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Abstract

The celebrated resolution of Shamir’s conjecture by Johannson, Kahn, and
Vu [2] shows that, with high probability, perfect matchings exist in the bino-
mial k-uniform hypergraph Hk

n,p for p = ωk(log n/nk−1). Here, we consider the

problem of approximately decomposing Hk
n,p into edge-disjoint perfect match-

ings. Using a novel method of generating random hypergraphs, known as ‘on-
line sprinkling’, it was shown by Ferber and Vu that this can be done with
high probability, provided that p = ω(log4k(n)/nk−1). By refining the Ferber-
Vu analysis, we show that, given a conjectural local resilience version of the
Johannson-Kahn-Vu result, this can be done at the asymptotically optimal
threshold p = ωk(log n/nk−1).
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1 Introduction

In 2008, Johannson, Kahn, and Vu [2] resolved the long-standing so-called Shamir’s
problem in probabilistic combinatorics by determining the asymptotic threshold p(n)
for which the binomial random k-uniform hypergraph Hk

n,p(n) has a perfect matching

with high probability (where we take n to be a multiple of k). A standard ‘coupon-
collector’ argument shows that unless p = Ω(log n/nk−1), Hk

n,p has isolated vertices,
and hence, cannot contain a perfect matching. Using a highly ingenious argument,
they showed that this lower bound is essentially tight i.e. for p ≥ C(k) log n/nk−1,
Hk
n,p contains a perfect matching with high probability.

Given this result, and motivated by the long line of work in graph decomposi-
tions (see, e.g., the survey [7] and the references therein), it is natural to ask when
Hk
n,p can approximately be decomposed into edge-disjoint perfect matchings. This

question was first considered by Frieze and Krivelevich [8], who showed that such a
decomposition exists with high probability for p = ωk(log2 n/n). Subsequently, using
a novel method for generating binomial hypergraphs known as ‘online sprinkling’,
Ferber and Vu [3] considerably improved this bound to p = ωk(log5k n/nk−1), which
is optimal up to the exponent of the logarithmic factor. More specifically in this
paper, we focus our study on the random k-partite hypergraph model Hk

n×k,p. It is
the random hypergraph on the vertex set consisting of k parts with n vertices each,
where each possible edge (formed by selecting 1 vertex from each part) is included
in the hypergraph independently with probability p. On this more specific model,
Ferber and Vu’s arguments give a bound of p = ωk(log4k n/nk−1).

The main open problem in the paper of Ferber and Vu is whether the factor log4k n
can be replaced by logC n for some constant C independent of k (ideally C = 1). Here,
by carrying out a variation of the Ferber-Vu analysis, we show that this can indeed
be done, provided that one has a ‘local resilience’ version of the Johansson-Kahn-Vu
result, which we now discuss.

The study of the local resilience of random (hyper)graph properties was initiated
by Sudakov and Vu in 2007 [9], and is centered around the following question: given
a monotone increasing (hyper)graph property P and a probability p(n), determine
the largest value r such that, almost surely, Hk

n,p(n) possesses property P even after
removing an arbitrary hypergraph of maximum vertex-degree r. Note that this is
equivalent to determining the largest value of r such that for almost all samples of
Hk
n,p, an adversary cannot ‘destroy’ the property P by removing at most r edges

incident to each vertex. Whereas a lot of local resilience results have been proved
for random graphs for the property of containing a specified large substructure (see,
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e.g., the survey [10] and the references therein), much less is known for the case of
large substructures in random hypergraphs. In particular, at the time of writing, we
are not aware of any local resilience results in random hypergraphs at the ‘correct
threshold’ i.e. when p(n) is the threshold for the appearance of a single copy of the
large substructure.

Here, we conjecture that a local resilience version of the Johansson-Kahn-Vu result
should hold for p = ωk(log n/nk−1) and r = αnk−1p, for some sufficiently small
constant α > 0.

Conjecture 1.1. Fix k ≥ 2. Then there exists a sufficiently large constant K > 0
and a sufficiently small constant α > 0 such that, if p = ωk(log n/nk−1), then

lim
n→∞

Pr(Hk
n×k,p \ E(H∗) has a 1-factor) = 1

for all H∗, where H∗ is a hypergraph with maximum degree r = αnk−1p that is in
terms of the sampled Hk

n×k,p.

The evidence in support of this conjecture is the widespread belief that the ‘only’
obstruction to the presence of perfect matchings in random hypergraphs is the pres-
ence of isolated vertices; indeed, this is formalized in very recent (and as of now
unpublished) work of Kahn, who shows that when we generate a random hypergraph
sequentially by adding edges uniformly at random from among all the non-edges,
then almost surely, the first time a perfect matching appears coincides with the first
time when there are no isolated vertices. Given this intuition, along with the fact
that deleting only αnk−1p edges incident to each vertex in Hk

n,p cannot create isolated
vertices (as each vertex has expected degree nk−1p), we are led to believe that the
above conjecture should hold.

We do not go through Ferber and Vu’s arguments fully, as the most wasteful
part of their argument occurs at the end of their proof. In order to emphasize our
contribution to the problem, we begin, in Section 2, by outlining the first half of their
proof and then delving more deeply into the second half of the proof, where we believe
there is room for improvement that will enable us to close the gap on the 1-factor
packing threshold. In Section 3, we prove a generalized version of the Johannson-
Kahn-Vu solution that is necessary for our arguments in Section 2. Lastly, in Section
4, we prove a collection of lemmas necessary for our arguments in Section 3.
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2 Recycled Sprinkles

Fundamental to Ferber and Vu’s arguments is the technique of “online sprinkling”
(sometimes referred to as “multiple exposures”). It is a means of exposing some infor-
mation about a random event but not all the information, leaving some randomness
to be exposed later. More specifically, if we have 1 − p =

∏`
i=1(1 − pi) for some pi,

then we see Hk
n,p is distributed identically to Hk

n,p1
∪Hk

n,p2
∪· · ·∪Hk

n,p`
. In this way, we

can sample Hk
n,p incrementally, first sampling Hk

n,p1
revealing some information about

the edges of the random hypergraph while leaving other parts of the hypergraph un-
observed. In our argumentation here, the pi’s we will use will be sufficiently small
such that, with high probability, no edge will be sampled in more than one Hk

n,pi
,

and so the contribution each Hk
n,pi

has on the Hk
n,p we sample will be totally inde-

pendent and we will not have to condition on the parts of Hk
n,p we’ve already exposed.

As stated previously, we focus our study on the random k-partite hypergraph
model Hk

n×k,p. Of the nk possible edges in Hk
n×k,p, we expect to have pnk, and

since each perfect matching, or 1-factor, contains n edges, we wish to find N =
(1 − o(1))pnk−1 edge disjoint perfect matchings to achieve the desired packing. We
outline Ferber and Vu’s arguments here so we can focus on the piece of the argument
that we believe to be the weakest and the area where improvement could lead to the
closing of the probability gap asymptotically.

