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1. Introduction

This paper investigates two braid group actions on derived categories of coherent
sheaves on two different, but related, algebraic varieties.

The first action, which we will call the action by spherical twists, comes from [1],
and was originally motivated by the study of stability conditions. Let Z be a Fano
variety and ωZ be the total space of its canonical bundle. Then this is an action of
the annular braid group on the set of spherical collections in the derived category of
coherent sheaves set-theoretically supported on the zero section of ωZ . This action
on the set of spherical collections induces an action of a subgroup of the annular
braid group on the category itself. We will examine in particular the Fano varieties
Z = P1,P2.

The other action, which we will call the affine braid group action, comes from [2].
Let G be a semisimple algebraic group and g̃ be its Grothendieck (or alternatively
Springer) resolution. Then this is an action of the extended affine braid group of G
on the derived category of coherent sheaves set-theoretically supported on the zero
section of g̃. The action is defined via the pushforward-pullback adjunction for the
projections G/B → G/P associated to each simple root.

The two actions are known to coincide in certain low-dimensional cases. As we
will compute in this paper, when G = SL2 and Z = P1, we have G/B = Z, and
moreover the Springer resolution of G is exactly the canonical bundle of Z. Thus
in this case the two actions are the same category, and in this case they coincide.

The main goal of this paper is to investigate the following possibility for generaliz-
ing this relationship to higher dimensions. Consider the projection π : G/B → G/P
for a parabolic P ⊇ B. Whenever a variety X is naturally a vector bundle, we de-
note by Db(Coh0X) the derived category of the category of coherent sheaves on
X set-theoretically supported on the zero section. We have the following diagram,
where ψ, s are the inclusions as the zero section.

g̃ ωP2

G/B G/P

ψG

π

s

This gives us a corresponding diagram of derived categories.
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Db(Coh0 g̃) Db(Coh0 ωP2)

Db(CohG/B) Db(CohG/P )

ψG∗

π∗

s∗

We will ask whether the actions on Db
0(g̃) and Db

0(ωP2) are related by way of this
pushforward π∗.

We investigate this possibility by noting that we have equalities of Grothendieck
groups

K(Db(CohG/B)) = K(Db(Coh0 g̃))

and

K(Db(CohG/P )) = K(Db(Coh0 ωP2)),

so that π∗ : Db(CohG/B) → Db(CohG/P ) also gives a homomorphism of
Grothendieck groups

π∗ : K(Db(Coh0 g̃))→ K(Db(Coh0 ωP2)).

Since the affine braid group action onDb(Coh0 g̃) gives an action on the Grothendieck
group K(Db(Coh0 g̃)), and similarly the action by spherical twists gives an action
on the Grothendieck group K(Db(Coh0 ωP2)), we can ask whether there is any
shared subgroup of the braid groups involved such that this map π∗ is equivariant
with respect to the action of this shared subgroup.

In this paper we provide evidence suggesting a negative answer, by computing the
actions on both Grothendieck groups, and giving empirical evidence, by exhaustive
search, that the only possible subgroup making this map equivariant is the group
Z generated by the Serre twist on G/P .

1.1. Contents. The paper will proceed in roughly four parts.
In Sections 2 and 3, we briefly cover background on the braid groups involved

and the constructions of their actions on the categories.
In Sections 4 and 5, we prove that, when G = SL2 on the affine braid group

side, and Z = P1 on the spherical twist side (and the varieties are thus exactly the
same), the two actions correspond in a precise way.

In Sections 6, 7, and 8, we use the results from Section 3 to derive the actions
on the Grothendieck groups in the case where G = SL3 and Z = P2.

Finally, in Section 9, we give results from an exhaustive search for subgroups of
the braid groups that correspond, and conclude that there are likely no interesting
ones.

1.2. Acknowledgements. I’d like to thank Pablo Boixeda Alvarez for helping me
with this project and teaching me most of the algebraic geometry and representation
theory I needed to know in order to work on the project. I’d also like to thank
Roman Bezrukavnikov for suggesting this project and introducing me to its context.
Finally, I’d like to thank the UROP+ program at MIT for providing the funding I
needed this summer in order to do this work.
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2. Preliminaries: the action by spherical twists

2.1. The annular braid group. The group that acts by spherical twists is a
quotient of the annular braid group. The annular braid group can be imagined
topologically as the group of n-stranded braids on a cylinder, or as the configuration
space of n points in the punctured plane. It has the group presentation

Cn = 〈r, σ0, σ1, . . . σn〉
subject to the relations:

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi when i− j 6= 1,−1 (mod n)

rσi = σi+1r.

