orthogonal to
Eisenstein series.

Proof of Proposition 1. Suppose ζ(1 + iy) = 0. Since ζ(z) = ζ(z) we have
ζ(1 − iy) = 0. Then Es(z)ζ(2s) has constant Fourier term equal to zero
for s = 1+iy

2 , which means Es is a cuspidal form. Since cuspidal forms
are orthogonal to Eisenstein series, we must have 〈Es(z), Es(z)〉 = 0. This
forces Es(z) = 0, which is a contradiction since the non-constant terms do
not vanish for sufficiently large y.

This proof can generalize and forms the basis of the Jacquet-Shalika
method [4]. In the rest of the paper we will outline how to apply the Jacquet-
Shalika method in general.

2.4 Adeles

We will be using the adelic framework of modular forms.

Definition 4. The adele group A over a field k = Q is the set of all
sequences (x∞;x2, x3, x5, x7, . . . ) where x∞ ∈ R, xp ∈ Qp for all primes p,
and xp ∈ Zp for all but finitely many primes p.

The rationals are diagonally embedded into A by x = (x;x, x, x, . . . ).

2.5 Definition of Maass form

Let K be the maximal compact subgroup of GA, and let k = Q.

Definition 5. An adelic Maass form is a function f : Gk\GA/K → C
such that f is an eigenfunction of the invariant differential operators.

We will be considering adelic Maass forms that are also eigenfunctions
of the spherical Hecke algebra H◦.

Definition 6. For a prime p, the spherical Hecke algebra H◦p is the space
of locally constant C-valued functions on GL(2,Q) that are Kp bi-invariant,
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i.e. Φ(kgk′) = Φ(g) for k, k′ ∈ Kp, g ∈ G(Qp). The spherical Hecke algebra
is the restricted direct product

H◦ =
′⊗

p≤∞
H◦p. (3)

which is the unit for all but finitely many primes p. The action of H◦ on a
function f is

T ∗ f(g) =

∫
GLA

T (h)f(gh)dh. (4)

2.6 Weyl group

Definition 7. The Weyl group W of G = SLn is the set of equivalence
classes of matrices in SLn with entries +1, 0,−1 such that there is exactly
one nonzero entry in each row and each column. Two matrices are equivalent
if by replacing each element by its absolute value we get the same matrix.

It is clear that W is in bijective correspondence with permutations of
[n] = {1, 2, . . . , n} and in fact we will associate the permutation σ with the
equivalence class in W with the property that aij is nonzero exactly when
j = σ(i). The following lemma is easy to verify.

Lemma 1. If A = {aij} and B = {bij} are related by B = w−1Aw, then
bσ(i)σ(j) = ±aij, with + sign if i = j.

2.7 Parabolic subgroups

Definition 8. Let λ = (λ1, λ2, . . . , λr) be an ordered partition of n = λ1 +
λ2 + · · ·+ λr. Then for 1 ≤ k ≤ n, we define gr λ(k) as the smallest integer
s ≥ 1 such that λ1 + λ2 + · · ·+ λs ≥ k. In that case, we say k is in group s
of λ.

Definition 9. Call a subgroup H of G free at position (i, j) if some element
of H is nonzero at (i, j). Otherwise, we say H is zero at (i, j).

Definition 10. The (proper) parabolic subgroup Pλ of rank r associated
to an ordered partition λ of n is defined as the group of invertible matrices
that is free at (i, j) if and only if gr λ(i) ≤ gr λ(j). Also define gr Pλ(k) =
gr λ(k), and say k is in the s-th P -group where s = gr P (k). When the
context is clear, we omit the subscript λ. A proper parabolic subgroup is a
parabolic subgroup not equal to G.
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A special parabolic subgroup is the Borel subgroup B associated to
(1, 1, . . . , 1), consisting of all upper triangular invertible matrices. Also the
whole group G is just a parabolic subgroup associated to (n).

Definition 11. The unipotent radical N(P ) of a parabolic subgroup P is
those matrices in P whose (i, j) entry is δi,j if gr P (i) = gr P (j).

Definition 12. The block form M(P ) of a parabolic subgroup P is defined
as the group of invertible matrices that is free if and only if gr P (i) = gr P (j).
Let Mk be the λk × λk submatrix formed from the rows and columns with
indices in the k-th P -group.

