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Abstract. In Roger Howe’s 1989 paper [5], Howe introduces the notion of a dual pair of
Lie subalgebras – a pair (g1, g2) of reductive Lie subalgebras of a Lie algebra g such that
g1 and g2 are each other’s centralizers in g. This notion has a natural analog for alge-
braic groups; namely, a dual pair of subgroups is a pair (G1, G2) of reductive subgroups
of an algebraic group G such that G1 and G2 are each other’s centralizers in G. This pa-
per presents substantial progress towards classifying the dual pairs of the complex classical
groups (GL(n,C), SL(n,C), Sp(2n,C), O(n,C), and SO(n,C)) and their projective coun-
terparts (PGL(n,C), PSp(2n,C), PO(n,C), PSO(n,C)). The classification of dual pairs
in Sp(2n,C) already exists in the literature (see [6, Chapter 2]) and follows easily from
Howe’s analysis in [5]; the classifications of dual pairs in GL(n,C) and O(n,C) are also
likely known, but an explicit treatment is lacking. In this paper, we provide a straightfor-
ward presentation of the classifications of dual pairs in GL(n,C), Sp(2n,C), and O(n,C)
using basic techniques from representation theory. Additionally, we classify the dual pairs
in SL(n,C) and SO(n,C), and present partial progress towards classifying the dual pairs in
PGL(n,C) and PSp(2n,C).

1. Introduction

Let g be a Lie algebra with reductive Lie subalgebras g1 and g2. If g1 is the centralizer
of g2 in g and g2 is the centralizer of g1 in g, then (g1, g2) is said to be a dual pair of Lie
subalgebras in g. This notion of duality was introduced by Roger Howe in his seminal 1989
paper [5], and has a natural analog for algebraic groups:

Definition 1.1 ([5]). A pair (G1, G2) of reductive subgroups of an algebraic group G form
a dual pair of subgroups (or simply a dual pair) in G if CG(G1) = G2 and CG(G2) = G1.

While the dual pairs in Lie algebras have been extensively studied (see, for instance, [5] or
[8]), the dual pairs in algebraic groups have received significantly less attention. In fact, the
only existing treatment of this latter problem in the literature appears to be the observation
that Howe’s analysis in [5] provides a classification of the dual pairs in Sp(2n,C) (see [6,
Chapter II]). In this instance, Howe’s treatment of dual pairs in certain Lie algebras gives
rise to a classification of the dual pairs in Sp(2n,C). However, it is not, in general, the case
that the dual pairs in an algebraic group G can be understood by looking at the dual pairs
in the Lie algebra associated to G. Nonetheless, we expect that the classifications of dual
pairs in GL(n,C) and O(n,C) are likely known to (or at least easily-derivable for) anyone
who has studied dual pairs in Lie algebras. However, since explicit classifications of the dual
pairs in these groups appear to be missing from the literature, we provide straightforward
classifications of the dual pairs in GL(n,C), Sp(2n,C), and O(n,C) in Sections 3, 4, and 5,
respectively.
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In addition to being a natural analog of the well-studied notion of dual pairs in Lie algebras,
the topic of dual pairs in algebraic groups is made interesting by its potential to play an
important role in the study of nilpotent orbits in complex semisimple Lie algebras. To see
this, let H be a complex reductive algebraic group, and let ϕ : H → G be a homomorphism
of algebraic groups. Then

Gϕ := {g ∈ G : gϕ(x)g−1 = ϕ(x) ∀x ∈ H}
is a reductive algebraic group and is usually disconnected. Since Gϕ is usually disconnected,
it cannot be completely understood using based root datum and the structure theory of
connected reductive algebraic groups. However, the following fact shows that (Gϕ, CG(Gϕ))
is a dual pair in G:

Fact 1.2. Let G be a group, and S ⊆ G a subset. Then CG(CG(CG(S))) = CG(S), where
CG(S) denotes the centralizer of S in G.

Moreover, we note that all dual pairs in G arise in this way:

Remark 1.3. Let G be a complex reductive algebraic group. Then any dual pair (G1, G2)
in G can be written in the form (Gϕ, CG(Gϕ)). Indeed, take ϕ to be the inclusion G2 ↪→ G.
We get G1 = CG(ϕ(G2)) =: Gϕ and G2 = CG(G1) = CG(Gϕ).

Consequently, a classification of the dual pairs in G would determine the possibilities for
the pairs (Gϕ, CG(Gϕ)). Since groups of the form Gϕ are crucial for understanding the
structure of nilpotent orbits in complex semisimple Lie algebras (see [1]), this speaks to
the importance of classifying dual pairs. Although classifying dual pairs in an arbitrary
complex reductive algebraic group appears to be a very difficult problem, this classifica-
tion problem becomes much more manageable when G is taken to be a classical group
(GL(n,C), SL(n,C), Sp(2n,C), O(n,C), or SO(n,C)) or a complex projective classical
group (PGL(n,C), PSp(2n,C), PO(n,C), or PSO(n,C)).

We start in Section 2, where we discuss some embeddings of dual pairs, which will help
the reader better understand the proofs and examples in the remainder of the paper. In
Sections 3, 4, and 5, we present classifications of the dual pairs in GL(n,C), Sp(2n,C), and
O(n,C), respectively. In Section 6, we discuss how the dual pairs in a complex reductive
algebraic group G relate to the dual pairs in certain subgroups of G; this sets us up for our
classifications of the dual pairs in SL(n,C) and SO(n,C), which we complete in Sections
7 and 8, respectively. We proceed in Section 9 to discuss how the dual pairs in a complex
reductive algebraic group G relate to the dual pairs in certain quotients of G; this discussion
prepares us for Sections 10 and 11, in which we present progress towards classifying the dual
pairs in PGL(n,C) and PSp(2n,C), respectively.

This paper was made possible by the UROP+ program of the MIT Mathematics Depart-
ment and the guidance of mentor Lucas Mason-Brown and supervisor Prof. David Vogan.
The author would like to thank Prof. Vogan for suggesting this fascinating problem. Ad-
ditionally, she would like to thank both Lucas and Prof. Vogan for being truly exemplary
mentors. Finally, she would like to thank the MIT Mathematics Department and Dr. Slava
Gerovitch for organizing the UROP+ program.

2. Embeddings

Let U be a finite dimensional complex vector space. In the remainder of the paper, we use
tools from representation theory to classify dual pairs in various complex classical groups
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and their projective counterparts. For instance, in Corollary 3.3, we prove that the dual
pairs in GL(U) are exactly the pairs of groups of the form(

r∏
i=1

GL(Vi),
r∏
i=1

GL(Wi)

)
,

where U =
⊕r

i=1 Vi⊗Wi is a vector space decomposition of U . However, the proof of Corol-
lary 3.3 does not describe the embeddings of

∏r
i=1GL(Vi) and

∏r
i=1GL(Wi) into GL(U). In

fact, very few of the other proofs that follow make use of particular embeddings of members
of dual pairs as subgroups of classical groups (or projective counterparts). Although these
embeddings do not play a crucial role for our proofs, a good understanding of these embed-
dings is likely to help the reader better understand some of the proofs and examples that
follow. For this reason, we describe these embeddings here in detail.

2.1. GL(U). Let U , V , and W be finite dimensional complex vector spaces such that U =
V ⊗W . Write n := dimV and m := dimW , and let A = (aij) ∈ GL(V ) and B = (bk`) ∈
GL(W ). We define the embedding ι : GL(V )→ GL(V ⊗W ) by

A
ι7−→

a11Im · · · a1nIm
...

. . .
...

an1Im · · · annIm

 ∈ GL(V ⊗W )

and the embedding κ : GL(W )→ GL(V ⊗W ) by

B
κ7−→

B . . .
B

 ∈ GL(V ⊗W ),

where the image of B under κ has n copies of B along its diagonal. If instead U =
⊕r

i=1 Vi⊗
Wi with ni := dimVi and mi := dimWi, then ι (adjusted for the appropriate dimensions) can
be applied to each factor of (g1, . . . , gr) ∈

∏r
i=1GL(Vi), and κ (adjusted for the appropriate

dimensions) can be applied to each factor of (g′1, . . . , g
′
r) ∈

∏r
i=1GL(Wi); each tensor factor

Vi ⊗Wi corresponds to a mi × ni-block of the resulting block diagonal matrix in GL(U).
This realizes

∏r
i=1GL(Vi) and

∏r
i=1GL(Wi) as subgroups of GL(U).

2.2. Sp(U). Let U , V , and W be finite dimensional complex vector spaces such that U =
V ⊗W . Additionally, assume that U and W admit symplectic forms, and that V admits an
orthogonal form. Assume, without loss of generality, that W has the standard symplectic
form Ωm, so that the matrix Ω giving the symplectic form on U = V ⊗W can be written as

Ω :=

Ωm

. . .
Ωm

 , where Ωm :=

(
Im/2

−Im/2

)
.

(Note that all symplectic forms are isomorphic, so we are free to make these assumptions
regarding the symplectic forms of W and U .)

Any matrix in M ∈ Sp(V ⊗ W ) satisfies MΩMT = Ω. Restricting the map ι defined
above to O(V ) gives an embedding O(V ) ↪→ Sp(V ⊗W ). This simply follows from checking
that ι(A)Ωι(A)T = Ω for A ∈ O(V ) (which follows easily from the fact that AAT = In for
all A ∈ O(V )). Similarly, restricting the map κ to Sp(W ) gives an embedding Sp(W ) ↪→
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Sp(V ⊗ W ). This follows from checking that κ(B)Ωκ(B)T = Ω for B ∈ Sp(W ) (which
follows easily from the fact that BΩmB

T = Ωm for all B ∈ Sp(W )).
Suppose, on the other hand, that U = V1 ⊗W1 ⊕ V2 ⊗W2, where dimV1 = dimV2 =: n

and dimW1 = dimW2 =: m. Then the embedding GL(V1) ↪→ Sp(V1 ⊗W1 ⊕ V2 ⊗W2) is
defined by mapping A ∈ GL(V1) as follows:

A
ι7−→

a11Im · · · a1nIm
...

. . .
...

an1Im · · · annIm

 τ7−→
(
ι(A)

(ι(A)T )−1

)

B
κ7−→

B . . .
B

 τ7−→
(
κ(B)

(κ(B)T )−1

)
It is straightforward to check that both τ(ι(A)) and τ(κ(B)) preserve the standard symplectic
form Ω2mn.

If U =
⊕s

i=1(Vi ⊗Wi ⊕ V ′i ⊗W ′
i )⊕

⊕r
i=s+1 Vi ⊗Wi (with dimVi = dimV ′i and dimWi =

dimW ′
i ), these embeddings can be extended to product groups such as

s∏
i=1

GL(Vi)
t∏

i=s+1

Sp(Vi)
r∏

i=t+1

O(Vi),

where the Vi in the second factor are symplectic and the Vi in the third factor are orthogonal.
Here, ι acts on each of the orthogonal factors, κ acts on each of the symplectic factors, and
τ ◦ ι or τ ◦ κ acts on each of the GL(Vi) factors. The symplectic form on U is the block-
diagonal matrix with blocks comprised of the symplectic forms on each tensor factor. For a
detailed example, see Example 4.2.

2.3. O(U). Let U , V , and W be finite dimensional complex orthogonal vector spaces such
that U = V ⊗W . Define n := dimV and m := dimW . Over C, all orthogonal forms are
isomorphic, so assume that U , V , and W have the standard orthogonal forms.