It so happens that in the action by spherical twists, rn acts as 0, so we may more
tightly write that the action is by Bn where

Bn = Cn/(r
n).

2.2. Spherical twists. Let n be a natural number (representing dimension), and
let C be any category enriched over k-vector spaces for an algebraically closed field
k. We call an object E ∈ C spherical if the cohomology of its Ext with itself is the
homology of the sphere; that is,

dim Exti(E,E) =

{
1 i ∈ 0, n

0 otherwise
.

Given any spherical object E, we can form the spherical twist functor ΦE :
Db(C)→ Db(C) by mapping F to the cone of the evaluation map:

ΦE : F 7→ cone(Hom(E,F )⊗ E → F ).

It was established in [3] that ΦE is always an exact autoequivalence.
The braid group action by spherical twists acts on the set of length n spherical

collections, i.e. ordered tuples of spherical objects. The action is defined for each
generator σi and r as follows.

σi(S0, S1, . . . Sn)

= (S0, S1, . . . Si[−1],ΦSi
(Si−1), Si+1 . . . Sn).

r(S0, S1, . . . Sn)

= (Sn, S0, . . . Sn−1).

It is established in [1] that this action satisfies the braid relations, so as to be an
action by Bn.

In this paper we will be concerned with the case where C is the category of
coherent sheaves on ωPn set-theoretically supported on the zero section, which we
will denote Db(Coh0 ωPn). This category is the subcategory of Db(ωPn) generated
by the pushforwards of objects from Db(Pn) along the inclusion s : Pn → ωPn as
the zero section.
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Noting that s∗, since it is pushforward along a closed embedding, is exact, and
recalling that CohPn is generated by line bundles O(j) for 0 ≤ j ≤ n, we may
conclude that Db(Coh0 ωPn) is generated by i∗O(j) for 0 ≤ j ≤ n.

It is established in [1] that the following collection (or any twist of it) is spherical.

(s∗O, s∗O(1), . . . s∗O(n))

Note that, by acting by the braid group element (σir)
n−1, we map

(σir)
n(s∗O, s∗O(1), . . . s∗O(n))

= (Φs∗O(i)s∗O,Φs∗O(i)s∗O(1), . . .Φs∗O(i)i∗O(n)).

Moreover the following is established in [3].

Lemma 1 (Seidel, Thomas). ΦΦs∗O(i)(O(j))Φs∗O(i) = Φs∗O(i)Φs∗O(j)

We therefore get the following action on the category by autoequivalences.

Lemma 2. Let H be the subgroup of Bopn generated by the following generators.

〈(σ0r)
n−1, (σ1r)

n−1, . . . (σnr)
n−1〉op ⊆ Bopn

Then the map sending (σir)
n−1 7→ Φs∗O(i) generates a homomorphism of groups

H → Aut(Dω).

Proof. It suffices to show that if any word
∏m
l=0(σilr)

n−1 = 1 then
∏m
l=0 Φs∗O(im−l) =

1. But if we have the former, then each O(j) in the spherical collection, that
(
∏m
l=0(σilr)

n−1)(O(j)) = O(j), and hence by Lemma 1 we will have (
∏m
l=0 Φs∗O(im−l))(O(j)) =

O(j), and since the O(j) generate the category this means
∏m
l=0 Φs∗O(im−l) = 1 as

well. �

3. Preliminaries: the action by the affine braid group

3.1. The affine braid group. The second action, from [2] is by extended affine
braid group of an algebraic group. This group is derived from the algebraic group’s
Weyl group and its character lattice. Let G be a semismiple algebraic group, B be
a Borel in it, and T be a maximal torus inside that Borel.

Recall the Weyl group has a presentation generated by the simple reflections rα,
one for each simple root α. The Weyl group can be represented as a group of linear
transformations of the root lattice, where rα acts by reflecting across a hyperplane
orthogonal to the simple root α.

The affine Weyl group is formed by adjoining to the Weyl group the group of
translations by roots; it is also a subgroup of the group of affine transformations
of the root lattice. The extended affine Weyl group is formed by adjoining to the
affine Weyl group the group of translations by any weights; this is a subgroup of
the group of affine transformations of the weight lattice.