Definition 13. We define the compact subgroup K(P ) to be the embedding
of K(λ1)×K(λ2)× · · · ×K(λr) in M(P ).

We have the Levi decomposition P = N(P )M(P ) for any parabolic
subgroup P , and in general we have the Langlands decomposition G =
N(P )M(P )K(P ). Note also thatN(P ) normalizesM(P ), i.e. mN(P )m−1 =
N(P ) for any m ∈M(P ).

Definition 14. A cuspidal Maass form is a Maass form f such that

IP =

∫
Nk\NA

f(ng)dn = 0 (5)

for all unipotent radicals N(P ) of proper parabolic subgroups of G.

In fact, it only suffices to verify this for a special type of parabolic sub-
group.

Definition 15. A maximal parabolic subgroup is a parabolic subgroup of
rank 2.

Proposition 4. If IP = 0 for all maximal parabolic subgroups P then f is
cuspidal.

Proof. For any parabolic P , there is a maximal parabolic Q that contains P .
This means N = N(P ) ⊃ N(Q). Let N ′ be the subgroup of N that is unity
along the diagonal and zero at the free (non-diagonal) indices of N(Q). (In
a sense, N ′ is the complement of N(Q) with respect to N). Then∫

Nk\NA

φ(ng)dn =

∫
N ′k\N

′
A

∫
Nk(Q)\NA(Q)

φ(n1n2g)dn1dn2 = 0 (6)

since the inner integral vanishes.
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Now we are ready to define Maass forms on parabolic subgroups.

Definition 16. A Maass form on Pλ with λ = (λ1, λ2, . . . , λr) is a function
f : Pk\PA such that f(p) =

∏r
i=1 φi(Mi), where each φi is a Maass form on

SL(λi).

2.8 Parabolic maps

The terminology in this section is non-standard but will simplify the expo-
sition.

Definition 17. A parabolic subgroup map, or group map, is a permutation
of [n]. Let P,Q be arbitrary parabolic subgroups. A proper group map
from P to Q is a group map w such that i > j and gr P (i) = gr P (j) implies
w(i) > w(j), and also w(i) > w(j) and grQ(w(i)) = grQ(w(j)) implies
i > j.

Definition 18. A P -preserving group map is a group map from P to P
such that gr P (i) = gr P (j) implies gr P (w(i)) = gr P (w(j)).

2.9 Characters

Let Z be scalar multiples of the identity in G. For a sequence of complex
numbers s = (s1, s2, . . . , sr) satisfying p1s1 + p2s2 + · · · + prsr = 0, define
the character χs : NAMkZ\PA by χs(m) =

∏r
i=1 |det(Mi)|si for m ∈MA.

2.10 Twisted Eisenstein series

Definition 19. An Eisenstein series twisted by a Maass form φ on parabolic
subgroup P is given by

EP (g, φ, s) =
∑
Pk\Gk

φ(γg)χs(γg). (7)

2.11 Modular function

When integrating over a region R controlled by a variable r, we would
sometimes like to make the substitution r → grg−1, for some g. The extra
multiplicative factor this substitution creates is called the modular function,
δ(R, g).
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2.12 Previous results

Jacquet and Shalika were the first to obtain a non-vanishing result via look-
ing at constant terms of Eisenstein series. Langlands [5] developed this
method further and computed the constant term where P and Q are two
maximal parabolics. In this paper, we will look at general parabolics P,Q
and provide a formula for the constant term. Specifically, we will prove:

Theorem 1. Let W ′ = W (P,Q) be defined as in Section 3.2. Then for each
choice of w, there exist subgroups M+ of M = M(Q) and N− of N = N(Q)
such that for some functions Mφ(w, s) that depend only on φ,w, s and for
all g ∈ B, we have∫
Nk\NA

EP (g, φ, s)dn =
∑
w∈W ′

Mφ(w, s)
∑

β∈M+
k \Mk

δ(N−, βg)χs(wβgw
−1)φ(wβgw−1).

(8)

Remark 1. Because the LHS is right K-invariant, knowing the values for
g ∈ B allows us to determine the values for g ∈ P .