This 1-factor packing is generated via an incremental construction that takes place
over two phases. In the first phase, we generate N almost perfect matchings: each
matching only containing (1−α)n edges for a small constant α. Then, in the second
phase we complete these almost perfect matchings into perfect matchings. This idea
of first constructing an almost spanning structure before completing it comes from
the “nibbling” idea introduced by Ajtai-Komlos-Szemerédi [4] and Rödl [5].

Phase 1 is broken into N rounds, and each round is further divided into steps.
During round each i, we construct an almost perfect matching. We start with an
empty matching Mi0, and then at each step j, we generate the matching Mij from
the current matching Mi(j−1) by adding a collection of vertex-disjoint edges via a
very low probability sprinkling. After ` = O(log log n) steps, we will have generated
our almost perfect matching Mi` = Mi containing (1 − α)n edges. The key here is
to show that the sprinkling over the course of this phase does not leave any edge
with too much weight. That is, if p1, · · · , ps denote all the edge-probabilities used
during this phase in order to “expose” a particular k-tuple e, we wish to show that
1 −

∏s
i=1(1 − pi) ≤ (1 − ε)p, leaving at least a constant factor of the total exposure

probability p for later. Then, we show that if p is not too large (i.e. just above the
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Θ
(

logn
nk−1

)
1-factor existence threshold), this procedure gives us edge-disjoint almost

perfect matchings whp, that is it is very unlikely for any edge to be sprinkled twice
in two separate rounds. Later, we deal with the case of p being much larger than the
threshold, which becomes negligible due to a monotonicity result.

For each almost perfect matching Mi, we let Ui be the “residual” of round i, or
the set of αkn vertices not yet matched. Phase 2 constitutes matching these residual
vertices in an edge-disjoint way. The technique from Phase 1 can’t simply be used
to complete the matchings since, as the set of remaining vertices for a matching get
smaller and smaller, we must use exposures with increasingly large probability, which
reaches an exposure total surpassing the p threshold. Another technique must be
used to complete these matchings, but the approach originally used by Ferber and
Vu was somewhat wasteful. For each residual, they simply expose each k-tuple of
vertices with probability log(αn)

(αn)k−1 = (1 + o(1)) logn
(αn)k−1 . By Johannson-Kahn-Vu, this

guarantees the existence of a 1-factor in this residual and therefore a way to complete
this perfect matching.

Importantly, in how we execute the first phase, the residual vertices will be dis-
tributed uniformly at random. That is, the αn vertices belonging to the residual in
each of the k parts will be uniformly distributed. In this way, the probability that
a single k-tuple belongs to a residual is αk and this phase 2 sprinkling contributes a
probability of

αk · log n

(αn)k−1
=
α log n

nk−1

to each k-tuple. Over the course of N = (1 − o(1))pnk−1 rounds, the total porba-
bility sprinkled during this phase is α log(n)p, necessitating α = o(log−1 n) in order
to have the sprinkled probability not surpass p. Using an α this small necessitates
larger probability exposures in the first phase, forcing us to use a larger p. Namely,

the smallest p achievable with this strategy is Θ
(

log4k n
nk−1

)
, giving a polylog factor (in

terms of k) worse than the 1-factor existence threshold lower bound.

However, theoretically there is room to optimize this second phase; an optimiza-
tion that will enable us to remove the log4k factor, lower the upper bound on the
1-factor packing existence threshold to p = K logn

nk−1 with K = O(1), and close the gap
asymptotically on 1-factor packings. Specifically, each k-tuple of vertices belongs to
αkN = O(log n) residuals in expectation, and so it gets sprinkled in phase 2 many
times. However, intuitively, if a k-tuple is sprinkled in a previous residual but not used
in the matching on that residual, we shouldn’t have to sprinkle it again if it belongs
to another residual and we should be able to simple reuse (or recycle) that previous
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sprinkling. The benefit of this is that, before phase 1 even begins, we can sprinkle
every k-tuple in the graph with some probability q where q < p and q > logn

(αn)k−1 .

As long as we choose an α < ε with α = O(1), this will leave enough probability to
execute phase 1 without issue. Now, by Johannson-Kahn-Vu, any possible residual
(any collection of vertices containing αn vertices from each part) will contain a per-
fect matching whp. So, when we get to phase 2, we can form matchings from these q
sprinkled edges for each residual, as long as we do so in an edge disjoint way.

This edge disjointness condition does lead to some difficulties, though. Now that
a q sprinkled edge cannot be used if it was used in a previous residual’s matching, we
cannot look at the q sprinkled edges within a residual in isolation and simply couple it
to a random hypergraph with probability q. Our new model is a random hypergraph
with edge probability q where, after the edges are sampled, certain edges are deemed
unusuable in the 1-factor (or are equivalently deleted). These deleted edges are in
terms of the sampled edges, and so if we are to prove any claims about this random
hypergraph with edge deletions, we must assume that these deletions are performed
adversarially. Any claims about the deleted edges would place a conditional probabil-
ity on the random sampling, and so we must argue that any way to delete edges (that
corresponds to edges belonging to 1-factors in previous residuals) will not destroy the
existence of a 1-factor.

In this sense, we cannot directly apply the Johannson-Kahn-Vu (JKV) result, as
they consider a random hypergraph model and now we seek to prove a result on a
random hypergraph with adversarial edge deletions. However, there is hope that such
a generalization of JKV is possible. The threshold edge probability for the existence
of a 1-factor: p = O(logn)

nk−1 is also the threshold probability for our random hypergraph
to not contain any isolated vertices. Having no isolated vertices is a necessary, but not
sufficient condition for the existence of a 1-factor. One could imagine enumerating
a collection of conditions, each individually necessary for the existence of a 1-factor,
and together sufficient. As we increase p from 0 to 1, we cross the threshold proba-
bility for each of these conditions at some point, and the final condition satisfied is
the isolated vertex condition (as evidenced by the fact that it’s threshold probability
is that of the 1-factor existence). Thus, as long as our adversarial deletions do not
produce isolated vertices, it seems plausible that the arguments of JKV still hold.

In fact, we will see that the deletions will not produce any isolated vertices. Since
the vertices of a residual are uniformly random and independent of previous resid-
uals, each vertex belongs to any given residual with probability α, belongs to αN
total residuals in expectation, and by Chernoff, belongs to at most 2αN residuals
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total whp. Since the deleted edges correspond to perfect matchings in previous resid-
uals, no vertex can lose more than one edge per previous residual. So, for the qnk−1

edges containing a vertex v created by this sprinkling, at most 2αN = 2αpnk−1 are
destroyed whp.