The extended affine braid group, then, is defined by taking a standard presen-
tation for the extended affine Weyl group and removing the relations that say the
reflections have square zero. More precisely, the extended affine braid group is
generated by generators {sα} for each root α, together with generators θλ for each
weight λ, subject to the following relations.

(sαsβ)n = (sβsα)n where n is the order of rαrβ in the Weyl group
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θxθy = θx+y

sαθx = θxsα when rα(x) = x

θx = sαθx−αsα when rα(x) = x− α
The affine braid group is defined analogously, where the θλ are only included

when λ is a root.
In the case of SL2, the extended affine braid group is generated by a single simple

reflection s1, together with translation t by the single generating weight. The affine
braid group is the subgroup of the extended affine braid group generated by s1 and
t2; this can alternatively be seen as the subgroup generated by s1 and s0 = ts1t

−1,
since we can recover t2 = s0s1 = ts1t

−1s1 = t2 by the last relation above.
In the case of SL3, the extended affine braid group is generated by two simple

reflections s1, s2 together with the translation ω1.

3.2. The Grothendieck and Springer resolutions. The action of the affine
braid group acts on the derived category of the Grothendieck simultaneous resolu-
tion g̃, defined as the variety of pairs of a Borel together with an element of its Lie
algebra

{(gB, b) | b ∈ Lie gBg−1} ⊆ G/B × LieG.

There is also a Grothendieck resolution of partial flag varieties, i.e. G/P for a
parabolic subgroup P . They are, analogously, defined as

{(gP, p) | p ∈ Lie gPg−1} ⊆ G/P × LieG.

Both of these varieties are still a vector bundle over G/B; indeed, we have the
following lemma.

Lemma 3. We have the isomorphism of varieties g̃ ' (G×LieB)/B, where B acts
on G by right inverse multiplication, and on LieB by the adjoint action. Similarly
g̃S ' (G× LieP )/P .

Proof. We construct an explicit isomorphism, mapping

g̃→ (G× LieB)/B

(gB, b) 7→ (g, g−1bg).

This map is well-defined, since any equivalent (gb0B, b) on the left will be mapped
to (gb0, b

−1
0 g−1bgb0), which is equal to (g, g−1bg) under the quotient.

It is an isomorphism, since it has an inverse mapping

(g, b) 7→ (gB, gbg−1).

This inverse is also well-defined, since any equivalent (gb−1
0 , b0bb

−1
0 ) will map to

(gb−1
0 B, gb−1

0 b0gb
−1
0 g) = (gB, gbg−1).

The explicit isomorphism between the partial Grothendieck resolutions is anal-
ogous. �

The Springer resolution is the subvariety of the Grothendieck resolution consist-
ing of pairs (g, b) where b ∈ Lie gBg−1 is also in the nilpotent radical of Lie gBg−1.
The Springer resolution will be important to us because the Springer resolution of
G is the cotangent space of the flag variety T ∗G/B. In computations, however, we
will generally simply do computations on the Grothendieck resolution and treat the
Springer resolution as a subvariety.
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3.3. The affine braid group action. The action by the extended affine braid
group is defined on the derived category of the category of coherent sheaves on g̃
which are set-theoretically supported at the zero section (this is the subcategory
of Db(Coh g̃) that is generated by the pushforwards of sheaves on G/B along the
zero section). We define the action by giving the action of each generator of the
extended affine braid group. The extended affine braid group is generated by simple
reflections, and by translation by weight lattice elements.

Translation by a weight lattice element λ is defined to act by the twist functor
F 7→ F ⊗O(λ).

For each root α, there is an associated subgroup Uα in G such that the action
by t ∈ T on Uα by conjugation is exactly multiplication by α(t). Then there is a
parabolic Pα ⊇ B associated to sα, generated by B together with Uα.

Let g̃ be the Grothendieck resolution of G/B and g̃S be the Grothendieck reso-
lution of the partial flag variety G/Pα. Then there is a natural map:

π : g̃→ g̃S

formed by sending each pair (gB, b) to the pair (gP, b), noting that b ∈ Lie gBg−1 ⊆
Lie gPg−1. The action of the extended affine braid group is then defined by taking
letting each s−1

α act by sending a sheaf F to cone(π∗π∗F → F)[−1] where the map
π∗π∗F → F is the unit map.

This action can also apply to the derived categories of sheaves supported at zero
on the Springer resolutions. We will generally not bother to explicitly compute this
because it is so similar to the action on the Grothendieck resolution. It is proven
in [2] that the affine braid group can also act on the derived category of coherent
sheaves set-theoretically supported on the zero section of the Springer resolution S,
in such a way that the following diagram commutes for any braid group element g.