3 Constant Term Calculations

Let P,Q be parabolic subgroups of G, and let f(g) = φ(g)χs(g), where φ is
a Maass form on P . We will evaluate the constant term of EP (g, φ, s) over
Q. Recall EP (g, φ, s) =

∑
γ∈Pk\Gk f(γg). Let N be the unipotent radical of

Q. Let WP = W ∩ P and WQ = W ∩Q.∫
Nk\NA

∑
γ∈Pk\Gk

f(γng)dn =

∫
Nk\NA

∑
w∈WP \W/WQ

∑
γ∈(w−1Pkw∩Qk)\Qk

f(wγng)dn

(9)

=
∑

w∈WP \W/WQ

∫
Nk\NA

∑
γ∈(w−1Pkw∩Qk)\Qk)

f(wγng)dn

(10)

=
∑

w∈WP \W/WQ

∫
Nk\NA

∑
γ∈(w−1Pkw∩Qk)\Qk)

f(wnγg)dn.

(11)

An explanation of why is as follows.
Recall the Bruhat decomposition Gk = BkWBk where W is the Weyl

group. Since Bk ⊂ Pk and Bk ⊂ Qk, we have Gk = PkWQk, hence Gk can
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be decomposed into double cosets PkwQk for w ∈ W . In fact, we have the
disjoint union

G =
⊔

w∈WP \W/W )Q

PkwQk.

Thus, the summation over Pk\G can be written as a double summation,
one over Pk\G/Qk and the other over Pk\PkwQk. The set Pk\G/Qk is
isomorphic to WP \W/WQ, while the second set Pk\PkwQk is isomorphic to
w · (w−1Pkw ∩Qk)\Qk.

In the second step, we change the order of summation. We are allowed
to do so if we assume the choice of w and the integration Nk\NA are inde-
pendent.

In the third step, we replace n by γ−1nγ. Since γ ∈ Qk, the change of
variables is uni-modular, i.e. no extra multiplicative factors are introduced.

3.1 Weyl group double cosets

Now we provide a new characterization of WP \W/WQ. Let P,Q be associ-
ated to λ = (λ1, λ2, . . . , λr), µ = (µ1, µ2, . . . , µs) respectively.

Proposition 5. (a) The double cosets of WP \W/WQ are in bijective corre-
spondence with r× s non-negative integer matrices whose i-th row sums
to λi and j-th column sums to µj via the map

ρ : WPwWQ → {aij = number of i-th P -group elements mapped to

j-th Q-group elements under w} (12)

(b) Each double coset of WP \W/WQ contains an element that is a proper
group map from P to Q.

Proof. (a) Well-defined: The elements in WP are P -preserving and the ele-
ments inWQ areQ-preserving. These operations clearly leave aij unchanged.

Injective: let w1, w2 be such that ρ(w1) = ρ(w2). For a fixed i and w let
gij(w) be the image of the i-th P -block under w intersected with the j-th
Q-block. Then since gij(w1) has the same cardinality as gij(w2), there is a
bijection between gij(w1) and gij(w2). Since this analysis works for all i, j,
we see there exists an element w of WQ such that gij(w1) = gij(w2w). Now
perform a similar process to find an element w′ of WP such that w1 = w′w2w.

Surjective: assign w(1), w(2), . . . , w(n) in order. The choice for each w(i)
is unique because w is proper and ρ(w) is given. Note that this construction
also proves (b).
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3.2 Evaluating Constant Terms

Let ρ be the bijection defined in (12). Since φ is a cusp form, we are able
to cancel many terms in the expansion (9). Let

I(w) =

∫
Nk\NA

∑
β∈(w−1Pkw∩Qk)\Qk

f(wnβg)dn. (13)

=
∑

β∈(w−1Pkw∩Qk)\Qk

∫
Nk\NA

f(wnβg)dn (14)

Here we change the order of integration and summation, assuming that
the integration and summation are independent.

Proposition 6. We have I(w) = 0 whenever some row in ρ(w) contains
two (or more) nonzero elements.