Restricting the map ι defined above to O(V ) gives an embedding O(V ) ↪→ O(V ⊗W ).
This simply follows from checking that ι(A)ι(A)T = Imn for A ∈ O(V ) (which follows easily
from the fact that AAT = In for all A ∈ O(V )). Similarly, restricting the map κ to O(W )
gives an embedding O(W ) ↪→ O(V ⊗W ). This follows from checking that κ(B)κ(B)T = Imn
for B ∈ O(W ) (which follows easily from the fact that BBT = Im for all B ∈ O(W )). We
omit the description of the embedding of Sp(V ) and Sp(W ) into O(V ⊗W ) in the case that
V and W are both symplectic; this embedding is more difficult to understand and will not
be required in this paper.

Suppose, on the other hand, that U = V1 ⊗W1 ⊕ V2 ⊗W2, where dimV1 = dimV2 =: n
and dimW1 = dimW2 =: m. Assume U has orthogonal form given by

(
Imn

Imn

)
. The

GL(V1) ↪→ O(V1 ⊗W1 ⊕ V2 ⊗W2) is given by τ ◦ ι, and GL(W1) ↪→ O(V1 ⊗W1 ⊕ V2 ⊗W2)
is given by τ ◦ κ. It is straightforward to check that the images under these embeddings in
fact preserve the orthogonal form

(
Imn

Imn

)
.

If U has more tensor factors, these embeddings can be extended in the same way as in the
case of Sp(U).
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3. Dual Pairs in GL(U)

Let U be a finite dimensional complex vector space, and let H be a complex reductive
algebraic group. Since we are working in characteristic zero, every algebraic representation
of H is completely reducible. Therefore, for any algebraic representation ϕ : H → GL(U),
Schur’s lemma gives the decomposition

U '
⊕
i

Vi ⊗ HomH(Vi, U),

where the Vi’s are the nonisomorphic irreducible subrepresentations of U . This decomposition
will be crucial for our classification of dual pairs in GL(U). Another essential tool for our
classification is the irreducibility of the standard representation ρ : GL(U)→ GL(U); M 7→
M of GL(U):

Lemma 3.1. The standard representation of GL(n,C) is irreducible for n ≥ 1.

Proof. This follows immediately from the stronger claim that GL(n,C) acts transitively on
the nonzero vectors of Cn for any n ≥ 1. To see why this stronger claim is true, we note
that for a given nonzero v ∈ Cn, any g ∈ GL(n,C) with first column equal to v satisfies
g · e1 = v. �

Theorem 3.2. Let U be a finite dimensional complex vector space. Then the dual pairs of
GL(U) are exactly the pairs of groups of the form(

r∏
i=1

GL(Vi),
r∏
i=1

GL(HomH(Vi, U))

)
,

where H is a complex reductive algebraic group and V1, . . . , Vr are the nonisomorphic irre-
ducible subrepresentations of U (viewed as a representation of H).

Proof. Let ϕ : H → GL(U) be an algebraic representation with nonisomorphic irreducible
subrepresentations ϕ1, . . . , ϕr, where ϕi : H → GL(Vi). Set Wi := HomH(Vi, U).

Step 1: CGL(U) (
∏r

i=1GL(Vi)) =
∏r

i=1GL(Wi) = GL(U)ϕ.

Let t ∈ CGL(U) (
∏r

i=1GL(Vi)). Note that t commutes with any element of ϕ(H) (since
ϕ(H) ⊆

∏r
i=1GL(Vi)). In other words, t is H-linear. Since V1, . . . , Vr are nonisomorphic irre-

ducible representations, Schur’s lemma gives that there are no nontrivial H-linear maps be-
tween them. Therefore, t necessarily preserves each Vi⊗Wi, and hence can be decomposed as
t = t1⊕· · ·⊕tr, where ti : Vi⊗Wi → Vi⊗Wi is H-linear. Applying Schur’s lemma again gives
that the action of ti on each Vi is given by λ·idVi for some λ ∈ C∗. It follows that ti ∈ GL(Wi),
giving that t ∈

∏r
i=1GL(Wi) and hence that CGL(U) (

∏r
i=1GL(Vi)) ⊆

∏r
i=1GL(Wi). On the

other hand, it is clear that
∏r

i=1GL(Wi) ⊆ CGL(U) (
∏r

i=1GL(Vi)). This same argument also
shows that

∏r
i=1GL(Wi) consists exactly of the H-linear elements of GL(U), completing

Step 1.

Step 2: Each Wi is an irreducible representation of
∏r

i=1GL(Wi) with multiplicity space Vi.

Set H ′ :=
∏r

i=1GL(Wi) and consider the representation ρ : H ′ ↪→ GL(U). We will
show that the Wi’s are precisely the irreducible subrepresentations of ρ, and that Wi has
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multiplicity space Vi. Certainly, each Wi is a subrepresentation of U , since ρ(h)w ∈ Wi for
each h ∈ H ′ and w ∈ Wi. Moreover, each Wi is irreducible by Lemma 3.1. Therefore, we now
have two decompositions of U — one as an H-representation and one as an H ′-representation.
Combining these gives that

U '
⊕

Vi ⊗ HomH(Vi, U) '
⊕

Wi ⊗ HomH′(Wi, U).

Since Wi = HomH(Vi, U), this shows that Vi = HomH′(Wi, U), completing Step 2.

Step 3: CGL(U) (
∏r

i=1GL(Wi)) =
∏r

i=1GL(Vi).

Step 2 shows that we can repeat Step 1 with H ′ in place of H and with the roles of Vi and
Wi to get that CGL(U)(

∏r
i=1GL(Wi)) =

∏r
i=1GL(Vi).

Step 4: All dual pairs of GL(U) are of this form.

It was shown in Step 1 that
∏r

i=1GL(Wi) = GL(U)ϕ. Therefore, Step 4 follows from
Remark 1.3. �

Corollary 3.3. Let U be a finite dimensional complex vector space. Then the dual pairs of
GL(U) are exactly the pairs of groups of the form(

r∏
i=1

GL(Vi),
r∏
i=1

GL(Wi)

)
,

where U =
⊕r

i=1 Vi ⊗Wi is a vector space decomposition of U .

Proof. Let U =
⊕r

i=1 Vi⊗Wi be a vector space decomposition of U . Set H :=
∏r

i=1GL(Vi),
and let ϕ : H → GL(U) be the standard representation of H. Then by Lemma 3.1, the Vi’s
are the nonisomorphic irreducible subrepresentations of U , with the Wi’s as corresponding
multiplicity spaces. Theorem 3.2 therefore gives that (

∏r
i=1GL(Vi),

∏r
i=1GL(Wi)) is a dual

pair in GL(U). Moreover, Theorem 3.2 gives that every dual pair in GL(U) is of this
form. �

Remark 3.4. If dim(Vi) = n, then Vi ' Cn, and GL(Vi) ' GLn(C). Similarly, if dim(Wi) =
m, then GL(Wi) ' GLm(C). Recalling that GLn(C) is connected for any n ∈ N, and that
direct products of connected spaces are connected, we get that both members of any dual
pair in GL(U) are connected.

4. Dual Pairs in Sp(U)

Let U be a finite dimensional complex symplectic vector space. The following lemma sets
us up to apply an argument analogous to the proof of Theorem 3.2 in the context of Sp(U),
which will allow us classify the dual pairs in Sp(U).

Lemma 4.1. Let U be a finite dimensional complex symplectic vector space. Let H be a
complex reductive algebraic group, and let ϕ : H → Sp(U) be an algebraic symplectic repre-
sentation of H with nonisomorphic irreducible subrepresentations {Vγ}γ = {Vµ, Vν}µ6'µ∗, ν'ν∗.
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Set Wγ := HomH(Vγ, U). Then(∏
γ

GL(Vγ)

)
∩ Sp(U) =

∏
µ6'µ∗

GL(Vµ)
∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν), and(1)

(∏
γ

GL(Wγ)

)
∩ Sp(U) =

∏
µ6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

Sp(Wν)
∏
ν'ν∗
sympl.

O(Wν).(2)

Proof. To start, note that Schur’s lemma gives the decomposition

U '

(⊕
µ 6'µ∗

Vµ ⊗Wµ

)
⊕

(⊕
ν'ν∗

Vν ⊗Wν

)
.

Our strategy in this proof is to understand the structure on each of these summands and
tensor factors that is induced by the symplectic structure of U . Then (3) and (4) will
follow from a consideration of which elements of

∏
γ GL(Vγ) and

∏
γ GL(Wγ) preserve this

substructure.
Since U is symplectic and finite dimensional, we have that U ' U∗, which allows us to

write

U '

⊕
(µ,µ∗)

(Vµ ⊗Wµ)⊕ (Vµ∗ ⊗Wµ∗)

⊕(⊕
ν'ν∗

Vν ⊗Wν

)
.

Now, note that for each irreducible representation Vγ of H, Vγ∗ is also irreducible, so

dim(HomH(Vγ, Vγ∗)) =

{
1 if Vγ ' Vγ∗
0 if Vγ 6' Vγ∗

.

Note also that H-invariant bilinear forms are in one-to-one correspondence with the elements
of HomH(Vγ, Vγ∗). Therefore, the Vµ’s do not admit H-invariant bilinear forms, whereas
each Vν inherits an H-invariant bilinear form from U (which must be either symplectic or
orthogonal on Vν). It is not hard to see that, by extension, the Vµ ⊗Wµ’s do not admit H-
invariant bilinear forms, whereas the Vν⊗Wν ’s inherit H-invariant symplectic bilinear forms
from U . Moreover, since Wν ' Wν∗ for ν ' ν∗, each Wν admits an H-invariant bilinear
form, which must be symplectic if the form on Vν is orthogonal and must be orthogonal if
the form on Vν is symplectic (since the symplectic form on Vν ⊗Wν can be obtained as the
product of the forms on Vν and Wν).

Although each Vµ⊗Wµ for µ 6' µ∗ does not admit an H-invariant bilinear form, we claim
that each (Vµ ⊗Wµ) ⊕ (Vµ∗ ⊗Wµ∗) admits an H-invariant symplectic form. Indeed, write
E := Vµ ⊗Wµ and E∗ := Vµ∗ ⊗Wµ∗ . Then for e, e′ ∈ E and E , E ′ ∈ E∗, we see that

〈(e, E), (e′, E ′)〉 := E ′(e)− E(e′)

defines an H-invariant symplectic bilinear form on E ⊕ E∗.
Finally, it is clear that an element of

∏
γ GL(Vγ) preserves the symplectic bilinear form

on U if and only if it preserves the induced bilinear form on each Vγ. Similarly, an element
of
∏

γ GL(Wγ) preserves the symplectic bilinear form on U if and only if it preserves the



8

induced bilinear form on each Wγ. It follows that(∏
γ

GL(Vγ)

)
∩ Sp(U) =

∏
µ6'µ∗

GL(Vµ)
∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν), and

(∏
γ

GL(Wγ)

)
∩ Sp(U) =

∏
µ6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

Sp(Wν)
∏
ν'ν∗
sympl.