Db
0(S) Db

0(g̃)

Db
0(S) Db

0(g̃)

g·−

i∗

g·−

i∗

In computations of this paper, every object we consider in Db(Coh0 g̃) will end
up being the pushforward of a sheaf on G/B along the inclusion as the zero section
G/B → g̃. Since this inclusion as the zero section factors through the inclusion
S → g̃, one can deduce the action on Db(Coh0 S) easily by interpreting each of
these pushforwards as being into S instead of into g̃; this will give the action on
Db(Coh0 S).

4. Spherical twists in the SL2 case

To motivate the idea that the two actions are related, and also to develop the
tools required to deal with the SL3 case, we first show that the two braid group
actions in the SL2 case coincide in cohomology. Here, the two braid group actions
are in fact on the derived category of the same variety, namely ωP1 = T ∗SL2/B.
In this section and the following section, we will prove the following theorem.

Theorem 1. Let s : P1 → ωP1 be the inclusion as the zero section. Let SSL2
= ωP1

be the Springer resolution of SL2. Let sα be the unique simple reflection generating



8 DAVID ANTHONY BAU

the Weyl group of SL2, and t be the translation by its generating positive weight.
Then we have the following equalities for any sheaf F .

H•(Φs∗O(−1)(F)) = H•(sα(F))

H•(Φs∗O(F)) = H•(tsαt
−1(F))

We will compute the actions on the category by evaluating them on two gener-
ating objects of the category, in this case s∗O(−1) and s∗O. We will only compute
our results up to their cohomology.

To compute the spherical twist action we must compute the spherical twist func-
tors Φs∗O(−1) and Φs∗O. As mentioned before, it will suffice to compute these func-
tors on the generating objects s∗O(−1) and s∗O; this is to say we need to compute
four values: Φs∗O(−1)(O(−1)),Φs∗O(−1)(O), Φs∗O(O(−1)), and Φs∗O(O).

4.1. Computing Φs∗O(−1)(s∗O(−1)) and Φs∗O(s∗O). First, we compute Φs∗O(−1)(s∗O(−1)).
Recall this is the cone of the map:

RHom(s∗O(−1), s∗O(−1))⊗ s∗O(−1)→ s∗O(−1)

Recalling that s∗O(−1) is a spherical object, we haveRHomi(s∗O(−1), s∗O(−1)) ={
k i ∈ {0, 2}
0 otherwise

. This means we have the following long exact sequence in cohomol-

ogy.

s∗O(−1) 0 H2(Φs∗O(−1)(s∗O(−1)))

0 0 H1(Φs∗O(−1)(s∗O(−1)))

s∗O(−1) s∗O(−1) H0(Φs∗O(−1)(s∗O(−1)))

Here the s∗O(−1) → s∗O(−1) at the bottom is the evaluation map, i.e. the
identity. Thus we get:

H0(Φs∗O(−1)(s∗O(−1))) = 0

H1(Φs∗O(−1)(s∗O(−1))) = s∗O(−1)

H2(Φs∗O(−1)(s∗O(−1))) = 0.

Hence, on the level of cohomology, we have Φs∗O(−1)(s∗O(−1)) = s∗O(−1)[−1].
In a completely analogous fashion, we can obtain Φs∗O(s∗O) = s∗O[−1].

4.2. Computing Φs∗O(−1)(s∗O). The other two are slightly more difficult. We
will compute Φs∗O(−1)(s∗O) first. This is the cone of the map

RHom(s∗O(−1), s∗O)⊗ s∗O(−1)→ s∗O.
In order to compute this cone we must first compute what RHom(s∗O(−1), s∗O)

is. To compute this, we use a resolution of s∗O(−1) (the sheaf supported at 0) by
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line bundles (supported on the whole variety). Let π : ωP1 → P1 be the natural
projection. Then note there is an exact sequence

π∗ω∨P1 π∗O s∗O .

Here by π∗ω∨P1 is included in π∗O = OωP1
as the ideal sheaf of functions vanishing

on the zero section (locally, the total space of ωP1 looks like Spec k[µ, xy ]; locally

π∗ω∨P1 is included as the ideal sheaf (µ)). Twisting, there is an exact triangle

π∗ω∨P1(1) π∗O(1) s∗O(1) .