For a new residual with vertex v, the edges containing v in that residual are
uniformly random, and so at most a 2αp

q
portion of them are deleted whp. So, choosing

a q > 2αp will make it so a vertex’s degree can only decrease by a constant factor due
to the deletions and therefore produce no new isolated vertices. For asufficiently small
α = O(1), we can still achieve the necessary q < p. Thus, given a resilience version of
JKV , we can show that this alternative strategy for Phase 2 succeeds whp, and only
using Θ(log n/nk−1) total probability sprinkling as desired. In the next section, we
will attempt to show JKV’s arguments are generalizable to this adversarial deletions
setting, as well as rehash the arguments in a more intuitive way than they were
originally presented.

3 Johansson-Kahn-Vu and the Adversarial Dele-

tions Conjecture

In this section, we present a proof of the JKV result and we look at the short
comings of the argument that prevent us from extending the result to the adversarial
context.

First, we formalize some notation on random k-partite hypergraphs. Hk
n×k,p and

Hk
n×k,m are both k-uniform hypergraphs with vertex sets consisting of k parts with

n vertices each. Hk
n×k,p is the standard Erdős-Rényi random hypergraph where each

possible edge (formed by selecting 1 vertex from each part) is included in the hyper-
graph independently with probability p. Hk

n×k,m, on the other hand, is the random

graph in which a random set of m of the nk possible edges is included uniformly
at random. The expected number of edges in Hk

n×k,p is pnk. We will see that when

m = pnk, these two random hypergraphs behave similarly, somewhat interchangeably.
This enables us to prove results on Hk

n×k,m using the Hk
n×k,p model. We are concerned

with the inflection point p = K logn
nk−1 , and so we investigate m = Kn log n = pnk. The

original statement of JKV is

Theorem 3.1. Johannson,Kahn,Vu [2]
Fix k ≥ 2. Then there exists a sufficiently large constant K > 0 such that, if m ≥
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Kn log n, then
lim
n→∞

Pr(Hk
n×k,m has a 1-factor) = 1

We applied JKV on the Hk
n×k,p random graph model but we prove a theorem on

the Hk
n×k,m model. This will be sufficient as

lim
n→∞

Pr

(
|E(Hk

n×k,p)| ≥
1

2
npk
)

= 1

by Chernoff. And so, for m ≤ 1
2
pnk,

Pr(Hk
n×k,m has a 1-factor) ≤ Pr

(
Hk
n×k,p has a 1-factor

∣∣∣∣|E(Hk
n×k,p)| ≥

1

2
npk
)

≤
Pr(Hk

n×k,p has a 1-factor)

Pr(|E(Hk
n×k,p)| ≥ 1

2
npk)

which gives

lim
n→∞

Pr(Hk
n×k,m has a 1-factor) ≤ lim

n→∞
Pr(Hk

n×k,p has a 1-factor)

Our conjecture on adversarial deletions can be stated as follows

Conjecture 3.2. Fix k ≥ 2. Then there exists a sufficiently large constant K > 0
and a sufficiently small constant α > 0 such that, if m ≥ Kn log n, then

lim
n→∞

Pr(Hk
n×k,m \ E(H∗) has a 1-factor) = 1

for all H∗, where H∗ is a k-partite hypergraph with maximum degree 2αm
n

that is in
terms of the sampled Hk

n×k,m.

The edges of this H∗ hypergraph that we are removing represent the adversarial
deletions. Our random k-uniform hypergraph Hk

n×k,m on nk vertices with m edges has

average degree k·m
nk

= m
n

, and so subtracting the edges of H∗ from Hk
n×k,m is equivalent

to deleting at most a 2α fraction of the expected number of edges incident to each
vertex. Since this theorem holds for every possible H∗, it means that no matter how
an adversary chooses to delete edges, given that he can delete at most 2αm

n
edges

belonging to any one vertex, he will be unable to destroy all the 1-factors whp.

Our arguments to prove this theorem and investigate this conjecture closely par-
allel those made by Bal and Frieze in their paper “The Johansson-Kahn-Vu solution
of the Shamir problem” [1] and those presented in the textbook “Introduction to
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Random Graphs” by Frieze and Karoński [6]. While the Shamir problem is solved
in the original paper by Johannson Kahn and Vu, they prove a much more general
result, and this paper by Bal and Frieze uses tools specifically tailored to the Shamir
problem that simplify the arguments, though the revolutionary techniques from the
original paper are still the bedrock of the argument.

The main technique is a backwards analysis. Fundamental to the JKV solution
is to view the sampling of the random hypergraph Hk

n×k,m as an incremental deletion
(or should I say decremental; should downward escalators be called de-escalators?).
We start with the complete k-uniform hypergraph H0 := Kk

n×k and then produce
H1 by deleting an edge from H0 uniformly at random. Then, we produce H2 by
deleting a random edge from H1, and repeat this process until we produce HT where
T = nk −m. We see that Hi is identically distributed to Hk

n×k,nk−i as the order of
edge deletions is irrelevant. This is where the backwards analysis stops in the original
argument.

In our pursuit to prove the conjecture, we continue to delete edges to form
HT+1, HT+2, · · · , HT+s. These additional deletions are not random as the first T
deletions were, but rather, are performed in an adversarial fashion. They are the
edges in H∗ that belong to HT and the only claim we can make about the edges
deleted here is that no 2αm

n
of them share the same vertex. Nonetheless, we want to

show HT+s has a 1-factor whp. The idea is that, no single edge deletion can affect the
number of 1-factors appreciably, and even over the course of T + s deletions, many
1-factors must remain at the end.

At each step in the backwards analysis i, we keep track of 3 events, Ri,Bi,Ai.
Roughly, Ri is the event that no vertex in Hi has degree deviating too far from the
average/expected degree. Bi is the event that no edge belongs to many more 1-factors
than the average edge. And Ai is the event that Hi has many 1-factors. Essentially,
we show that Ri holds for all i whp. Then, we proceed somewhat inductively. We
show that, if Ri and Ai hold, then Bi holds whp. And, we show that, if Bi and Ri

hold for all i < t, then At holds whp.

Let pi = nk−i
nk , the fraction of the original edges that remain in Hi. Formally, we

define

Ri : for each x ∈ V,
∣∣deg(x,Hi)− pink−1

∣∣ ≤ 1

K1/2
pin

k−1

where pin
k−1 is the average degree in Hi. For a hypergraph H, we let Φ(H) be the

number of 1-factors of H. We let Vk be the set of collections of k vertices in H with
one vertex from each part, that is the possible edges in Hi.
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We define the function wi : Vk → R as wi(Z) = Φ(Hi − Z). That is, we remove
the vertices in Z from Hi and count how many 1-factors there are on the remaining
vertices. If Z is an edge, then this is exactly a count of the 1-factors that contain Z:
if Z is used in the 1-factor, we must find a way to match the remaining vertices. For
a finite set A, we define

w̄(A) =
1

|A|
∑
a∈A

w(a), maxw(A) = max
a∈A

w(a), maxr w(A) =
maxw(A)

w̄(A)

and we define
Bi : maxr wi(Ei) ≤ K1/2

Lastly, we define,

Ai : log Φ(Hi) ≥ n
(
log(nk − i)− log(n)−O(1)

)
and so At implies that HT has many 1-factors, Ω(n log log n), and is sufficient to prove
the existence of a 1-factor in the final random hypergraph.