O(Wν),

completing the proof. �

Example 4.2. Let H be a complex reductive algebraic group, and let ϕ : H → Sp(U) be an
algebraic symplectic representation of H with nonisomorphic irreducible subrepresentations
V1, V

∗
1 , and V2. Write U ' V1 ⊗ W1 ⊕ V ∗1 ⊗ W ∗

1 ⊕ V2 ⊗ W2, suppose that V1 6' V ∗1 as
representations, that V2 is orthogonal, and that dimVi = dimWi = 2. The matrix

Ω =


I4

−I4
1

−1
1

−1


defines a symplectic form on U (so that any matrix M ∈ Sp(U) satisfies MΩMT = Ω). The
symplectic form Ω induces the symplectic form

Ω1 :=

(
I4

−I4

)
on V1 ⊗W1 ⊕ V ∗1 ⊗W ∗

1 . To see that A =

(
a b
c d

)
∈ GL(V1) and B =

(
e f
g h

)
∈ GL(W1)

preserve Ω1, we consider the images of A and B under the embeddings of GL(V1) and GL(W1)
into GL(V1 ⊗W1 ⊕ V ∗1 ⊗W ∗

1 ):

A
ι7−→
(
aI2 bI2
cI2 dI2

)
τ7−→
(
ι(A)

(ι(A)T )−1

)
B

κ7−→
(
B

B

)
τ7−→
(
ι1(B)

(ι1(B)T )−1

)
It is straightforward to check that τ(ι(A)) and τ(κ(B)) preserve Ω1, and hence lie in Sp(V1⊗
W1 ⊕ V ∗1 ⊗W ∗

1 ). Additionally, the symplectic form Ω induces the symplectic form

Ω2 :=


1

−1
1

−1


on Sp(V2 ⊗W2). Consider the images of A′ =

(
a′ b′

c′ d′

)
∈ GL(V2) and B′ =

(
e′ f ′

g′ h′

)
∈

GL(W2) under the embeddings of GL(V2) and GL(W2) into GL(V2 ⊗W2):
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A′
ι7−→
(
a′I2 b′I2
c′I2 d′I2

)
∈ GL(V2 ⊗W2)

B′
κ7−→
(
B′

B′

)
∈ GL(V2 ⊗W2)

It is straightforward to check that ι(A′) preserves Ω2 if and only if A′ ∈ O(V2) and that
κ(B′) preserves Ω2 if and only if B′ ∈ Sp(W2). It follows that in this case,

(GL(V1)×GL(V ∗1 )×GL(V2)) ∩ Sp(U) = GL(V1)×GL(V ∗1 )×O(V2), and

(GL(W1)×GL(W ∗
1 )×GL(W2)) ∩ Sp(U) = GL(W1)×GL(W ∗

1 )× Sp(W2),

as Lemma 4.1 would suggest.

At this point in our analysis, we require the irreducibility of the standard representations
O(n,C) ↪→ GL(n,C) and Sp(2n,C) ↪→ GL(n,C):

Lemma 4.3 ([3, Section 5.5]). The standard representations of O(n,C) and Sp(2n,C) are
irreducible for n ≥ 1.

Theorem 4.4. Let U be a finite dimensional complex symplectic vector space. Then the
dual pairs of Sp(U) are exactly the pairs of groups of the form∏

µ6'µ∗
GL(Vµ)

∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν),
∏
µ6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

Sp(Wν)
∏
ν'ν∗
sympl.

O(Wν)

 ,

where H is a complex reductive algebraic group, where Wγ := HomH(Vγ, U), and where µ
and ν together vary over the nonisomorphic irreducible subrepresentations of U .

Proof. Let ϕ : H → Sp(U) be an algebraic symplectic representation with nonisomorphic
irreducible subrepresentations γ : H → GL(Vγ). Set Wγ := HomH(Vγ, U). Write

G1 :=
∏
µ6'µ∗

GL(Vµ)
∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν), and

G2 :=
∏
µ6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

Sp(Wν)
∏
ν'ν∗
sympl.

O(Wν).

Step 1: CSp(U)(G1) = G2 = Sp(U)ϕ.

Let t ∈ CSp(U)(G1). By Lemma 4.1, ϕ(H) ⊆ G1, so we have that t commutes with any ele-
ment of ϕ(H). In other words, t is H-linear. Applying Schur’s lemma in the same way as in
Step 1 of the proof of Theorem 3.2 gives that t ∈

∏
γ GL(Wγ)∩Sp(U) = G2, where γ ranges

over the nonisomorphic irreducible subrepresentations of ϕ, and where we have used Lemma
4.1. It follows that CSp(U)(G1) ⊆ G2. On the other hand, it is clear that G2 ⊆ CSp(U)(G1). It
also follows from this argument that G2 consists exactly of the H-linear elements of Sp(U),
completing Step 1.

Step 2: Each Wγ is an irreducible representation of G2 with multiplicity space Vγ.

Consider the representation ρ : G2 ↪→ GL(U). As in the proof of Theorem 3.2, we
will show that the Wγ’s are precisely the nonisomorphic irreducible subrepresentations of ρ,
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and that Wγ has multiplicity space Vγ. To see this, we start by noting that each Wγ is a
subrepresentation of U , since ρ(g)w ∈ Wγ for any g ∈ G2 and w ∈ Wγ. Moreover, each Wγ

is irreducible by Lemmas 3.1 and 4.3. We therefore obtain two decompositions of U , giving

U '
⊕

Vγ ⊗ HomH(Vγ, U) '
⊕

Wγ ⊗ HomG2(Wγ, U).

Since Wγ = HomH(Vγ, U), this shows that Vγ = HomG2(Wγ, U), completing Step 2.

Step 3: CSp(U)(G2) = G1.

Step 2 shows that we can repeat Step 1 with G2 in place of H and with the roles of Wγ

and Vγ reversed. Doing so gives that CSp(U)(G2) = G1, as desired.

Step 4: All dual pairs of Sp(U) are of this form.

It was shown in Step 1 that G2 = Sp(U)ϕ. Step 4 therefore follows from Remark 1.3,
completing the proof. �

Corollary 4.5. Let U be a finite dimensional complex symplectic vector space. Then the
dual pairs of Sp(U) are exactly the pairs of groups of the form(∏

µ

GL(Vµ)
∏
ν

O(Vν)
∏
λ

Sp(Vλ),
∏
µ

GL(Wµ)
∏
ν

Sp(Wν)
∏
λ

O(Wλ)

)
,

where

U =

(⊕
µ

((Vµ ⊗Wµ)⊕ (V ∗µ ⊗W ∗
µ))

)
⊕

(⊕
ν

Vν ⊗Wν

)
⊕

(⊕
λ

Vλ ⊗Wλ

)
is a vector space decomposition of U with dimVλ even and dimWν even.

Proof. Let U have such a decomposition, and set H :=
∏

µGL(Vµ)
∏

ν O(Vν)
∏

λ Sp(Vλ). Let

ϕ : H → Sp(U) be the standard representation of H. Then by Lemmas 3.1 and 4.3, the
Vµ’s, Vν ’s, and Vλ’s are the nonisomorphic irreducible representations of H, with the Wµ’s,
Wν ’s, and Wλ’s as corresponding multiplicity spaces. Theorem 4.4 therefore gives that(∏

µ

GL(Vµ)
∏
ν

O(Vν)
∏
λ

Sp(Vλ),
∏
µ

GL(Wµ)
∏
ν

Sp(Wν)
∏
λ

O(Wλ)

)
,

is a dual pair in Sp(U). Moreover, Theorem 4.4 gives that every dual pair in Sp(U) is of
this form. �

5. Dual Pairs in O(U)

Let U be a finite dimensional complex orthogonal vector space. The classification of dual
pairs in O(U) follows from an analysis extremely similar to that for Sp(U) in Section 4. As
a result, we omit the proofs in this section. The following three results can be proven in
nearly the same way as Lemma 4.1, Theorem 4.4, and Corollary 4.5, respectively.
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Lemma 5.1. Let U be a finite dimensional complex orthogonal vector space. Let H be a
complex reductive algebraic group, and let ϕ : H → Sp(U) be an algebraic orthogonal repre-
sentation of H with nonisomorphic irreducible subrepresentations {Vγ}γ = {Vµ, Vν}µ6'µ∗, ν'ν∗.
Set Wγ := HomH(Vγ, U). Then(∏

γ

GL(Vγ)

)
∩O(U) =

∏
µ 6'µ∗

GL(Vµ)
∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν), and(3)

(∏
γ

GL(Wγ)

)
∩O(U) =

∏
µ 6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

O(Wν)
∏
ν'ν∗
sympl.

Sp(Wν).(4)

Proof. This follows from nearly the same argument as the proof of Lemma 4.1. �

Theorem 5.2. Let U be a finite dimensional complex orthogonal vector space. Then the
dual pairs of O(U) are exactly the pairs of groups of the form∏

µ6'µ∗
GL(Vµ)

∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν),
∏
µ6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

O(Wν)
∏
ν'ν∗
sympl.

Sp(Wν)

 ,

where H is a complex reductive algebraic group, where Wγ := HomH(Vγ, U), and where µ
and ν together vary over the nonisomorphic irreducible subrepresentations of U .

Proof. This follows from Lemma 5.1 using nearly the same argument as in the proof of
Theorem 4.4. �

Corollary 5.3. Let U be a finite dimensional complex orthogonal vector space. Then the
dual pairs of O(U) are exactly the pairs of groups of the form(∏

µ

GL(Vµ)
∏
ν

O(Vν)
∏
λ

Sp(Vλ),
∏
µ

GL(Wµ)
∏
ν

O(Wν)
∏
λ

Sp(Wλ)

)
,

where

U =

(⊕
µ

((Vµ ⊗Wµ)⊕ (V ∗µ ⊗W ∗
µ))

)
⊕

(⊕
ν

Vν ⊗Wν

)
⊕

(⊕
λ

Vλ ⊗Wλ

)
is a vector space decomposition of U with dimVλ and dimWλ even.

6. Dual Pairs in Subgroups

Let G be a complex reductive algebraic group. In this section, we discuss how dual pairs
in G relate to dual pairs in certain subgroups of G.

Lemma 6.1. Let G be a complex reductive algebraic group, and suppose that G equals a
product of subgroups G = KH, where K is central. If G1 is a subgroup of G containing K,
then G = KH1, where H1 := G1 ∩H.

Proof. Certainly, KH1 ⊆ G1. On the other hand, let g ∈ G1 and write g = kh, where k ∈ K
and h ∈ H. Since K ⊆ G1, we see that h = k−1g ∈ G1, so h ∈ G1 ∩H = H1. It follows that
g ∈ KH1 and hence that G1 ⊆ KH1. �



12

Lemma 6.2. Let G be a complex reductive algebraic group, and suppose that G equals a
product of subgroups G = KH, where K is central. If (G1, G2) is a dual pair in G, then
(G1 ∩H,G2 ∩H) is a dual pair in H.

Proof. Since G1 and G2 are centralizers in G, they each contain K. Therefore, Lemma 6.1
gives that G1 = KH1 for H1 := G1 ∩ H and that G2 = KH2 for H2 := G2 ∩ H. Now, we
claim that

(5) KCH(H1) ⊆ CG(G1) ⊆ CG(H1) ⊆ KCH(H1).

For the first inclusion, let kh ∈ KCH(H1), and let k′h′ ∈ KH1 = G1. Then

(kh)(k′h′)(kh)−1 = k′(hh′h−1) = h′,

so kh ∈ CG(G1). The second inclusion follows immediately from H1 ⊆ G1. For the final
inclusion, let g ∈ CG(H1) and write g = kh with k ∈ K and h ∈ H. Then for any h1 ∈ H1,

(kh)h1(kh)−1 = h1 =⇒ hh1h
−1 = h1,

so h ∈ CH(H1) and g ∈ KCH(H1). It follows that all of the groups in (5) are equal. The
same result holds for G2 and H2. It follows that

CH(H1) = CG(H1) ∩H = KCH(H1) ∩H = G2 ∩H = H2.