We can now use the exactness of derived Hom to see there must be an exact
triangle:

RHom(π∗ω∨P1(−1), s∗O) RHom(π∗O(−1), s∗O) RHom(s∗O(−1), s∗O) .

By pushforward-pullback adjunction we may see this as an exact triangle

RHom(ω∨P1(−1), π∗s∗O) RHom(O(−1), π∗s∗O) RHom(s∗O(−1), s∗O) .

Now, π∗s∗ = (πs)∗ and πs is the identity morphism. Recalling also that ωP1 =
O(−2), so that ω∨P1 = O(2), this gives us an exact triangle

RHom(O(1),O) RHom(O(−1),O) RHom(s∗O(−1), s∗O) .

By twisting, this is

RHom(O,O(−1)) RHom(O,O(1)) RHom(s∗O(−1), s∗O)

.
Hence we have an exact triangle

RΓ(O(−1)) RΓ(O(1)) RHom(s∗O(−1), s∗O)

and thus a long exact sequence in cohomology as follows.

0 0 Hom1(s∗O(−1), s∗O)

0 k2 Hom0(s∗O(−1), s∗O)

Hence we get RHom(s∗O(−1), s∗O) has cohomology k2 in degree 0 and zero
elsewhere.

We are now equipped to compute Φs∗O(−1)(s∗O), since it is the cone of the
morphism

RHom(s∗O(−1), s∗O(−1))⊗ s∗O(−1)→ s∗O(−1)

and hence has a long exact sequence in cohomology as follows.
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0 0 H1(Φs∗O(−1)(s∗O))

k2 ⊗O(−1) O H0(Φs∗O(−1)(s∗O))

0 0 H−1(Φs∗O(−1)(s∗O))

The map in degree zero here is the evaluation map, i.e. the twist of the inclusion
as global sections O⊕2 → O(1). It thus has kernel O(−2). Thus we get that

H−1(Φs∗O(−1)(s∗O)) = O(−2)

and that this object has no cohomology elsewhere.

4.3. Computing Φs∗O(s∗O(−1)). Finally, we can compute Φs∗O(s∗O(−1)). This
is the cone of the map

RHom(s∗O, s∗O(−1))⊗ s∗O → s∗O(−1).

Again, this means we must first compute RHom(s∗O, s∗O(−1)). Again, it is
useful to use the exact sequence

π∗ω∨P1 π∗O s∗O .

Following the same chain of reasoning as above, using pushforward-pullback
adjunction and exactness of RHom, we obtain an exact triangle

RHom(ω∨P1 ,O(−1)) RHom(O,O(−1)) RHom(s∗O, s∗O(−1)) .

That is, we have an exact triangle

RHom(O(2),O(−1)) RHom(O,O(−1)) RHom(s∗O, s∗O(−1))

or equivalently

RΓ(O(−3)) RΓ(O(−1)) RHom(s∗O, s∗O(−1)) .

Hence we get a long exact sequence in cohomology as follows.

k2 0 Hom2(s∗O, s∗O(−1))

0 0 Hom1(s∗O, s∗O(−1))

0 0 Hom0(s∗O, s∗O(−1))

This gives us that RHom(s∗, s∗O(−1)) has cohomology k2 in degree 1 and zero
elsewhere. Thus when we can compute the cohomology of the desired cone

cone(RHom(s∗O, s∗O(−1))⊗ s∗O → s∗O(−1))

by taking the following long exact sequence in cohomology.
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k2 ⊗ s∗O 0 H2(Φs∗O(s∗O(−1)))

0 0 H1(Φs∗O(s∗O(−1)))

0 s∗O(−1) H0(Φs∗O(s∗O(−1)))

Thus we get

H0(Φs∗O(s∗O(−1))) = s∗O(−1)

H1(Φs∗O(s∗O(−1))) = k2 ⊗ s∗O
and that this object has vanishing cohomology elsewhere.

4.4. Putting everything together for spherical twists. Altogether, we get
the following table for the cohomology of the resulting objects.

Φs∗O(−1)s∗O(−1) Φs∗O(−1)s∗O Φs∗Os∗O(−1) Φs∗Os∗O
H−1 0 s∗O(−2) 0 0
H0 0 0 s∗O(−1) 0
H1 s∗O(−1) 0 k2 ⊗ s∗O s∗O

5. The affine braid group action in the SL2 case

For the affine braid group action, we note that the affine braid group will be
generated by a simple reflection sα and its conjugation by the Serre twist, tsαt

−1.
The simple reflection α has the entire group SL2 as its associated parabolic group.
Hence the action of sα is induced by the morphism

π : g̃→ g

which sends (gB, b) 7→ b. Then reflection by α will correspond to taking

cone(π∗π∗X → X)[−1].