We consider the first time t ≤ T , if any, where At fails. We see that this “first
failure at time t” event can be written as a subset of the following event

Āt ∩
⋂
i<t

Ai ⊆

[⋃
i<t

R̄i

]
∪

[⋃
i<t

AiRiB̄i

]
∪

[
Āt ∩

⋂
i<t

(BiRi)

]
And so, by a union bound,

Pr

(
Āt ∩

⋂
i<t

Ai

)
≤
∑
i<t

Pr
(
R̄i

)
+
∑
i<t

Pr
(
AiRiB̄i

)
+ Pr

(
Āt ∩

⋂
i<t

(BiRi)

)

≤
∑
i<t

Pr
(
R̄i

)
+
∑
i<t

Pr
(
AiRiB̄i

)
+ Pr

(
Āt

∣∣∣∣∣⋂
i<t

(BiRi)

)

We show that each of these three probabilities is n−ωK(1) and so, for sufficiently
large K, we can take a union bound over the possible t and we see whp there is no
time t ≤ T where At fails. We also see that in the adversarial deletion context, that
is t ≤ T + s, we are able to bound

∑
i<t Pr

(
R̄i

)
and Pr

(
Āt
∣∣⋂

i<t(BiRi)
)

but that ad-
ditional tools are required to bound

∑
i<t Pr

(
AiRiB̄i

)
. Bounding this final quantity

would be the last step to showing that our hypergraph still has many 1-factors even
after the adversarial deletions.

10



Maxwell Fishelson

First, we analyze Pr
(
Āt
∣∣⋂

i<t(BiRi)
)
. We let Fi denote the set of 1-factors of Hi.

We express

|Ft| = |F0|
|F1|
|F0|
· · · |Ft|
|Ft−1|

= |F0|(1− ξ1) · · · (1− ξt)

or

log |Ft| = log |F0|+
t∑
i=1

log(1− ξi) ≥ log |F0|+
t∑
i=1

(ξi + ξ2
i ) (1)

where ξi = |Fi|
|Fi−1| represents the fractional decrease in the number of perfect matchings

from Hi−1 to Hi.

We can explicitly compute |F0| = (n!)k−1. In the complete k-partite graph, every
possible way to partition the vertices into n groups with one vertex from each of the
k parts in each group is a perfect matching. If we label the n groups by the vertex
belonging to it from the first part, there are (n!)k−1 ways to permute the vertices in
each of the k − 1 other parts to assign them groups. And so,

log |F0| = (k − 1)n log n−O(n)

We can also explicitly compute the average value of ξi. This can also be seen as
the expected value of ξi for the random deletion steps as the deleted edge is selected
uniformly. We see that the expected number of perfect matchings that are destroyed
when a random edge is removed from Hi−1

=
1

|E(Hi−1)|
∑

e∈E(Hi−1)

number of 1-factors containing e

=
1

nk − i+ 1

∑
e∈E(Hi−1)

∑
F∈Fi−1

1[e ∈ F ]

=
1

nk − i+ 1

∑
F∈Fi−1

∑
e∈E(Hi−1)

1[e ∈ F ]

=
1

nk − i+ 1

∑
F∈Fi−1

number of edges in F

=
n|Fi−1|
nk − i+ 1

and so

E[ξi] = γi =
n

nk − i+ 1
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We want to show that, in general, the ξi do not deviate too greatly from their
average/expected values γi.

We see that Bi−1 implies ξi ≤ K1/2γi. So, in a random deletion step, ξi is a random
variable that takes on values ∈ [0, K1/2γi] with expected value γi. We will see that,
over these random deletion steps,

∑T
i=1(ξi − γi) ≤ n whp. If this is the case, we have

t∑
i=1

ξi ≤
t∑
i=1

γi +
T∑
i=1

(ξi − γi)

≤
t∑
i=1

γi + n

= n

(
1

nk
+

1

nk − 1
+ · · ·+ 1

nk − i

)
+O(n)

Using the fact that
∑x

i=1
1
i

= log x+ e+O(1/x), we have

t∑
i=1

ξi ≤ n(log(nk)− log(nk − i) +O(1/n)) +O(n)

= kn log(n)− n log(nk − i) +O(n)

Therefore, again using ξi ≤ K1/2γi ≤ K1/2/(K log n), we have

t∑
i=1

ξ2
i ≤

1

K1/2 log n

t∑
i=1

ξi = O(n)

and from (1)

log Φ(Hi) = log |Ft|

≥ log |F0| −
t∑
i=1

ξi −
t∑
i=1

ξ2
i

= (k − 1)n log n− (kn log(n)− n log(nk − i))−O(n)

= n
(
log(nk − i)− log(n)−O(1)

)
as desired.
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Lastly, we show
∑T

i=1(ξi − γi) ≤ n whp. We see that

Pr

(
T∑
i=1

(ξi − γi) ≥ n

)
= Pr

(
eh

∑T
i=1(ξi−γi) ≥ ehn

)
≤ E

[
eh

∑T
i=1(ξi−γi)

]
e−hn

Even though the ξi are not independent, the analysis we did to compute the E[ξi]
only relied on the number of edges in the hypergraph Hi. Therefore, our argument
holds regardless of the conditional outcome of the previous ξ variables, and we have

E[ξi|ξ1, · · · , ξi−1] = γi

Thus,

E[ehξi |ξ1, · · · , ξi−1] ≤
(

1

K1/2

)
ehK

1/2γi +

(
1− 1

K1/2

)
e0

The random variable ehξi will have largest expected value when ξi takes on extreme
values. Due to the bounds on ξi and its expectancy, this extreme case occurs when

ξi =

{
K1/2γi with probability 1

K1/2

0 with probability 1− 1
K1/2

This gives us

E[eh(ξi−γi)|ξ1, · · · , ξi−1] ≤ e−hγi
(

1− 1

K1/2
+

1

K1/2
ehK

1/2γi

)
≤ eK

1/2h2γ2i

and so

Pr

(
T∑
i=1

(ξi − γi) ≥ n

)
≤ E

[
eh

∑T
i=1(ξi−γi)

]
e−hn

≤ e−hneK
1/2h2

∑t
i=1 γ

2
i

≤ eK
−1/2h2 log−1(n)

∑t
i=1 γi−hn

and since
∑t

i=1 γi = O(n log n), we see that this event holds with low probability
for sufficiently large constant h.