Similarly, CH(H2) = H1. This completes the proof. �

Lemma 6.3. Let G be a complex reductive algebraic group, and suppose that G equals a
product of subgroups G = KH, where K is central. If (H1, H2) is a dual pair in H, then
(KH1, KH2) is a dual pair in G.

Proof. We would like to show that CG(KH1) = KH2 and CG(KH2) = KH1. Certainly, we
have the inclusionsKH2 ⊆ CG(KH1) andKH1 ⊆ CG(KH2). We now show that CG(KH1) ⊆
KH2. Suppose t ∈ CG(H1). Then since G = KH, we can write t = kh with k ∈ K and
h ∈ H. Then for any h′ ∈ H1,

h′ = (kh)h′(kh)−1 =⇒ h′ = k−1h′k = hh′h−1 =⇒ h ∈ H2.

It follows that t ∈ KH2, and hence that CG(KH1) ⊆ KH2. By a similar argument, we get
that CG(KH1) ⊆ KH1. Therefore, (KH1, KH2) is a dual pair in G, as desired. �

Claim 6.4. Let G,H,K be as in Lemma 6.3. Let (H1, H2) be a dual pair of H. Then
KH1 ∩H = H1 and KH2 ∩H = H2.

Proof. We prove that KH1 ∩ H = H1. Certainly, H1 ⊆ KH1 ∩ H. On the other hand,
suppose that kh ∈ KH1 ∩H. Then by Lemma 6.3, for any h2 ∈ H2 we have that

(kh)h2(kh)−1 = h2,

which gives that kh ∈ CH(H2) = H1. Hence KH1 ∩H = H1. The same argument gives that
KH2 ∩H = H2, completing the proof. �

Theorem 6.5. Let G be a complex reductive algebraic group, and suppose that G equals a
product of subgroups G = KH, where K is central. Then there exists a bijection

{dual pairs of H} ↔ {dual pairs of G}
(H1, H2)↔ (KH1, KH2),

where → is given by multiplication by K and ← is given by restriction to H.

Proof. This follows immediately by putting together the above results. �
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7. Dual Pairs in SL(U)

Let U be a finite dimensional complex vector space. The following Corollary applies
Theorem 6.5 to show that the dual pairs of GL(U) are in bijection with the dual pairs of
SL(U). This bijection combines with Corollary 3.3 to give a classification of dual pairs in
SL(U) (see Corollary 7.2).

Corollary 7.1. Let U be a finite dimensional complex vector space. The dual pairs of GL(U)
are in bijection with the dual pairs of SL(U).

Proof. This follows from Theorem 6.5 and the observation that GL(V ) = Z · SL(V ), where
Z is center of GL(V ) (i.e. the subgroup of scalar matrices in GL(V )). For any g ∈
GL(V ) = GLn(C), let r = diag((1/δ)1/n, . . . , (1/δ)1/n), where δ = det g. Then det(gr) =
det(g) det(r) = δ(1/δ) = 1. Moreover, r ∈ Z, so we see that g = r−1gr. Defining g′ := gr,
we can write g = r−1g′, where g′ ∈ SL(V ) and r−1 ∈ Z. Hence, GL(V ) = Z · SL(V ),
completing the proof. �

Corollary 7.2. Let U be a finite dimensional complex vector space. Then the dual pairs of
SL(U) are exactly the pairs of groups of the form((

r∏
i=1

GL(Vi)

)
∩ SL(U),

(
r∏
i=1

GL(Wi)

)
∩ SL(U)

)
,

where U =
⊕r

i=1 Vi ⊗Wi is a vector space decomposition of U .

Proof. This follows immediately from Corollary 7.1 and Corollary 3.3. �

We have as a consequence of the proof of Corollary 7.1 that PGL(U) = PSL(U). To
see this, note that for any gZ ∈ PGL(U), g = sz for some s ∈ SL(U) and some z ∈ Z, so
gZ = (sz)Z = sZ. This justifies our exclusion of PSL(U) from the list of complex projective
classical groups that are under consideration.

8. Dual Pairs in SO(U)

Let U be a finite dimensional complex vector space. The following Corollary applies
Theorem 6.5 to show that the dual pairs of O(n,C) are in bijection with the dual pairs of
SO(n,C) when n is odd.

Corollary 8.1. When n is odd, the dual pairs of O(n,C) are in bijection with the dual pairs
of SO(n,C).

Proof. This follows from Theorem 6.5 and the observation that O(n,C) = Z ·SO(n,C) when
n is odd, where Z is the center of O(n,C) (i.e. Z = {±I}). First, note that any orthogonal
matrix has determinant ±1 (since MTM = I implies detM = detM−1 which further implies
(detM)2 = 1). Given a matrix M ∈ O(V ), if detM = 1, then there is nothing to show.
On the other hand, if detM = −1, then we can write M = (−I)M(−I); since −I ∈ Z and
M(−I) ∈ SO(V ) (because det(−I) = (−1)n = −1), this completes the proof. �

Corollary 8.1 shows that when n is odd, the dual pairs of SO(n,C) are simply the dual
pairs of O(n,C) restricted to SO(n,C). In what follows, we show that this phenomenon in
fact holds for all n (see Theorem 8.6). To do so, we require the irreducibility of the standard
representation SO(n,C) ↪→ GL(n,C):
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Lemma 8.2 ([3, Section 2.5]). The standard representation of SO(n,C) is irreducible for
n 6= 2.

For later use, we prove the following lemma in more generality than is needed here.

Lemma 8.3. Let U be a finite dimensional complex vector space with bilinear form 〈, 〉 that
is either symplectic or orthogonal. Suppose that U '

⊕
γ Vγ ⊗ Wγ, where each Vγ is an

orthogonal vector space. Let G = Sp (resp. G = O) if 〈, 〉 is symplectic (resp. orthogonal).
Then

CG(U)

(∏
γ

SO(Vγ)

)
=
∏
γ

CG(Vγ⊗Wγ)(SO(Vγ)).

Proof. Recall from Section 2 that the embedding SO(Vγ) ↪→ G(Vγ ⊗ Wγ) is given by ι if
G = Sp and is given by either ι or κ if G = O. To view

∏
γ SO(Vγ) as a subgroup of

G(U), form the block-diagonal matrix formed by the images of each SO(Vγ) factor under
the appropriate embeddings.

It is clear that
∏

γ CG(Vγ⊗Wγ)(SO(Vγ)) ⊆ CG(U)

(∏
γ SO(Vγ)

)
. On the other hand, write

{γ} = {γ1, . . . , γ`}, let ni := dimVγi , and let mi := dimWγi . Without loss of generality,

assume that n1 = · · · = nk = 2 and that nk+1, . . . , n` 6= 2. Let M ∈ CG(U)

(∏
γ SO(Vγ)

)
.

Consider the set of dimU × dimU block diagonal matrices, where the diagonal blocks have
sizesm1n1×m1n1, . . . ,m`n`×m`n`. LetNi denote the matrix in this set that is the identity on
every block except the i-th block, on which it equals −Imini . For 1 ≤ i ≤ k, Ni ∈

∏
γ SO(Vγ),

meaningMNi = NiM for all such i. Writing out the entry-wise implications of these relations
shows that

(6) M ∈

( ∏
1≤i≤k

CG(Vγi⊗Wγi )
(SO(Vγi))

)
×

(
CG(

⊕
k+1≤j≤` Vγj⊗Wγj )

( ∏
k+1≤j≤`

SO(Vγj)

))
.

Now, since nj 6= 2 for all k+ 1 ≤ j ≤ `, we have that the standard representation of SO(Vγj)
is irreducible for all such j. It therefore follows from Schur’s lemma that

(7) CG(
⊕
k+1≤j≤` Vγj⊗Wγj )

( ∏
k+1≤j≤`

SO(Vγj)

)
=

∏
k+1≤j≤`

CG(Vγj⊗Wγj )
(SO(Vγj)).

Combining (6) and (7) gives that M ∈
∏

γ CG(Vγ⊗Wγ)(SO(Vγ)), completing the proof. �

At this point in our analysis, we require the irreducibility of the standard representation
SL(n,C) ↪→ GL(n,C):

Lemma 8.4. The standard representation of SL(n,C) is irreducible for n ≥ 1.

Proof. If n = 1, then the representation in question is one-dimensional and hence irreducible.
In the case that n > 1, we show that SL(n,C) acts transitively on the nonzero vectors of Cn.
Let v ∈ Cn be a fixed nonzero vector, and let g be any invertible matrix with first column v.
Write δ := det g, and let g′ be the matrix obtained from g by multiplying the second column
of g by 1/δ. Then g′ is invertible with det g′ = 1 and satisfies g · e1 = v, completing the
proof. �

We are now ready to prove that every dual pair in O(U) gives rise to a dual pair in SO(U):
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Lemma 8.5. Let U be a finite dimensional complex orthogonal vector space, and let(
G1 :=

∏
µ

GL(Vµ)
∏
ν

O(Vν)
∏
λ

Sp(Vλ), G2 :=
∏
µ

GL(Wµ)
∏
ν

O(Wν)
∏
λ

Sp(Wλ)

)
be a dual pair in O(U). Then (G1 ∩ SO(U), G2 ∩ SO(U)) is a dual pair in SO(U).

Proof. We will show that CSO(U)(G1 ∩ SO(U)) = G2 ∩ SO(U), and the result will follow by
symmetry. Notice that

G2 ∩ SO(U) = CO(U)(G1) ∩ SO(U) = CSO(U)(G1) ⊆ CSO(U)(G1 ∩ SO(U)).

It remains to show that CSO(U)(G1∩SO(U)) ⊆ G2∩SO(U). To this end, letM ∈ CSO(U)(G1∩
SO(U)). In particular, M commutes with every element of

∏
µ SL(Vµ)

∏
ν SO(Vν)

∏
λ Sp(Vλ).

Moreover, by Lemma 8.3,

CSO(
⊕
ν Vν⊗Wν)

(∏
ν

SO(Vν)

)
⊆ CO(

⊕
ν Vν⊗Wν)

(∏
ν

SO(Vν)

)
=
∏
ν

CO(Vν⊗Wν)(SO(Vν)).

Combining this with Lemmas 8.4 and 4.3 gives that

M ∈
∏
µ

CO(Vµ⊗Wµ)(SL(Vµ))×
∏
ν

CO(Vν⊗Wν)(SO(Vν))×
∏
λ

CO(Vλ⊗Wλ)(Sp(Vλ))

⊆
∏
µ

GL(Wµ)×
∏
ν\ν′

O(Wν)×
∏
ν′

CO(Vν′⊗Wν′ )
(SO(Vν′))×

∏
λ

Sp(Wλ),

where {ν ′} := {ν : dimVν = 2}. Now, view M as a block diagonal matrix with a diagonal
block for every µ, ν, and λ. Let N be the diagonal block corresponding to a fixed ν ′. The
above shows that N ∈ CO(Vν′⊗Wν′ )

(SO(Vν′)). But by our choice of M , we have that M also

commutes with every element of
∏

µGL
(−1)(Vµ)

∏
ν O

(−1)(Vν)
∏

λ Sp(Vλ), where GL(−1)(Vµ)

(resp. O(−1)(Vν)) denotes the elements of GL(Vµ) (resp. O(Vν)) with determinant −1. This
shows that, in fact, N ∈ CO(Vν′⊗Wν′ )

(O(Vν′)) = O(Wν′), where we have used Theorem 5.2.
It follows that

M ∈

(∏
µ

GL(Wµ)
∏
ν

O(Wν)
∏
λ

Sp(Wλ)

)
∩ SO(U) = G2 ∩ SO(U),

completing the proof. �

To complete the classification of dual pairs in SO(U), we now prove that every dual pair
in SO(U) is of the form described in the previous lemma.