Proof. Let row ι contain two or more nonzero elements. First, by Proposi-
tion 5 we may assume w is a proper group map. Then∫

Nk\NA

f(wnβg)dn =

∫
Nk\NA

f(wnw−1wβg)dn. (15)

Let ρ(w) = {aij}, and let N ′ be the subgroup of G with 1’s on the diagonal
and zeroes everywhere else except M(P )i, which is the unipotent subgroup
of the parabolic associated to λ = (aι1, aι2, . . . , aιs). If (i, j) represents a free
index of N ′, then grQ(w(i)) < grQ(w(j)), so (i, j) is a free index of wNw−1.
Hence, N ′ is a subgroup of wNw−1. Let N ′′ be a subgroup of wNw−1 that
is unity on the main diagonal and zero at all the non-diagonal free indices
of N ′. We know χs is left-invariant on N ′. Hence we can factor the integral∫

Nk\NA

f(wnw−1wβg)dn

=

∫
N ′′k \N

′′
A

χs(n1wβg)

∫
N ′k\N

′
A

φ(n2n1wβg)dn2dn1 = 0. (16)

Hence, since φi is cuspidal, the inner integral must vanish, so we have I(w) =
0.

Corollary 1. We have I(w) = 0 unless the partition associated to P refines
the partition associated to Q, i.e. P is formed from Q by successively merging
two numbers in the partition. (For instance, (1, 1, 2, 2, 3) refines (3, 3, 3).)

9



3.3 Nonzero terms 3 CONSTANT TERM CALCULATIONS

Proof. If I(w) 6= 0, then every row in ρ(w) contains exactly one nonzero
element, which implies every µj is the sum of one or more of the λi.

Let W (P,Q) be the set of w ∈ W such that every row in ρ(w) contains
exactly one nonzero element.

3.3 Nonzero terms

We will now assume I(w) 6= 0. The computation we want is

I(w) =
∑

γ∈N+
k \Nk

∑
β∈M+

k \Mk

∫
Nk\NA

f(wnγβg)dn (17)

=
∑

β∈M+
k \Mk

∫
N+
k \NA

f(wnβg)dn (18)

=
∑

β∈M+
k \Mk

∫
N−A

f(wnβg)dn (19)

=
∑

β∈M+
k \Mk

Jw(βg), (20)

where

Jw(g) =

∫
N−A

f(wng)dn (21)

=

∫
N−A

δ(N−, g)f(wgn)dn (22)

=

∫
N−A

δ(N−, g)f((wgw−1)wn)dn (23)

= δ(N−, g)χs(wgw
−1)

∫
N−A

φ((wgw−1)wn)χs(wn)dn. (24)

We will justify each step. First, we may assume w is a proper group
map.

Definition 20. Call (i, j) positive if i < j, w−1(i) < w−1(j), and grQ(i) 6=
grQ(j). Call (i, j) negative if i > j, w−1(i) < w−1(j), and grQ(i) 6= grQ(j).
Let N+ be the subgroup of N that is free on the positive elements (and zero
on the negative elements), and N− be the subgroup of N that is free on the
negative elements (and zero on the positive elements). Clearly, N = N+N−.
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Definition 21. Let M+ be the subgroup of M that is free at the positions
(i, j) such that gr P (w−1(i)) ≤ gr P (w−1(j)).

Lemma 2. We have w−1Pkw ∩Qk = N+
k M

+
k .

Proof. Let (i, j) be a position that is free in both w−1Pkw and Qk. Then
(w−1(i), w−1(j)) is free in Pk, so gr P (w−1(i)) ≤ gr P (w−1(j)). Also (i, j) is
free in Qk, so grQ(i) ≤ grQ(j). Now if grQ(i) = grQ(j) then (i, j) is free
in M+. If grQ(i) < grQ(j) then i < j, and the fact that gr P (w−1(i)) ≤
gr P (w−1(j)) and w being proper implies w−1(i) < w−1(j). This means (i, j)
is free in N+. Hence (i, j) is free in N+

k M
+
k . This proves w−1Pkw ∩ Qk ⊂

N+
k M

+
k .

For the reverse inclusion, N+
k M

+
k ⊂ NkMk = Qk is obvious. If (i, j) is

free in N+
k , then w−1(i) < w−1(j), so (i, j) is free in w−1Pkw. If (i, j) is free

in M+
k , then gr P (w−1(i)) ≤ gr P (w−1(j)), which also implies (i, j) is free in

w−1Pkw. This completes the proof of the lemma.

Equation (18) depends on the following Lemma.