This part of the proof does hold for the adversarial deletion setting. For an
adversarial deletion step i, we cannot bound ξi as a deviation from its expectancy as

13
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it is no longer a random variable, but we still have ξi ≤ K1/2γi from Bi. And so, for
t ∈ [T + 1, T + s],

t∑
i=1

ξi ≤
T∑
i=1

ξi +
t∑

i=T+1

ξi

≤
T∑
i=1

γi + n+K1/2

t∑
i=T+1

γi

=n

(
1

nk
+

1

nk − 1
+ · · ·+ 1

m

)
+K1/2n

(
1

m− 1
+ · · ·+ 1

m− s

)
+O(n)

≤n
(

1

nk
+

1

nk − 1
+ · · ·+ 1

Kn log n

)
+K1/2n

(
1

m− 1
+ · · ·+ 1

(1− 2α)m

)
+O(n)

≤n(log(nk)− log(Kn log n) +O(1/n))

+K1/2n(log(m− 1)− log((1− 2α)m) +O(1/n)) +O(n)

=(k − 1)n log(n)− n log log(n) +O(n)

This is from the fact that m ≥ Kn log n and since s ≤ |E(H∗)| and the maximum
degree of H∗ is 2αm

n
it can have at most 2αm edges. The rest of the proof follows

identically.

To bound
∑

i<t Pr
(
R̄i

)
and

∑
i<t Pr

(
AiRiB̄i

)
, instead of using the random graph

model Hk
n×k;mi

, where a collection of mi = nk− i edges are selected uniformly at ran-

dom, we use the Hk
n×k;pi

model where each edge is included independently at random

with probability pi = nk−i
nk = m

total possible edges
. The edge independence of this model

will make our argumentation easier. We are able to switch to this model for two
reasons. Firstly, for any condition X, the event “X is satisfied on model Hk

n×k;mi
”

is equivalent to the event “X is satisfied on model Hk
n×k;pi

conditioned on the fact
that exactly mi edges get sampled”, as this conditioning makes the two random mod-
els equivalent. Secondly, Pr(Hk

n×k;pi
has exactly mi edges) = Ω(m

−1/2
i ) = Ω(n−k/2).

Therefore,

Pr(X on model Hk
n×k;mi

) = Pr(X on model Hk
n×k;pi

| exactly mi edges sampled)

≤ Pr(X on model Hk
n×k;pi

)/Pr( exactly mi edges sampled)

≤ O(nk/2) Pr(X on model Hk
n×k;pi

)

And so, if we can show that X holds on model Hk
n×k;pi

with sufficiently low probabil-

ity (an upper bound of the form n−ωK(1)), setting K to be sufficiently large will also

14
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ensure that X holds with low probability on Hk
n×k;mi

.

This new model enables us to bound
∑

i<t Pr
(
R̄i

)
quite easily. For a specific

vertex x ∈ V and a specific i ≤ T , we have that deg(x,Hi) is a sum of independent
indicator events representing the sampling of the nk−1 possible edges containing x.
We have E[deg(x,Hi)] = pin

k−1 and so, by Chernoff,

Pr

(
| deg(x,Hi)− pink−1| ≤ 1

K1/2
pin

k−1

)
≤ e−Ω(K logn) = n−ωK(1)

and
∑

i<t Pr
(
R̄i

)
= n−ωK(1) by union bound. We can also bound this term in the

adversarial context. Again by Chernoff,

Pr

(
| deg(x,Hi)− pink−1| ≤

(
1

K1/2
− 2α

)
pin

k−1

)
≤ e−O(K logn) = n−ωK(1)

Even though we have certain requirements to make K sufficiently large, we can make
α even smaller so that 1

K1/2 > 2α. Taking a union bound over the vertices tells us
that Ri holds whp for all i ≤ T .

We know that the degree of any single vertex can decrease by at most 2αm
n

. And
there can be at most 2αm total edge deletions, so pin

k−1 ≥ (1−2α)pTn
k−1. Therefore,

since we know | deg(x,Hi) − pink−1| ≤
(

1
K1/2 − 2α

)
pin

k−1 holds whp for i = T , we
must have

| deg(x,Hi)− pink−1| ≤ 1

K1/2
pin

k−1

for all i ≤ T + s, as desired.

Bounding
∑

i<t Pr
(
AiRiB̄i

)
is where we run into problems with the adversarial

deletion model, at least in the original proof of JKV. To bound
∑

i<t Pr
(
AiRiB̄i

)
, we

introduce a new event Ci that, similar to Bi, bounds the number of 1-factors a single
edge can belong to. For ` ≤ k, we define V` to be the set of `-tuples of vertices in
V (H) such that no two vertices belong the same part. For Y , a set of vertices with
at most one vertex in each part (|Y | ≤ k), we define

Vk,Y = {Z ∈ Vk : Z ⊇ Y }

to be the set of collections of k vertices in our hypergraph (one from each part) that
contain Y . We let

Ci =
{

maxwi(Vk,Y ) ≤ max
(
2med wi(Vk,Y ), n−(k+1)|Fi|

)
for all Y ∈ Vk−1

}
15
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where med w(A) = med a∈Aw(a). There are four important distinctions between Ci
and Bi. Firstly, we have replaced deviation from the average number of 1-factors
to deviation form the median number. This will be necessary as our arguments will
require a guarantee that the “most 1-factor popular” edge is a constant factor more
popular than at least half of the other edges. Secondly, instead of comparing the
number of 1-factors an edge belongs to to all the other edges, we compare specifically
to other edges that share k − 1 of the same vertices. We will see that this way of
quantifying 1-factor popularity deviations is essentially the same as the original way,
and it will simply make our argumentation easier. Thirdly, we add a n−(k+1)|Fi| to
the event which makes it so Ci still holds when med wi(Vk,Y ) = 0 or is very small
but has very little effect on the event otherwise. Lastly, Bi is an event that concerns
how far the number of 1-factors containing a single edge can deviate from that of the
average edge. However, Ci is concerned with bounding this deviation for k-tuples of
vertices that are not guaranteed to be edges (we delete a k-tuple of vertices and find
a 1-factor on the residual graph, acting like the K-tuple is an edge when it is not
necessarily). We will see that the random edge distribution makes this distinction
negligible.

We will show
Pr
(
C̄i|AiRi

)
= n−ωK(1) (2)

Pr
(
B̄iCiRi

)
= n−ωK(1) (3)

Then using
AiRiB̄i ⊆ C̄iAiRi ∪ B̄iCiRi

gives

Pr(AiRiB̄i) ≤ Pr(C̄iAiRi) + Pr(B̄iCiRi) ≤ Pr(C̄i|AiRi) + Pr(B̄iCiRi) = n−ωK(1)

as desired. Thus, by another union bound, AiRiB̄i holds for all i whp.