Theorem 8.6. Let U be a finite dimensional complex vector space. Then the dual pairs of
SO(U) are exactly the pairs of groups of the form((∏

µ

GL(Vµ)
∏
ν

O(Vν)
∏
λ

Sp(Vλ)

)
∩ SO(U),

(∏
µ

GL(Wµ)
∏
ν

O(Wν)
∏
λ

Sp(Wλ)

)
∩ SO(U)

)
,

where

U =

(⊕
µ

((Vµ ⊗Wµ)⊕ (V ∗µ ⊗W ∗
µ))

)
⊕

(⊕
ν

Vν ⊗Wν

)
⊕

(⊕
λ

Vλ ⊗Wλ

)
is a vector space decomposition of U with dimVλ even and dimWλ even.
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Proof. Corollary 5.3 and Lemma 8.5 give that every pair of groups of the given form is in fact
a dual pair in SO(U). It remains to show that every dual pair in SO(U) is of this form. Let
(H1, H2) be a dual pair in SO(U). By Remark 1.3, (H1, H2) = (CSO(U)(CSO(U)(ϕ(H))), CSO(U)(ϕ(H)))
for some algebraic representation ϕ : H → SO(U) of a complex reductive algebraic group
H. Therefore, it suffices to show that CSO(U)(ϕ(H)) is of the form(∏

µ

GL(Wµ)
∏
ν

O(Wν)
∏
λ

Sp(Wλ)

)
∩ SO(U).

To this end, let t ∈ CSO(U)(ϕ(H)) and define ϕ′ : H → SO(U) ↪→ O(U). Writing {Vγ}γ =
{Vµ, Vν}µ 6'µ∗, ν'ν∗ for the nonisomorphic irreducible subrepresentations of ϕ′ : H → O(U),
we note that

ϕ(H) = ϕ′(H) ⊆

(∏
γ

GL(Vγ)

)
∩O(U) =

∏
µ6'µ∗

GL(Vµ)
∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν),

where we have used Lemma 5.1. Since t is ϕ′(H)-linear, Schur’s lemma gives that

t ∈


∏
µ 6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

O(Wν)
∏
ν'ν∗
sympl.

Sp(Wν)

 ∩ SO(U)

 =: T.

It follows that CSO(U)(ϕ(H)) ⊆ T ; on the other hand, the inclusion T ⊆ CSO(U)(ϕ(H)) is
clear, and the result follows. �

9. Dual Pairs in Quotients

Let G be a complex reductive algebraic group and let U be a finite dimensional complex
vector space. Having discussed the relationship between dual pairs in G and dual pairs in
certain subgroups of G (which helped us classify dual pairs in SL(U) and SO(U)), we now
turn to the relationship between dual pairs in G and dual pairs in certain quotients of G.

Theorem 9.1. Let G be a complex reductive algebraic group, let H be a connected subgroup of
G, and let N be a normal subgroup of G. Let π : G→ G/N denote the canonical projection,
and define KH,N := {tht−1h−1 : t ∈ π−1(CG/N(π(H))), h ∈ H}. If KH,N is discrete, then
CG/N(π(H)) = π(CG(H)).

Proof. The inclusion CG/N(π(H)) ⊇ π(CG(H)) is clear. On the other hand, let t ∈ π−1(CG/N(π(H))).
We would like to show that t ∈ CG(H). By choice of t, we have that for any h ∈ H,

tht−1 = nt(h)h for some nt(h) ∈ KH,N .

Since multiplication and inversion of elements are continuous operations in an algebraic
group, we see that nt defines a continuous function

nt : H → KH,N

h 7→ tht−1h−1.

Now, since nt defines a continuous map from a connected group to a discrete group, the
image of nt must be a single point in KH,N . Since nt(1) = 1, it follows that nt is trivial, and
hence that t ∈ CG(H), completing the proof. �
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Remark 9.2. Let G, H, N , and KH,N be as in Theorem 9.1. Note that KH,N ⊆ N .
Therefore, a weaker version of Theorem 9.1 is that CG/N(π(H)) = π(CG(H)) whenever N is
discrete.

Corollary 9.3. Let G be a complex reductive algebraic group, let H be a subgroup of G with
identity component H◦, and let N be a normal subgroup of G such that KH,N := {tht−1h−1 :
t ∈ π−1(CG/N(π(H))), h ∈ H} is discrete, where π : G → G/N is the canonical projection.
Then

π−1(CG/N(π(H))) ⊆ CG(H◦).

Proof. This follows from the inclusions

π−1(CG/N(π(H))) ⊆ π−1(CG/N(π(H◦))) ⊆ CG(H◦),

where the second inclusion comes from Theorem 9.1. �

Corollary 9.4. Let G be a complex reductive algebraic group, and let (G1, G2) be a dual
pair in G. Let N be a normal subgroup of G such that KG1,N := {tg1t−1g−11 : t ∈
π−1(CG/N(π(G1))), g1 ∈ G1} and KG2,N := {tg2t−1g−12 : t ∈ π−1(CG/N(π(G2))), g2 ∈ G2}
are discrete, where π : G → G/N denotes the canonical projection. If G1 and G2 are
connected, then (π(G1), π(G2)) is a dual pair in G/N .

Proof. Applying Theorem 9.1 with H = G1 gives that CG/N(π(G1)) = π(CG(G1)) = π(G2).
Similarly, applying Theorem 9.1 with H = G2 gives that CG/N(π(G2)) = π(G1), completing
the proof. �

Proposition 9.5. Let G be a complex reductive algebraic group, and let K be a central
subgroup of G. Set H = G/K. If

1→ K → G→ H → 1

splits, then the dual pairs in H are in bijection with the dual pairs of G.

Proof. By definition, the short exact sequence 1→ K → G→ H → 1 splits if there exists a
group homomorphism α : H → G such that π ◦ α = idH . It is straightforward to see that
H ' α(H), showing that H can be identified with a subgroup of G. Moreover, we have by
the splitting lemma that G = K o H, so we have in particular that G = KH. Therefore,
the hypotheses of Theorem 6.5 are satisfied, and the proposition follows. �

10. Dual Pairs in PGL(U)

Let U be a finite dimensional complex vector space. In this section, we (i) classify the
connected dual pairs in PGL(U), (ii) construct two classes of disconnected dual pairs in
PGL(U), and (iii) discuss an approach for determining whether there are other classes of
disconnected dual pairs in PGL(U).

10.1. Connected Dual Pairs in PGL(U).

Lemma 10.1. Suppose ABA−1 = cB, where A,B ∈ GL(n,C) and c ∈ Z(GL(n,C)) ' C∗.
Then c is an n-th root of unity.

Proof. Using that the determinant is multiplicative, we see that det(ABA−1) = det(B).
Therefore, the relation ABA−1 = cB gives that

det(B) = det(cB) = cn det(B).

This shows that cn = 1, or that c is an n-th root of unity (not necessarily primitive). �
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Theorem 10.2. Let (G1, G2) be a dual pair in GL(U), and let π : GL(U) → PGL(U) be
the canonical projection. Then (π(G1), π(G2)) is a dual pair in PGL(U).

Proof. By Remark 3.4, G1 and G2 are connected. Let n be such that GL(n,C) = GL(U),
and write Z := Z(GL(U)) ' C∗. By Lemma 10.1, both KG1,Z := {tg1t−1g−11 : t ∈
π−1(CPGL(U)(π(G1))), g1 ∈ G1} and KG2,Z := {tg2t−1g−12 : t ∈ π−1(CPGL(U)(π(G2))), g2 ∈
G2} contain only n-th roots of unity, and hence are discrete. Therefore, Corollary 9.4 applies,
completing the proof. �

Theorem 10.2 shows that every dual pair in GL(U) descends to a dual pair in PGL(U)
under the canonical projection. In fact, as the following proposition will show, the dual pairs
in GL(U) are in bijection with the connected dual pairs in PGL(U).

Proposition 10.3. Let (G1, G2) be a connected dual pair in PGL(U), and define G̃1 :=

π−1(G1) and G̃2 := π−1(G2), where π : GL(U)→ PGL(U) denotes the canonical projection.

Then (G̃1, G̃2) form a dual pair in GL(U).

Proof. Since GL(U) is a C∗ bundle over PGL(U), we have that G̃1 (resp. G̃2) is a C∗ bundle

over G1 (resp. G2). It follows that G̃i has the same component group as Gi for i = 1, 2. In

particular, G̃1 and G̃2 are connected. Since (G1, G2) is a dual pair in PGL(U), we have that

the elements of G̃1 and G̃2 commute up to a scalar, so if n := dimU , we obtain a map

z : G̃1 × G̃2 → (n-th roots of unity)

(x, y) 7→ xyx−1y−1,

where we have used Lemma 10.1 to determine the codomain. But since G̃1×G̃2 is connected,
we see that z is a continuous map from a connected group to a discrete group, and hence

must be constant. Since (1, 1) ∈ G̃1 × G̃2 maps to 1 under z, it follows that z is trivial, and

hence that (G̃1, G̃2) is a dual pair in GL(U). �

Remark 10.4. As explained in the proof of Proposition 10.3, we have that a subgroup
G in PGL(U) is connected if and only if its preimage in GL(U) is connected. Recalling
from Remark 3.4 that all dual pairs in GL(U) are connected, we see that Theorem 10.2 and
Proposition 10.3 give that the dual pairs in GL(U) are in bijection with the connected dual
pairs in PGL(U).

10.2. Disconnected Dual Pairs in PGL(U). Although all connected dual pairs in PGL(U)
arise as the images in PGL(U) of dual pairs in GL(U), we will soon see that not all dual
pairs in PGL(U) are connected (see Proposition 10.5, for example). Therefore, to classify
the dual pairs in PGL(U), it remains to consider the disconnected dual pairs. The following
proposition describes one class of disconnected dual pairs in PGL(U).

Proposition 10.5. Let A be a finite abelian group of order n, and let Â denote its group

of characters. Let U be an n-dimensional complex vector space. Then π(〈A, Â〉) can be
realized as a maximal abelian subgroup of PGL(U), where π : GL(U) → PGL(U) denotes
the canonical projection.

Proof. Let us view U as the space of functions L2(A,C). Then f ∈ U can be viewed as
a column vector [f(a1) · · · f(an)]T , where a1, . . . , an are the elements of A. Each element
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a ∈ A acts by translation (τa) on f ∈ U , and each element χ ∈ Â acts by multiplication (σχ)
on U . Since multiplying by a−1 permutes the elements of A, each

τa : U → U

f(x) 7→ f(xa−1)

can be viewed as a permutation matrix in GL(U). Additionally, we can view each

σχ : U → U

f(x) 7→ χ(x)f(x)

as a diagonal matrix σχ = diag(χ(a1), . . . , χ(an)).
Now, observe that we have the following relations:

(σχτaf)(x) = (σχf)(xa−1) = χ(xa−1)f(xa−1), and

(τaσχf)(x) = χ(x)(τaf)(x) = χ(x)f(xa−1).

Consequently, we get that

(8) σχτaσ
−1
χ = χ(a−1)τa and τaσχτ

−1
a = χ(a)σχ.

This shows that the actions of A and Â commute up to a scalar, and hence that π(〈A, Â〉) is

contained in its own centralizer in PGL(U). We have left to show that CPGL(U)(π(〈A, Â〉)) ⊆
π(〈A, Â〉).