Lemma 3. Every element in (w−1Pkw ∩Qk)\Qk is the semidirect product
of N+

k \Nk and M+
k \Mk.

Proof. First, since Q = NM , every q ∈ (w−1Pkw ∩ Qk)\Qk is expressible
as nm for some n ∈ N+

k and m ∈ M+
k . To prove uniqueness, suppose

N+
k n1M

+
k m1 = N+

k n2M
+
k m2 for some n1, n2 ∈ Nk and m1,m2 ∈Mk. Then

n−1
2 n′n1 = m′m2m

−1
1 m′′ for some n′ ∈ N+

k and m′,m′′ ∈ M+
k . The left-

hand side is in Nk and the right-hand side is in Mk, so since Nk∩Mk = {I},
both sides are the identity. This immediately proves N+

k n1 = N+
k n2 and

M+
k m1 = M+

k m2, as desired.

Note that (19) is a standard unfolding argument. Equation (20) uses
the fact that f(wng) is constant on N+

k \N
+
A (since wn′w−1 ∈ N(P ) for

n′ ∈ N+
K) to factor the integral

∫
N+
k \N

+
A

1 dn out, which we may assume

equals 1. Equation (23) uses the fact that ng ∈ Q, so ng = g1g2n
′ for some

g1 ∈ N+
A , g2 ∈ MA(Q), and n′ ∈ N−A . The change of variables n → n′

introduces an extra factor δ(N−, g), and also φ(g1g2n) = φ(g2n).
Equation (24) depends on the multiplicativity of χs and the fact that

wgw−1 ∈ P , which follows from g being upper triangular and in M(Q). To
simplify further, we need the following Lemma.

Lemma 4. Let g ∈ P . The function F (g, φ, s) =
∫
N−A

φ(gwn)χs(wn)dn can

be expressed as φ(g)Mφ(w, s) for some function M depending on φ, w, and
s.

11
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Proof. The analysis presented here generalizes Section 5 of [5]. Since φ is
left-N(P ) invariant, we may assume g ∈ M(P ). Use the Langlands de-
composition to write gwn = n(gwn)m(gwn)k(gwn), where n ∈ N(P ),m ∈
M(P ), k ∈ K(P ). Since g ∈ M(P ) and since both φ and χs are left N(P )
and right-K invariant, we get

F (g, φ, s) =

∫
N−A

φ(gm(wn))χs(m(wn))dn (25)

=

∫
GLA(λ1)×GLA(λ2)×···×GLA(λr)

φ(gm)G(w, s, φ,m)dm (26)

=

∫
GLA(λ1)

∫
GLA(λ2)

· · ·
∫
GLA(λr)

(27)

r∏
i=1

φi(gimi) ·G(w, s, φ,m1,m2, . . . ,mr)dm1dm2 . . . dmr, (28)

where we used the map n → m(wn) to effect a change of variables, which
introduces a new bi-K-invariant function G.

Consider the integral over GLA(λ1), holding m2,m3, . . . ,mr fixed. We
immediately recognize∫

GLA(λ1)
φ1(g1m1)G(m1,m2, . . . ,mr)dm1 (29)

as the action of a Hecke operator T1 on φ1. Since φ1 is an eigenfunction
of T1, we can replace (29) with G1(w, s, φ,m2,m3, . . . ,mr)φ1(g1) for some
function G1 that notably does not depend on g. We can repeat this process
with GLA(λ2), using G1 instead of G. This process obviously being iterable,
we finally end up with

F (g, φ, s) = Gr(w, s, φ)φ1(g1)φ2(g2) . . . φr(gr). (30)

The conclusion follows immediately.

Remark 2. Take g = 1 to obtain Mφ(w, s) = 1
φ(1)

∫
N−A

φ(wn)χs(wn).

Putting all of our contributions together we get

IP =
∑
w∈W ′

Mφ(s)
∑

β∈M+
k \Mk

δ(βg)χs(wβgw
−1)φ(wβgw−1). (31)
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4 Applications

4.1 Non-vanishing results

Theorem 1 allows one to systematically apply the Jacquet-Shalika method
for Eisenstein series twisted by Maass forms over a parabolic P . Our goal is
to show EP (φ, g, s) is a cusp form, which contradicts Proposition 3. First,
by Proposition 4 it suffices to consider Q being maximal parabolic. Next,
by Corollary 1 it suffices to consider Q such that P refines Q. Thus, we have
significantly narrowed down our choice of Q. Finally, for each such Q, we
only need to consider w ∈ W (P,Q), which is much smaller than the entire
Weyl group. It is also pretty easy to list the elements in W (P,Q) as they
correspond to matrices with fixed row and column sums.