Proof of (2). To argue Pr
(
C̄i|AiRi

)
= n−ωK(1), we require two lemmas that we will

prove in the following section. First, for a vertex y ∈ V = V (H), we define the random
variable X(y,H) to be the edge e containing y in a uniformly random 1-factor of H.
We let

h(y,H) = −
∑
e3h

Pr(X(y,H) = e) log Pr(X(y,H) = e)

denote the entropy of X(y,H).

16
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Lemma 3.3. For P one of the k vertex parts in V :

log |Fi| ≤
∑
y∈P

h(y,Hi)

This lemma encapsulates the randomness of a uniform 1-factor that must be pre-
served in these vertex-specific random variables.

Lemma 3.4. For a function w : S → R+ from some finite set S to the positive reals,
we let X be the random variable with

Pr(X = x) =
w(x)

w(S)

where w(S) =
∑

s∈S w(s). If h(X) = −
∑

x∈S Pr(x) log Pr(x) represents the entropy
of X, and

h(X) ≥ log |S| −O(1)

then there exists a, b ∈ range(w) with a ≤ b ≤ O(a) such that for J = w−1[a, b], we
have

|J | = Ω(|S|) and w(J) > .7w(S)

The maximum possible entropy of a random variable with range S is log |S|: the
uniform distribution. This lemma demonstrates how a random variable almost max-
imal entropy must be almost uniformly distributed: the probabilities of almost any
two outcomes being at most a constant factor away form each other.

Armed with these two lemmas, we can show Ci holds whp given Ai and Ri. Say
that Ci fails at Y ∈ Vk−1 where Y contains one vertex from each of the k parts except
for the part P . Let x ∈ P satisfy wi(Y ∪ {x}) = maxwi(Vk,Y ). We note that there
is no guarantee that e = Y ∪ {x} is actually an edge in Hi. Choose y ∈ P with
wi(Y ∪ {y}) ≤ med wi(Vk,Y ) and with h(y,Hi − e) maximum subject to this restric-
tion. Here Hi − e refers to deleting the vertices in e from Hi. We set f = Y ∪ {y}
and also note that y 6= x by its definition.

We see

log(wi(e)) > log(n−(k+1)|Fi|) = n
(
log(nk − i)− log(n)−O(1)

)
(4)

by Ai holding and Ci failing. Lemma 3.3 implies that

log(wi(e)) = log Φ(Hi − e) ≤
∑

z∈P\{x}

h(z,Hi − e) (5)

17
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We can upper bound h(z,Hi − e) ≤ h(y,Hi − e) for at least half the z’s in P , as y
maximizes h(y,Hi − e) over all vertices z ∈ P with wi(Y ∪ {z}) below the median
value. For the other z, we can bound

h(z,Hi−e) ≤ log(deg(z,Hi−e)) ≤ log
(
(1 + o(1))pin

k−1
)

= log(nk−i)−log(n)+O(1)

by Ri. And so,∑
z∈P\{x}

h(z,Hi − e) ≤
n

2

(
h(y,Hi − e) + log(nk − i)− log(n) +O(1)

)
(6)

Combining (4), (5), and (6), we get

h(y,Hi − e) > log(nk − i)− log(n)−O(1) = log deg(y,Hi − e)−O(1)

This means that the edge containing y from a uniformly random 1-factor of Hi−e
will be well-distributed over all the possible edges containing y. We apply Lemma 3.4
to get J, a, b.

We consider the set Wk−1 of (k−1)-tuples of vertices in V \Y where each Z ∈ Wk−1

has exactly one vertex in each part except for P . For each Z ∈ Wk−1, Z ∪ {y} is a
possible edge in Hi − e and Z ∪ {x} is a possible edge in Hi − f . That is,

wi(e) =
∑

Z∈Wk−1

1Z∪{y}∈Ei
· Φ(Hi − (Y + Z + x+ y))

and
wi(f) =

∑
Z∈Wk−1

1Z∪{x}∈Ei
· Φ(Hi − (Y + Z + x+ y))

Since Ci fails, we must have wi(e) ≥ 2wi(f). However, returning to the random
graph model Hk

n×k;pi
where each edge is sampled independently, we will see that it is

very unlikely for these two sums to deviate so greatly, even with adversarial deletions.

We define
w′i(Z) = Φ(Hi − (Y + Z + x+ y))

Let W ∗
k−1 ⊆ Wk−1 be the set of vertex (k − 1)-tuples Z such that Z ∪ {y} ∈ J . That

is,
Φ(Hi − (e+ Z + y)) = w′(Z) ∈ [a, b] ∀Z ∈ W ∗

k−1

We also have ∑
Z∈W ∗k−1

w′i(Z) > .7
∑

Z∈Wk−1

w′i(Z)

18
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and so we must have∑
Z∈W ∗k−1

1Z∪{y}∈Ei
· w′i(Z) > .7

∑
Z∈Wk−1

1Z∪{y}∈Ei
· w′i(Z) = .7wi(e) (7)

as any term removed from the left sum (due to the fact that Z ∪ {y} 6∈ E) must also
be removed from the right sum. Additionally,∑

Z∈W ∗k−1

1Z∪{x}∈Ei
· w′i(Z) ≤

∑
Z∈Wk−1

1Z∪{x}∈Ei
· w′i(Z) = wi(f) ≤ .5wi(e) (8)

In the random graph model Hk
n×k;pi

, each event Z ∪ {y} ∈ Ei and Z ∪ {x} ∈ Ei
is an independent Bernuolli distribution with probability pi. So, the two sums that
appear in (7) and (8) have the same expectation, but since one is > .7wi(e) and
the other is ≤ .5wi(e), one must deviate from expectation by a factor of at least√
.7/.5. Since all the w′i(Z)’s are within O(1) of each other and these sums have
|W ∗

k−1| = |J | = Ω(|Wk−1|) terms in them, the probability that these sums deviate by
a constant factor is e−Ω(|Wk−1|) = n−ω(1) by a Chernoff-type bound.

Unfortunately, in the adversarial deletions context, the adversary can almost al-
ways force these two sums to deviate greatly. Since the deletions are in terms of
the random sampling, the adversary can observe the outcomes of the random events
1Z∪{x}∈ET

and alter W ∗
k−1 accordingly. Lemma 3.4 shows that |W ∗

k−1| = Ω(|Wk−1|),
but which Z ∈ Wk−1 belong to W ∗

k−1 can be altered. After observing the outcomes
of the Z ∪ {x} ∈ ET events, the adversary can make it so 1Z∪{x}∈ET

= 0 for all
Z ∈ W ∗

k−1, making this sum deviation always hold.