Let t ∈ π−1(CPGL(U)(π(〈A, Â〉))). Then, in particular, tσχt
−1 = kt,χσχ for each χ ∈ Â

and for some kt,χ ∈ C∗. Recall that σχ = diag(χ(a1), . . . , χ(an)), and assume (without loss
of generality) that a1 = 1. Since the irreducible characters of a finite group are linearly
independent, the linear span of the σχ is all diagonal matrices. Consequently, the condition

tσχt
−1 = kt,χσχ ∀χ ∈ Â

gives that t preserves the diagonal matrices. It follows that

t ∈ NGL(U)(diagonal matrices) = (permutation matrices)× (diagonal matrices).

Therefore, t can be written as t = s−1d for some permutation matrix s and some diagonal
matrix d. Since conjugation preserves eigenvalues (and hence the set of diagonal entries of
σχ), and since χ(a1) = 1, we get that

(9) tσχt
−1 = s−1σχs = χ(s · 1)σχ ∀χ ∈ Â,

where s is viewed as a permutation of the elements of A. It follows that kt,χ = χ(s · 1), and
hence that s = τ−1s·1 .

Next, by our assumption that t ∈ π−1(CPGL(U)(π(〈A, Â〉))), we have that tτat
−1 = `t,aτa

for all a ∈ A and for some `t,a ∈ C∗. Now, observe that the τa’s send class functions on A to
class functions on A. (All functions on A are class functions, since A is abelian.) Recalling
that the irreducible characters are a basis for the class functions, it follows that the τa’s can
be diagonalized with respect to the irreducible characters {χ1, . . . , χn}. Since

(τaχi)(x) = χ(xa−1) = χ(a−1)χ(x),

we can write τa = diag(χ1(a
−1), . . . , χn(a−1)). Since the irreducible characters of a finite

group are linearly independent, the linear span of the τa is all diagonal matrices. Therefore,
with respect to this basis of irreducible characters, t = (s′)−1d ′ for some permutation matrix
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s′ and some diagonal matrix d ′. Assuming (without loss of generality) that χ1 is the trivial
character, it follows that

(10) tτat
−1 = (s′)−1τas

′ = χs′·1(a
−1)τa ∀a ∈ A,

where s′ is viewed as a permutation of the indices of the irreducible characters {χ1, . . . , χn}.
This gives that `t,a = χs′·1(a

−1), and hence that s′ = σ−1χs′·1 .

Combining (8), (9), and (10), we see that the element σ−1χs′·1τ
−1
s·1 t commutes with every

element of π(〈A, Â〉):
(σ−1χs′·1τ

−1
s·1 t)σχ(σ−1χs′·1τ

−1
s·1 t)

−1 = χ(s · 1)σ−1χs′·1(τ−1s·1 σχτs·1)σχs′·1 = σ−1χs′·1σχσχs′·1 = σχ, and

(σ−1χs′·1τ
−1
s·1 t)τa(σ

−1
χs′·1

τ−1s·1 t)
−1 = χs·1(−a)σ−1χs′·1(τ−1s·1 τaτs·1)σχs′·1 = χs·1(−a)σ−1χs′·1τaσχs′·1 = τa.

Finally, let H = A.Â.S1; then H acts on U by unitary operators (as described above), and
these actions realize U as a representation of H:

H → GL(U)

a · χ · z 7→ τa · σχ · z,

where a ∈ A, χ ∈ Â, and z ∈ S1. Moreover, we have by the Stone-von Neumann theorem
(see [7] or [4, Chapter 14]) that U is irreducible as a representation of H. From the above,
we have that σ−1χs′·1τ

−1
s·1 t defines an H-linear map U → U . It follows from Schur’s lemma that

σ−1χs′·1τ
−1
s·1 t = λI for some λ ∈ C∗. Therefore, t = λτs·1σχs′·1 , giving that π(t) ∈ π(〈A, Â〉), as

desired. �

Lemma 10.6. Let A be a finite abelian group of order n, let V = L2(A,C), and let W be

an m-dimensional vector space. Then there is a natural isomorphism V ⊗W ∼−→ L2(A,W ).

Proof. To define a map V ⊗W → L2(A,W ), it suffices to define a map on the simple tensors
(f, w) ∈ V ⊗W , and then extend by linearity. With this in mind, define ψ : V ⊗W →
L2(A,W ) as follows:

ψ : V ⊗W → L2(A,W )

(f, w) 7→ f · w := [a 7→ f(a)w].

It is easy to check that ψ is well-defined (i.e. that pairs of simple tensors (f, w) ∼ (f ′, w′)
map to the same element of L2(A,W )). It remains to show that ψ is injective and surjective.
However, since dim(V ⊗W ) = dim(L2(A,W )) = nm, it suffices to show that ψ is injective.

To this end, suppose that
∑k

i=1 fi · wi = 0 for some f1, . . . , fk ∈ V and w1, . . . , wk ∈ W .
Assume, without loss of generality, that the wi’s are linearly independent. Then for any
a ∈ A,

∑k
i=1 fi(a)wi = 0, which gives that fi = 0 for all i. It follows that ψ is injective,

completing the proof. �

Theorem 10.7. Let A be a finite abelian group of order n, and let Â denote its group of
characters. Let V be an n-dimensional complex vector space, and W an m-dimensional
complex vector space (for some m ∈ N). Let (H1, H2) be a dual pair in GL(W ). Then

(π(〈A, Â,H1〉), π(〈A, Â,H2〉))
can be realized as a dual pair in PGL(V ⊗W ), where π : GL(U) → PGL(U) denotes the
canonical projection.



21

Proof. Lemma 10.6 shows that we can view V ⊗ W as the space of functions L2(A,W ),
where V is viewed as L2(A,C). A function f ∈ L2(A,W ) can be viewed as a column vector

[f(a1) · · · f(an)]T , where each f(ai) ∈ W . For each χ ∈ Â, we can view

σχ : V ⊗W → V ⊗W
f(x) 7→ χ(x)f(x)

as a block diagonal matrix Aχ = diag(χ(a1)Im, . . . , χ(an)Im). Additionally, since multiplying
by a−1 permutes the elements of A, each

τa : V ⊗W → V ⊗W
f(x) 7→ f(xa−1)

can be represented as an (m×m)-block permutation matrix Aa. Each matrix B ∈ GL(W )
gets embedded into GL(V ⊗W ) as B := diag(B, . . . , B). It is straightforward to see that any
B commutes with any Aχ and any Aa. Moreover, the calculations in the proof of Proposition
10.5 show that the Aχ’s and Aa’s commute up to scalars. Consequently, the inclusions

π(〈A, Â,H1〉) ⊆ CPGL(V⊗W )(π(〈A, Â,H2〉)) and π(〈A, Â,H2〉) ⊆ CPGL(V⊗W )(π(〈A, Â,H1〉))
are clear.

Now, let M ∈ π−1(CPGL(V⊗W )(π(〈A, Â,H1〉))). Then, in particular, M commutes with
each Aχ up to a scalar. By the same argument as in the proof of Proposition 10.5, this
shows that M is a product of an (m×m)-block permutation matrix S and an (m×m)-block
diagonal matrix D, and that S = Aa for some a ∈ A.

Let Z be the group of mn-th roots of unity. By Lemma 10.1 and the argument above, we
have that both M and S commute with each Aχ and Aa up to an element of Z; therefore,
we see that D = S−1M does as well. Write D = diag(D1, . . . , Dn), where Di ∈ GL(W ) for
1 ≤ i ≤ n. We claim that for each 1 < i ≤ n, Di = ziD1 for some zi ∈ Z. Indeed, τa−1

i a1
acts

on f ∈ V ⊗W as follows:

τa−1
i a1
· [f(a1), . . . , f(ai), . . . , f(an)]T = [f(ai), . . . , f(aia

−1
1 ai), . . . , f(ana

−1
1 ai)]

T .

Therefore, conjugating D by Aa−1
i a1

yields D′ = diag((D′1 = Di), . . . , D
′
i, . . . , D

′
n). But on

the other hand, Aaia−1
1
DA−1

aia
−1
1

= ziD for some zi ∈ Z (by Lemma 10.1). It follows that

D′ = ziD and hence that Di = ziD1. Consequently,

D = diag(D1, z2D1, . . . , znD1) for some z2, . . . , zn ∈ Z.
Therefore, since D commutes with each Aχ and Aa (up to an element of Z), so does C :=
diag(Im, z2Im, . . . , znIm). But C lies in the image of GL(V ) in GL(V ⊗W ), so this gives that

C must equal λ·Aχ for some λ ∈ C∗ and some χ ∈ Â. Therefore, D = λ·Aχ·diag(D1, . . . , D1),
and hence M = SD = λ ·Aa ·Aχ ·diag(D1, . . . , D1). Since diag(D1, . . . , D1) lies in the image
of GL(W ) in GL(V ⊗W ), we see that D1 commutes with every element of H1 (up to a root of
unity). But since H1 is connected (by Remark 3.4), this means that D1 in fact commutes with

every element of H1, giving D1 ∈ CGL(W )(H1) = H2. It follows that π(M) ∈ π(〈A, Â,H2〉),
so we get CPGL(V⊗W )(π(〈A, Â,H1〉)) = π(〈A, Â,H2〉). Reversing the roles of H1 and H2

further gives that CPGL(V⊗W )(π(〈A, Â,H2〉)) = π(〈A, Â,H1〉), completing the proof. �

Theorem 10.8. Let A be a finite abelian group of order n, and let Â denote its group of
characters. Let V be an n-dimensional complex vector space, and W an m-dimensional
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complex vector space (for some m ∈ N). Let (H1, H2) be a dual pair in GL(W ). Then(
π(〈Â,H1〉), π(〈A, (H2)

n〉)
)

can be realized as a dual pair in PGL(V ⊗W ), where π : GL(U) → PGL(U) denotes the
canonical projection.

Proof. Let a1, . . . , an denote the elements of A. As in the proof of Proposition 10.7, let us
view V ⊗W as the space of function L2(A,W ), where V is viewed as L2(A,C); additionally,

view χ ∈ Â as Aχ = diag(χ(a1)Im, . . . , χ(an)Im), and view each a ∈ A as an (m × m)-
block permutation matrix Aa. Moreover, each h ∈ H1 can be viewed as diag(h, . . . , h) ∈
GL(V ⊗W ), whereas each (h1, . . . , hn) ∈ (H2)

n can be viewed as diag(h1, . . . , hn).

We start by showing that CPGL(V⊗W )(π(〈A, (C∗)n, H2〉)) = π(〈Â,H1〉), where C∗ is realized
as the set of matrices {diag(c1Im, . . . , cnIm) : c1, . . . , cn ∈ C∗}. By Fact 1.2, this will give

that π(〈Â,H1〉) is a member of a dual pair in PGL(V ⊗W ), so to finish the proof it will

suffice to show that CPGL(V⊗W )(π(〈Â,H1〉)) = π(〈A, (H2)
n〉).