In summary, we get only a few parabolics Q with IQ 6= 0, and even for
these Q, we have IQ is the sum of only a few terms. Then we can multiply
EP be a common denominator to make it holomorphic at most values of
s. By plugging in a special value of s at E∗P we get a non-vanishing result,
since it would be a contradiction if all of the constant terms were zero.

4.2 Examples

The classical example of SL2 is instructive. In this case, both P and Q
are associated to (1, 1). Since |W (P,Q)| = 2, we predict two terms in the
constant term expansion, which is exactly what happens.

Now consider P associated to (2, 1). We only need to test Q = (2, 1) and
Q = (1, 2). For each case, we have |W (P,Q)| = 1, so each nonzero constant
term has exactly one element. This agrees with Proposition 10.11.2 in [3].
In fact, if we evaluate these two constant terms and clear denominators,
we obtain a non-vanishing result about certain L-functions, such as that in
Section 10.12 in [3].

We may also extend the Jacquet-Shalika method to non-maximal parabolic
subgroups. As an example, consider P = (n − 2, 1, 1). Then if IQ 6= 0 and
Q is maximal parabolic, then we must have Q = (n−1, 1) or Q = (n−2, 2).
In the first case, we get a sum of two terms (since |W (P,Q)| = 2); in the
second case, we get a single term. If we clear the denominators of the three
terms, we get a completed Eisenstein series that cannot vanish on (n− 1, 1)
and (n− 2, 2) simultaneously. This may lead to a new non-vanishing result.
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5 APPENDIX

5 Appendix

In this Appendix, we will show how Proposition 1 proves the PNT. The
analysis here is taken from [7].

Definition 22. Let ϑ(x) =
∑

p≤x log p, Φ(s) =
∑

p p
−s log p, and H(t) =

ϑ(et)e−t − 1.

Lemma 5. Φ(s) − 1
s−1 extends to a meromorphic function on <(s) > 1

2
which is holomorphic on <(s) ≥ 1.

Proof. It is well known that ζ(s) − 1
s−1 is entire, so ζ(s) is meromorphic,

with a simple pole at s = 1. By our assumption, ζ(s) has no zeroes on

<(s) ≥ 1, so the logarithmic derivative ζ′(s)
ζ(s) has only a simple pole at s = 1

with residue −1. Thus

−ζ ′(s)
ζ(s)

= (− log ζ(s))′ =
∑
p

log p

1− ps
= Φ(s) +

∑
p

log p

ps(ps − 1)
. (32)

Since the sum is locally uniformly and absolutely convergent for <(s) > 1
2 ,

it is a holomorphic function for such s. Thus, we must have Φ(s) − 1
s−1

is a meromorphic function on <(s) > 1
2 and holomorphic on <(s) ≥ 1, as

desired.

This immediately implies Φ(s + 1) − 1
s and (LH)(s) = Φ(s+1)

s+1 − 1
s are

meromorphic functions that are holomorphic on <(s) ≥ 0. Now we need the
following theorem due to Newman [6]

Proposition 7. Let f : R≥0 → R be a bounded piecewise continuous func-
tion, and suppose its Laplace transform extends to a holomorphic function
g(s) on <(s) ≥ 0. Then

∫∞
0 f(t)dt converges and equals g(0).

We finally need an analytic criterion:

Proposition 8. Let f : R≥1 → R be a non-decreasing function. If
∫∞

1
f(x)−x
x2

dx

converges, then f(x) ∼ x, i.e. limx→∞
f(x)
x exists and equals 1.

Proof of PNT. We have that
∫∞

0 H(t)dt =
∫∞

0 ϑ(et)e−t − 1dt converges by

Proposition 7. By change of variables, we get
∫∞

1
ϑ(x)−x
x2

dx converges. This
implies by Proposition 8 that ϑ(x) ∼ x, which is equivalent to PNT.
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