Proof of (3). We assume Pr (CiRi) ≥ ε = n−ωK(1). Otherwise, Pr
(
B̄iCiRi

)
= n−ωK(1)

is trivialized. We show
Pr
(
B̄i|CiRi

)
= n−ωK(1)

which is sufficient as Pr
(
B̄iCiRi

)
= Pr

(
B̄i|CiRi

)
Pr (CiRi) ≤ Pr

(
B̄i|CiRi

)
. This

argument requires an additional lemma that will also be proved in the following
section.

Lemma 3.5. Let w be a function w : Vk → R+. Suppose that for each Y ∈ Vk−1 with
maxw(Vk,Y ) ≥ B we have∣∣∣∣{Z ∈ Vk,Y : w(Z) ≥ 1

2
maxw(Vk,Y )

}∣∣∣∣ ≥ n

2
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Then, for any X ∈ Vk−j (a set of k− j vertices with no two vertices in the same part)
with maxw(Vk,X) ≥ 2j−1B we have∣∣∣∣{Z ∈ Vk,X : w(Z) ≥ 1

2j
maxw(Vk,X)

}∣∣∣∣ ≥ (n2)j
Conditioning on Ci holding, we have maxwi(Vk,Y ) ≤ max

(
2med wi(Vk,Y ), n−(k+1)|Fi|

)
for all Y ∈ Vk−1. So, for a Y ∈ Vk−1 with maxwi(Vk,Y ) ≥ n−(k+1)|Fi|, we must have
maxwi(Vk,Y ) ≤ 2med wi(Vk,Y ) or equivalently∣∣∣∣{Z ∈ Vk,Y : wi(Z) ≥ 1

2
maxwi(Vk,Y )

}∣∣∣∣ ≥ n

2

Thus, we can apply Lemma 3.5 on wi with B = n−(k+1)|Fi|. We consider X = ∅,
that is j = k, where maxwi(Vk,X) = maxwi(Vk). We want to show that there are
many Z ∈ Vk that achieve wi(Z) at least a constant factor of this maxwi(Vk). And
so, in order to apply the lemma, we want to show maxwi(Vk) ≥ 2k−1B.

We can trivially lower bound maxwi(Vk) ≥ w̄i(Vk) by the average value. We
lower bound the average by a double counting argument: counting pairs of edges and
1-factors (e, F ) in Hi where e ∈ F . Choosing the 1-factor first, there are |Fi| choices
for F and n choices for e ∈ F . Alternatively, we can choose an edge e ∈ E(Hi) first
and then complete the 1-factor in wi(e) ways. Thus,

n|Fi| =
∑

e∈E(Hi)

wi(e) ≤
∑
e∈Vk

wi(e)

and so

w̄i(Vk) =
1

nk

∑
e∈Vk

wi(e) ≥
1

nk−1
|Fi| ≥ 2k−1B =

2k−1

nk+1
|Fi|

which holds as long as n2 ≥ 2k−1 which is true for n sufficiently large. Thus, we can
apply the lemma and get

|S| =
∣∣∣∣{Z ∈ Vk : wi(Z) ≥ maxwi(Vk)

2k

}∣∣∣∣ ≥ (n2)k (9)

This gives us that many Z ∈ Vk achieve at least a constant factor of the maximal
wi value. The last step is to show that, whp, many actual edges (Z ∈ Ei) also achieve
this. Specifically, we define the set

E∗i = {e ∈ Ei : wi(e) ≥ δmaxwi(Vk)/2}
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where δ = 1
2k

. We will show |E∗i | ≥ c |Ei| for some constant c, which gives∑
e∈Ei

wi(e)

maxwi(Vk)
≥
∑

e∈E∗i
wi(e)

maxwi(Vk)
≥ δ|E∗i |

2
≥ δc|Ei|

2

which implies maxwi(Ei) ≤ maxwi(Vk) ≤
2
∑

e∈Ei
wi(e)

δc|Ei| = 2
δc
w̄i(Ei) and property Bi

holds for sufficiently large K1/2 ≥ 2
δc

. This is also where the argument breaks down
in the adversarial context.

From (9), we have that CiRi holding implies there are at least δn/2 vertices x1

from the first vertex part that belong to at least δnk−1/2 k-tuples Z ∈ S. This comes
from pigeonhole. For each of the δnk vertex k-tuples in S, we consider the vertex in
the first vertex part it contains x1 ∈ P1. Any x1 can belong to at most nk−1 k-tuples
in S as there are nk−1 total k-tuples in Vk containing x1. So, in the worst case, we
could have δn/2− 1 vertices in P1 that each correspond to nk−1 tuples in S, and the
remaining n− δn/2 + 1 ≤ n vertices in P1 each correspond to δnk−1/2− 1 vertices in
S. However, this only gives

(δn/2− 1)nk−1 + n(δnk−1/2− 1) = δnk − nk−1 − n

k-tuples in S. And any additional tuples added to S will satisfy the condition.

We sample a random graph Hk
n×k,pi conditioned on CiRi. Ideally, we consider an

x1 that belongs to δnk−1/2 k-tuples Z ∈ S, and we expect many of these Z to be
edges as each edge is included independently at random. However, there is the caveat
that we are conditioning on CiRi holding and on the fact that x1 is one of the δn/2
vertices in P1 belonging to many k-tuples in S. In the following arguments, we will
show that E∗i is still sufficiently large despite this conditioning.

We fix 0 ≤ ` ≤ (k − 1)n log n and let L = 2`. Fix a vertex x1 ∈ P1 and let

SL = {Z ∈ Vk : x1 ∈ Z and wi(Z) ≥ L}

Here L will be an approximation to the random variable δmaxwi(Vk). Using L in
place of maxwi(Vk) reduces the conditioning. There are not too many choices for L
and so we will be able to use the union bound over L.

Note that without the conditioning CiRi, the two events {I ⊆ SL, J ∩ SL = ∅} and
{I ⊆ Ei, J ∩ Ei = ∅} will be independent for all I, J ⊆ Vk. To understand this, we
can assume that Z ∈ J implies x1 ∈ Z, since otherwise Z 6∈ SL regardless of it being
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in Ei. Then, knowing {I ⊆ SL, J ∩ SL = ∅} informs us only that about the values of
wi(Z), Z ∈ I ∪ J and these values depend on edges that do not contain x1, as wi(Z)
is counting perfect matchings in a graph with the vertex x1 removed.