Let M ∈ π−1(CPGL(V⊗W )(π(〈A, (C∗)n, H2〉))). Since Â ⊆ (C∗)n, we see that

CPGL(V⊗W )(π(〈A, (C∗)n, H2〉)) ⊆ CPGL(V⊗W )(π(〈A, Â,H2)) = π(〈A, Â,H1〉),
where we have used Theorem 10.7. Hence we can write M = λ · Aa · Aχ · h for some

λ ∈ C∗, a ∈ A, χ ∈ Â, and h ∈ H1. But since M commutes (up to scalar) with all

of (C∗)n, we see that Aa = Imn. It follows that π(M) ∈ π(〈Â,H1〉), and hence that

CPGL(V⊗W )(π(〈A, (C∗)n, H2〉)) ⊆ π(〈Â,H1〉); inclusion the other way is clear, so we have

CPGL(V⊗W )(π(〈A, (C∗)n, H2〉)) = π(〈Â,H1〉).
It remains to show that CPGL(V⊗W )(π(〈Â,H1〉)) = π(〈A, (H2)

n〉). To this end, let N ∈
π−1(CPGL(V⊗W )(π(〈Â,H1〉))). Then, in particular, N commutes with each Aχ up to a scalar,
and hence must be of the form Aa ·diag(D1, . . . , Dn) for some a ∈ A and some D1, . . . , Dn ∈
GL(W ) (by the same argument as in the proof of Theorem 10.7). Moreover, N commutes (up
to a scalar) with diag(h, . . . , h) for each h ∈ H1, meaning each Di must commute with each
h ∈ H1 (up to a scalar). Since H1 is connected, we in fact have that Di ∈ CGL(W )(H1) = H2.

Hence D ∈ (H2)
n and π(N) ∈ π(〈A, (H2)

n〉). It follows that CPGL(V⊗W )(π(〈Â,H1〉)) ⊆
π(〈A, (H2)

n〉); since containment in the other direction is clear, this completes the proof. �

Example 10.9. Let A be a finite abelian group of order 2, and let V be the space of

functions on A. Then Â = 〈σχ〉, where σχ = diag(1,−1) and A = 〈τa〉, where τa = ( 1
1 ).

Let (H1, H2) = (GL(2,C), GL(1,C)). Then by Theorem 10.8,

〈Â,H1〉 =

〈(
I2
−I2

)
,



a b
c d

a b
c d

 : ad− bc 6= 0


〉
, and

〈A, (H2)
2〉 =

〈(
I2

I2

)
,



x

x
y

y

 : x, y ∈ C∗


〉

descend to a dual pair in PGL(V ⊗W ).
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10.3. Have We Found All of the Dual Pairs in PGL(U)? Let U be a finite dimensional
complex vector space, and let π : GL(U) → PGL(U) denote the canonical projection. As
previously mentioned, the connected dual pairs in PGL(U) are in bijection with the dual
pairs in GL(U). Additionally, Theorems 10.7 and 10.8 describe two classes of disconnected
dual pairs in PGL(U). It is currently unknown whether additional classes of disconnected
dual pairs in PGL(U) exist. However, there is an approach which, if successful, could help
reveal new classes of dual pairs in PGL(U) or prove that all PGL(U) dual pairs have been
accounted for. In the remainder of this section, we describe this approach.

Broadly, the aforementioned approach is to take an arbitrary dual pair (G1, G2) in PGL(U)

and to classify the possible preimages G̃1 := π−1(G1) and G̃2 := π−1(G2). These preimages
appear in the short exact sequences

(11) 1→ G̃1

◦
→ G̃1 → Γ1 → 1 and 1→ G̃2

◦
→ G̃2 → Γ2 → 1,

where Γ1 := G̃1/G̃1

◦
' G1/G

◦
1 and Γ2 := G̃2/G̃2

◦
' G2/G

◦
2, and where these isomorphisms

follow from the explanation given at the beginning of the proof of Proposition 10.3. The

following theorem and corollary provide information regarding G̃1

◦
, G̃2

◦
, Γ1, and Γ2 which

has the potential to be helpful for classifying the possible G̃1 and G̃2.

Theorem 10.10 (D. Vogan). Let (G1, G2) be a dual pair in PGL(U), and let G̃1, G̃2 denote
the preimages of G1 and G2 (respectively) in GL(U). Then the component groups

Γ1 := G1/G
◦
1 ' G̃1/G̃1

◦
and Γ2 := G2/G

◦
2 ' G̃2/G̃2

◦

are dual finite abelian groups.

Proof. Recall that for any algebraic group G, the centralizer in G of any subset of G is
algebraic. As a consequence, we have that any member of a dual pair is algebraic, and hence
that Γ1 and Γ2 are finite. As in the proof of Proposition 10.3, the mutual centralizer relation
gives the map

z : G̃1 × G̃2 → (n-th roots of unity)

(x, y) 7→ xyx−1y−1,

where n := dimU . As established in the proof of Proposition 10.3, z must be constant on

each connected component of G̃1 × G̃2, and hence must descend to a map

z : Γ1 × Γ2 → (n-th roots of unity).

It is not hard to check from the defining equation that z is actually a group homomorphism for

both G̃1 and G̃2 (i.e. that z(x1x2, y) = z(x1, y)z(x2, y) and that z(x, y1y2) = z(x, y1)z(x, y2)
for all x1, x2, x ∈ G1 and all y1, y2, y ∈ G2). It follows that z arises from a group homomor-
phism

Z : Γ1 → Γ̂2

a 7→ z(a, ·).

We will show that Z is in fact an isomorphism. Towards proving injectivity, define Γ′1 :=

kerZ. Then Γ′1 corresponds to the following subgroup of G̃1:

G̃′1 := {x ∈ G̃1 : xyx−1 = y for all y ∈ G̃2}.
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Recall that

G̃1 = {t ∈ GL(U) : tyt−1y−1 ∈ C∗ for all y ∈ G̃2}.
Therefore, we see that

G̃′1 = {t ∈ GL(U) : tyt−1 = y for all y ∈ G̃2} = CGL(U)(G̃2).

Since G̃′1 is a centralizer in GL(U), it is part of a dual pair (G̃′1, CGL(U)(G̃′1)), and hence is
connected (by Remark 3.4). It follows that Γ′1 is trivial, and hence that Z is injective. Since

Γ̂2 is abelian, this gives that Γ1 is abelian as well. Switching the roles of Γ1 and Γ2 in this
argument gives that

Z ′ : Γ2 → Γ̂1

α 7→ z(·, α)

is injective, and that Γ2 is abelian.
Finally, since the dual group functor is a contravariant exact functor for locally compact

abelian groups, the injectivity of Z ′ implies the surjectivity of Z, completing the proof. �

As a particular consequence of Theorem 10.10, we obtain information regarding the iden-
tity components of preimages of members of PGL(U) dual pairs:

Corollary 10.11. Let (G1, G2) be a dual pair in PGL(U) with preimages G̃1 and G̃2 in
GL(U). Then

G̃1

◦
= CGL(U)(G̃2) =

∏
i

GL(Vi) and G̃2

◦
= CGL(U)(G̃1) =

∏
j

GL(V ′j ),

where the Vi’s and Wj’s are finite dimensional complex vector spaces satisfying U '
⊕

i Vi⊗
Wi '

⊕
j V
′
j ⊗W ′

j for some sets of finite dimensional complex vector spaces {Wi} and {W ′
j}.

Proof. The equalities G̃1

◦
= CGL(U)(G̃2) and G̃2

◦
= CGL(U)(G̃1) follow from the proof of

Theorem 10.10. Then by Fact 1.2 and Corollary 3.3, we see that CGL(U)(G̃2) =
∏

iGL(Vi)

and that CGL(U)(G̃1) =
∏

j GL(V ′j ) for some {Vi} and {V ′j } as described in the lemma
statement. �

Let (G1, G2) be a dual pair in PGL(U) with preimages G̃1 and G̃2 in GL(U). Define

Γ := G1/G
◦
1 ' G̃1/G̃1

◦
. Then by Theorem 10.10, Γ̂ ' G2/G

◦
2 ' G̃2/G̃2

◦
. We now require a

fact about the algebraic extensions of reductive groups:

Proposition 10.12 ([10, Theorem 1.6]). Let G be a complex reductive algebraic group and Γ
a finite group. Then the equivalence classes of algebraic extensions of Γ by G are in bijection
with the equivalence classes of algebraic extensions of Γ by Z(G).

Proof. Since [10] is unpublished and is not yet available online, we outline a proof of this fact.
It is a standard fact [2] that the group of algebraic automorphisms Aut(G) is the semidirect
product of the group G/Z(G) of inner automorphisms and the group of automorphisms of
the based root datum of G. The sections required for the semidirect product structure can
be constructed using a pinning of G [9]. These same ideas can be used to show the desired
result. �
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Now, since G̃1

◦
, G̃2

◦
are reductive and Γ, Γ̂ are finite, we have from Proposition 10.12 that

giving algebraic extensions as in (11) is equivalent to giving algebraic extensions

(12) 1→ Z(G̃1

◦
)→ E1 → Γ→ 1 and 1→ Z(G̃2

◦
)→ E2 → Γ̂→ 1.

Moreover, it is well-known that the extensions in (12) are parametrized by the group coho-

mologies H2(Γ, Z(G̃◦)) and H2(Γ̂, Z(H̃◦)). Additionally, it follows from Corollary 10.11 that

Z(G̃1

◦
) = (C∗)r1 and Z(G̃2

◦
) = (C∗)r2 for some r1, r2 ∈ N. Therefore, to understand the

possible G̃1 and G̃2, it suffices to understand the group cohomology H2(Γ, (C∗)r) for r ∈ N.

Proposition 10.13. Let n, r ∈ N. Then for any action of Z/nZ on (C∗)r by conjugation,
we have

H2(Z/nZ, (C∗)r) = 0.

Proof. Suppose we have

(13) 1→ (C∗)r → E
π−→ Z/nZ→ 1,

where Z/nZ acts on (C∗)r by conjugation. It suffices to show that (13) splits.
Let Z/nZ = 〈E〉, and let E ′ be a preimage of E in E. We have that E = 〈(C∗)r, E ′〉. Note

that π((E ′)n) = π(E ′)n = En = 1. Therefore, (E ′)n ∈ kerπ ' (C∗)r.
We would like to show that there exists a group homomorphism γ : Z/nZ→ E such that

π ◦ γ = idZ/nZ. To this end, let z := (E ′)n ∈ (C∗)r. If z = (z1, . . . , zn), put z0 := z−1/n =

(z
−1/n
1 , . . . , z

−1/n
n ) ∈ (C∗)r. Define

γ : Z/nZ→ E

1 7→ 1

E 7→ z0E ′

E ` 7→ γ(E)` ∀` ∈ N.
We claim that γ is a group homomorphism satisfying π ◦ γ = idZ/nZ.

To show that γ is a group homomorphism, it suffices to show that γ(E)n = 1. Since
z = (E ′)n, we have that z commutes with E ′; hence, so does z0. Therefore,

γ(E)n = (z0E ′)n = zn0 (E ′)n = z−1z = 1,

as desired. Finally, note that

π(γ(E `)) = π(γ(E)`) = π(γ(E))` = E `,
completing the proof. �

As a consequence of this proposition, we have that if Γ is cyclic, then G̃1 = G̃1

◦
o Γ and

G̃2 = G̃2

◦
o Γ̂ (with possibly trivial actions by Γ and Γ̂). In the case that Γ is cyclic, it

remains to consider the possible pairs of actions of Γ and Γ̂ on G̃1

◦
and G̃2

◦
, respectively, and

to understand how the structure of the resulting dual pair (G1, G2) relates to those described
in Theorems 10.7 and 10.8. In the case that Γ is not cyclic, it remains to answer these same
questions, as well as to compute the cohomology H2(Γ, (C∗)r).

11. Dual Pairs in PSp(U)

Throughout this section, let U be a finite dimensional complex symplectic vector space.
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11.1. Dual Pairs in PSp(V ⊗W ). Let H be a complex reductive algebraic group. Consider
an algebraic symplectic representation ϕ : H → Sp(U), and suppose that U ' V ⊗ W ,
where V is the unique irreducible subrepresentation of U (up to isomorphism), and where
W := HomH(V, U). Moreover, suppose that V is an n-dimensional complex orthogonal
vector space, and that W is an m-dimensional symplectic vector space.

From Section 4, we know that (O(V ), Sp(W )) is a dual pair in Sp(V ⊗ W ) under the
embeddings ι : O(V ) ↪→ Sp(V ⊗W ) and κ : Sp(W ) ↪→ Sp(V ⊗W ) described in Section 2.
The results that follow in this subsection collectively prove the following theorem:

Theorem 11.1. Let V be an n-dimensional complex orthogonal vector space and W an m-

dimensional complex symplectic vector space. Define S(W ) :=

〈
κ(Sp(W )),

(
Im

−Im

)〉
⊆

Sp(V ⊗W ). Let π : Sp(V ⊗W )→ PSp(V ⊗W ) denote the canonical projection. Then the
following hold:

(1) If n = 2, then (π(O(V )), π(S(W ))) is a dual pair in PSp(V ⊗W ).
(2) If n 6= 2, then (π(O(V )), π(Sp(W ))) is a dual pair in PSp(V ⊗W ).

Proof. This follows directly from Proposition 11.2 (which proves (1)), and Proposition 11.4
(which proves (2)). �

11.1.1. PSp(V ⊗W ) with dimV = 2.

Proposition 11.2. Let V be a 2-dimensional complex orthogonal vector space and W an
m-dimensional complex symplectic vector space. Let S(W ) be as defined above, and let
π : Sp(V ⊗W )→ PSp(V ⊗W ) denote the canonical projection. Then (π(O(V )), π(S(W )))
is a dual pair in PSp(V ⊗W ).

Proof. We first show CPSp(V⊗W )(π(O(V ))) = π(S(W )). LetM ∈ π−1(CPSp(V⊗W )(π(O(V )))).
Then writing out the entry-wise implications of the relation

(14) M

(
Im
−Im

)
= ±

(
Im
−Im

)
M

gives that M has the block form

(
M11

M22

)
if the sign in (14) is positive, and has the

2× 2 block form

(
M12

M21

)
if the sign in (14) is negative (where M11,M12,M21,M22 are

m×m matrices). Subsequently writing out the entry-wise implications of the relation

(15) M

(
(cos θ)Im (sin θ)Im
−(sin θ)Im (cos θ)Im

)
= ±

(
(cos θ)Im (sin θ)Im
−(sin θ)Im (cos θ)Im

)
M

further gives that M has the block form

(
M11

M11

)
if the signs in (14) and (15) are both

positive, and that M has the block form

(
M12

−M12

)
if the signs in (14) and (15) are

negative and positive, respectively. Moreover, we see that the remaining sign combinations
are impossible. Finally, requiring that MΩMT = Ω shows that M11 and M12 are in Sp(W ).
Consequently, CPSp(V⊗W )(π(O(V ))) ⊆ π(S(W )). On the other hand, it is straightforward
to check that π(S(W )) ⊆ CPSp(V⊗W )(π(O(V ))). It follows that CPSp(V⊗W )(π(O(V ))) =
π(S(W )), as desired.
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We have left to show that CPSp(V⊗W )(π(S(W ))) = π(O(V )). To this end, let N ∈
π−1(CPSp(V⊗W )(π(S(W )))). Then, in particular,

(16) N

(
A

A

)
= ±

(
A

A

)
N for all A ∈ Sp(W ).

Writing out the entry-wise implications of (16) gives that N is of the form N =

(
aIm bIm
cIm dIm

)
for some a, b, c, d ∈ C. The relation NΩNT = Ω further gives that a2 + b2 = c2 + d2 = 1
and that ac+ bd = 0. It follows that CPSp(V⊗W )(π(S(W ))) ⊆ π(O(V )). On the other hand,

it is straightforward to check that both

(
(cos θ)Im (sin θ)Im
−(sin θ)Im (cos θ)Im

)
and

(
Im
−Im

)
commute

with

(
Im

−Im

)
(up to ±1). Therefore, CPSp(V⊗W )(π(S(W ))) = π(O(V )). �

11.1.2. PSp(V ⊗W ) with dimV 6= 2.

Lemma 11.3. Let V be an n-dimensional complex orthogonal vector space and W an m-
dimensional complex symplectic vector space. Assume that n 6= 2, and let π : Sp(V ⊗W )→
PSp(V ⊗W ) denote the canonical projection. Then CSp(V⊗W )(SO(V )) = Sp(W ).

Proof. Recall from Lemma 8.2 that the standard representation of SO(V ) ' SO(n,C) is
irreducible for n 6= 2. It follows by Schur’s lemma that CSp(V⊗W )(SO(V )) ⊆ Sp(W ). On the
other hand, we have that CSp(V⊗W )(SO(V )) ⊇ CSp(V⊗W )(O(V )) = Sp(W ), where we have
used Theorem 4.4. �

Proposition 11.4. Let V be an n-dimensional complex orthogonal vector space and W an m-
dimensional complex symplectic vector space. Assume that n 6= 2, and let π : Sp(V ⊗W )→
PSp(V ⊗W ) denote the canonical projection. Then (π(O(V )), π(Sp(W ))) is a dual pair in
PSp(V ⊗W ).

Proof. Since Sp(W ) is connected and Z(Sp(V ⊗ W )) = {±Im} is discrete, we can apply
Theorem 9.1 to get that

CPSp(V⊗W )(π(Sp(W ))) = π(CSp(V⊗W )(Sp(W ))) = π(O(V )).

Moreover, it is clear that π(Sp(W )) ⊆ CPSp(V⊗W )(π(O(V ))). It remains to show that
CPSp(V⊗W )(π(O(V ))) ⊆ π(Sp(W )). But this follows from

π−1(CPSp(V⊗W )(π(O(V )))) ⊆ CSp(V⊗W )(SO(V )) = Sp(W ),

where the containment comes from Corollary 9.3 and the equality comes from Lemma 11.3.
This completes the proof. �

11.2. Dual Pairs in PSp(
⊕

Vγ ⊗ Wγ). Let H be a complex reductive algebraic group.
Consider an algebraic symplectic representation ϕ : H → Sp(U), and suppose that U '⊕

γ Vγ ⊗Wγ, where {Vγ}γ = {Vµ, Vν}µ6'µ∗, ν'ν∗ is the set of nonisomorphic irreducible sub-

representations of U , and where Wγ := HomH(Vγ, U).

Proposition 11.5. Let U , {Vγ}, {Wγ} be as defined above, with |{γ}| ≥ 2. Suppose that
each Vγ is orthogonal. Then(

π

(∏
γ

O(Vγ)

)
, π

(∏
γ

Sp(Wγ)

))
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is a dual pair in PSp(U), where π : Sp(U)→ PSp(U) denotes the canonical projection.

Proof. For convenience, write G1 :=
∏

γ O(Vγ) and G2 :=
∏

γ Sp(Wγ). From Section 4, we

have that (G1, G2) is a dual pair in Sp(U). Moreover, notice that G2 is connected. Therefore,
Theorem 9.1 gives that CPSp(U)(π(G2)) = π(CSp(U)(G2)) = π(G1).

Next, it is clear that CPSp(U)(π(G1)) ⊇ π(G1). It remains to show that CPSp(U)(π(G1)) ⊆
π(G2). To this end, let M ∈ π−1(CPSp(U)(π(G1))). By Corollary 9.3, M ∈ CSp(U)(G

◦
1), where

G◦1 =
∏
γ

SO(Vγ).

Following Lemma 8.3, write {γ} = {γ1, . . . , γ`}, ni := dimVγi , and mi := dimWγi , and
assume (without loss of generality) that n1 = · · · = nk = 2 and that nk+1, . . . , n` 6= 2. By
Lemma 8.3, it follows that

M ∈
∏
γ

CSp(Vγ⊗Wγ)(SO(Vγ)).

We can therefore write M = diag(M1, . . . ,M`), where Mi ∈ CSp(Vγi⊗Wγi )
(SO(Vγi)). By

Lemma 11.3, CSp(Vγj⊗Wγj )
(SO(Vγj)) = Sp(Wγj) for all k + 1 ≤ j ≤ `. Additionally, we

have that Mi ∈ π−1(CPSp(Vγi⊗Wγi
(π(O(Vγi))))) = S(Wγi) for 1 ≤ i ≤ k, where we have used

Theorem 11.1, and where

S(Wγi) :=

〈
κ(Sp(W )),

(
Imi

−Imi

)
=: Ji

〉
.

Suppose, for the sake of contradiction, that Mi = Ji for some fixed 1 ≤ i ≤ k.
Consider the set of dimU×dimU block diagonal matrices, where the diagonal blocks have

sizes m1n1×m1n1, . . . ,m`n`×m`n`. Let Ni denote the matrix in this set that is the identity
on every block except the i-th block, on which it equals diag(Imi ,−Imi). Then Ni ∈ G1.
However, MN 6= ±NM (since |{γ}| ≥ 2), contradicting M ∈ π−1(CPSp(U)(π(G1))). It
follows that Mi ∈ Sp(Wγi) for all 1 ≤ i ≤ `, completing the proof. �

Theorem 11.6. Let U , {Vγ} = {Vµ, Vν}, {Wγ} = {Wµ,Wν} be as defined above, with
|{γ}| ≥ 2. Thenπ

∏
µ6'µ∗

GL(Vµ)
∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν)

 , π

∏
µ6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

Sp(Wν)
∏
ν'ν∗
sympl.

O(Wν)




is a dual pair in PSp(U), where π : Sp(U)→ PSp(U) denotes the canonical projection.

Proof. Write

G1 :=
∏
µ 6'µ∗

GL(Vµ)
∏
ν'ν∗
orthog.

O(Vν)
∏
ν'ν∗
sympl.

Sp(Vν), and

G2 :=
∏
µ 6'µ∗

GL(Wµ)
∏
ν'ν∗
orthog.

Sp(Wν)
∏
ν'ν∗
sympl.

O(Wν).

By Theorem 4.4, we have that (G1, G2) is a dual pair in Sp(U). Therefore, we certainly have
that π(G1) ⊆ CPSp(U)(π(G2)) and that π(G2) ⊆ CPSp(U)(π(G1)).



29

Let M ∈ π−1(CPSp(U)(π(G1))). Then by Corollary 9.3, M ∈ CSp(U)(G
◦
1). From Lemmas

8.3, 3.1, and 4.3, we further have that

(17) M ∈
∏
µ6'µ∗

Cµ(GL(Vµ))×
∏
ν'ν∗
orthog.

Cν(O(Vν))×
∏
ν'ν∗
sympl.

Cν(Sp(Vν)),

where Cγ(·) := CSp(Vγ⊗Wγ)(·). Moreover, we have that M ∈ π−1(CPSp(U)(π(G1))), so (17)
gives that

M ∈
∏
µ 6'µ∗

Cµ(GL(Vµ))× π−1(CPSp(U)(π(
∏
ν'ν∗
orthog.

O(Vν))))×
∏
ν'ν∗
sympl.

Cν(Sp(Vν))

⊆
∏
µ6'µ∗

GL(Wµ)×
∏
ν'ν∗
orthog.

Sp(Wν)×
∏
ν'ν∗
sympl.

O(Wν) = G2,

where we have used Theorem 4.4 and Proposition 11.5. It follows that CPSp(U)(π(G1)) ⊆
π(G2). Reversing the roles of G1 and G2 shows that CPSp(U)(π(G2)) ⊆ π(G1), completing
the proof. �
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