Thus, in a random graph Hk
n×k,pi without conditioning on CiRi, |SL ∩ Ei| will be

distributed as Bin(|SL|, pi). Hence, if |SL| ≥ ∆, then

Pr(|SL ∩ Ei| ≤ pi∆/2) ≤ e−pi∆/8

by Chernoff. Lastly, we can deal with the conditioning CiRi using the simple bound
Pr(A|B) ≤ Pr(A)/Pr(B) and the fact that, at the start of our arguments, we assumed
Pr (CiRi) ≥ ε:

Pr(|SL ∩ Ei| ≤ pi∆/2|CiRi) ≤
1

ε
e−pi∆/8

The number of choices for ` is (k− 1)n log n and for one of these (`∗) we will have
2`
∗ ≤ δmaxwi(Vk) ≤ 2`

∗+1; the 2n log n upper bound coming from the fact that even
in the complete k-partite graph, there are only (n!)k−1 perfect matchings. For this
`∗, taking L∗ = 2`

∗
, we must have the elements of S that contain x1 all belong to

SL∗ as well, as δmaxwi(Vk) ≥ L∗. So, for at least δn/2 choices of x1 ∈ P1, we have
|SL∗ | ≥ δnk−1/2, and for each of these

Pr(|SL∗ ∩ Ei| ≤ δnk−1pi/4) ≤ 1

ε
e−δpin

k−1/16 ≤ 1

ε
n−δK/16

Since there are at most n choices for x1 and (k − 1)n log n choices for `, by a
union bound, we have that, with probability at least 1 − 1

ε
n2+o(1)−δK/16, for (δn/2) ·

(δnk−1pi/4) = δ2

8
|Ei| choices for Z ∈ Vk, Z is an edge and wi(Z) ≥ 2`

∗ ≥ δmaxwi(Vk)/2.
Thus,

Pr(|E∗i | ≤
δ2

8
|Ei|) ≤

1

ε
n2+o(1)−δK/16 = ε

for ε =
√
n2+o(1)−δK/16 = n−ωK(1) for sufficiently large K, as desired.

We cannot extend these arguments to the adversarial context, unfortunately.
While CiRi holding guarantees that SL is large for many x1, there is no guaran-
tee as to which Z will belong to SL. The adversary can witness the edges randomly
sampled in Ei that contain x1 and perform deletions to shift the elements of SL off
of these edges.
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4 Lemmas

4.1 Proof of Lemma 3.3

This follows from Shearer’s lemma, which states

Lemma 4.1 (Shearer). Let X = (X1, X2, · · · , XN) be a (vector) random variable and
A = {Ai : i ∈ I} be a collection of subsets of a set B, where |B| = N , such that each
element of B appears in at least k members of A. For A ⊆ B, let XA = (Xj : j ∈ A).
Then,

h(X) ≤ 1

k

∑
i∈I

h(XAi
)

To get Lemma 3.3 from this, we take B = Vk and let X be the indicator of
the edges present in a uniformly random 1-factor. We take A = (Av : v ∈ P ), where
Av ⊆ Vk whose vertex from part P is v. Thus, each e ∈ B belongs to at least (exactly)
1 element of A. Finally, note that the entropy h(XAv) = h(v,Hi) and h(X) = log |Fi|
since X is (essentially) a random 1-factor. The proof of Shearer’s lemma is as follows:

Proof. By the chain rule of entropy,

h(X) =
∑
j∈B

h(Xj|X1, X2, · · · , Xj−1) (10)

and
h(XAi

) =
∑
j∈Ai

h(Xj|X`, ` ∈ Ai, ` < j) (11)

We sum (11) for all i ∈ I and obtain∑
i∈I

h(XAi
) =

∑
i∈I

∑
j∈Ai

h(Xj|X`, ` ∈ Ai, ` < j)

=
∑
j∈B

∑
Ai3j

h(Xj|X`, ` ∈ Ai, ` < j)

using entropy inequality h(X|Y, Z) ≤ h(X|Y ):

≥
∑
j∈B

∑
Ai3j

h(Xj|X1, X2, · · · , Xj−1)

since each j ∈ B appears in at least k Ai’s:

≥ k
∑
j∈B

h(Xj|X1, X2, · · · , Xj−1)
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using (10):

≥ kh(X)

as desired.

4.2 Proof of Lemma 3.4

This lemma is proved in the textbook “Introduction to Random Graphs” by Frieze
and Karoński [6]. We reference the reader to Lemma 14.14, page 284.

Therein, they prove that if h(X) ≥ log |S| −M , then there exist a, b ∈ range(w)
with

a ≤ b ≤ 24(M+log 3)a

such that for J = w−1[a, b], we have

|J | ≥ e−2M−2|S| and w(J) > .7w(S)

4.3 Proof of Lemma 3.5

Proof. Our goal is to show that for any X ∈ Vk−j with maxw(Vk,X) ≥ 2j−1B we have∣∣∣∣{Z ∈ Vk,X : w(Z) ≥ 1

2j
maxw(Vk,X)

}∣∣∣∣ ≥ (n2)j
The assumption of the argument, that for each Y ∈ Vk−1 with maxw(Vk,Y ) ≥ B we
have ∣∣∣∣{Z ∈ Vk,Y : w(Z) ≥ 1

2
maxw(Vk,Y )

}∣∣∣∣ ≥ n

2

will form the base case of an induction on j (j = 1). Our inductive hypothesis will
therefore be that the lemma holds for all j′ < j.

Consider an X ∈ Vk−j with maxw(Vk,X) ≥ 2j−1B. Let Z ∈ Vk,X be this k-tuple
of vertices that maximizes w, that is w(Z) = maxw(Vk,X). Let P be one of the j
vertex parts that contains none of the vertices in X and let y ∈ P be the vertex from
that part that belongs to Z. Taking Y = X ∪ {y}, we see that Y ∈ Vk−(j−1) satisfies

maxw(Vk,Y ) = w(Z) ≥ 2j−1B ≥ 2j−2B
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as Z ∈ Vk,Y ⊆ Vk,X maximizes w. And so, by our inductive hypothesis, there are at

least
(
n
2

)j−1
sets Z ′ ∈ Vk,Y with

w(Z ′) ≥ 1

2j−1
maxw(Vk,Y ) =

1

2j−1
maxw(Vk,X)

For each such Z ′, Z ′ \ {y} belongs to Vk−1 with maxw(Vk,Z′\{y}) ≥ w(Z ′) ≥ B.
So, we can again apply our inductive hypothesis, this time with j = 1, to obtain that
there are at least n

2
sets Z ′′ ∈ Vk,Z′\{y} with

w(Z ′′) ≥ 1

2
maxw(Vk,Z′\{y}) ≥

1

2
w(Z ′) ≥ 1

2j
maxw(Vk,X)

Each Z ′′ necessarily belongs to Vk,X . Additionally, the n
2
Z ′′ associated with each

of the
(
n
2

)j−1
Z ′ must all be distinct as Z ′ \X is distinct for each Z ′ and the vertex

in P from each Z ′′ associated with a specific Z ′ is distinct. Thus,∣∣∣∣{Z ∈ Vk,X : w(Z) ≥ 1

2j
maxw(Vk,X)

}∣∣∣∣ ≥ (n2)j−1

· n
2

=
(n

2

)j
as desired.
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