This morphism is the unit of the pushforward-pullback adjunction π∗ a π∗. The
main task here is to compute π∗π∗X.

We will explicitly compute π locally; to do so, we will first explicitly describe g̃.

5.1. g̃ explicitly. We can consider the variety g̃ as the set (a : b,M) where a : b is
a point on the projective line and M is an element of sl2 that fixes that line. We
can cover g̃ by two affine opens, one where a 6= 0 and the other where b 6= 0.

If a 6= 0 then we can parameterize the possible M by two variables (x, y) by

taking

[
x y
0 −x

]
, which fixes the line (1, 0), and conjugating it so it fixes the line

(1, ba ), as follows. [
1
b
a 1

] [
x y
0 −x

] [
1
− b
a 1

]
=

[
1
b
a 1

] [
x− b

ay y
b
ax −x

]
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=

[
x− b

ay y
2 bax− ( ba )2y b

ay − x

]
The other affine open, symmetrically, allows us to parameterize M by two vari-

ables x̂, ŷ by setting M to be[
a
b 1
1

] [
x̂ ŷ
0 −x̂

] [
1

1 −ab

]
=

[
a
b 1
1

] [
ŷ x̂− a

b ŷ
−x̂ a

b x̂

]
=

[
a
b ŷ − x̂ 2ab x̂− (ab )2ŷ
ŷ x̂− a

b ŷ

]
.

These should be glued together so that the point (1 : b
a ,M) is the same as the

point (ab : 1,M). This gives us g̃ as two copies of A3 glued together along the
following isomorphism.

k[ ba , x, y] k[ab , x̂, ŷ]

k[ ba , x, y,
a
b ] k[ab , x̂, ŷ,

b
a ]

The maps here associate

y = M12 = 2
a

b
x̂− (

a

b
)2ŷ

and

x = M11 +
b

a
M12 = (

a

b
ŷ − x̂) +

b

a
(2
a

b
x̂− (

a

b
)2ŷ)

=
a

b
ŷ − x̂+ 2x̂− a

b
ŷ = x̂.

Now, g̃ is a two-dimensional vector bundle over P1, so should split as a direct
sum of line bundles. This gluing map allows us to see this split as follows.

x− 1

2
(
b

a
)y 7→ x̂− 1

2

b

a
(2
a

b
x̂− (

a

b
)2y)

= x̂− x̂+
1

2

a

b
ŷ =

1

2

a

b
ŷ

1

2
y 7→ a

b
x̂− 1

2
(
a

b
)2ŷ =

a

b
(x̂− 1

2
(
a

b
)ŷ)

Using these bases, we get that, as a vector bundle, this is OP1(1)⊕OP1(1).

5.2. The map g̃ → g explicitly. The map π sends (a : b,M) ∈ g̃ to M ∈ A3.
Locally (at, in this example, a 6= 0), this map looks like sends[

x− b
ay y

2 bax− ( ba )2y b
ay − x

]
7→
[
h e
f −h

]
.

Hence we see this map is, locally,

k[h, e, f ]→ k[
b

a
, x, y]
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h 7→ x− b

a
y

e 7→ y

f 7→ 2
b

a
x− (

b

a
)2y.

On the other affine open b 6= 0 we get that the map is[
a
b ŷ − x̂ 2ab x̂− (ab )2ŷ
ŷ x̂− a

b ŷ

]
7→
[
h e
f −h

]
whence similarly

k[h, e, f ]→ k[
a

b
, x, y]

h 7→ a

b
ŷ − x̂

e 7→ 2
a

b
x̂− (

a

b
)2ŷ

f 7→ ŷ.

5.3. Computation of the functor π∗π
∗. We are mostly concerned with sheaves

that are pushforwards of sheaves from SL2/B = P1. We have the following com-
mutative diagram.

g̃ g = A3

G/B pt

π

ψG

π′

ψP

By commutativity we have π∗ψG∗ = ψ∗Pπ
′
∗. Now π′∗, as a functor between

categories of coherent sheaves, is just the global sections functor; so its derived
functor is just the derived global sections. Then ψP is a closed embedding, hence
exact. Hence to compute ψ∗Pπ

′
∗ we can take derived global sections, and then take

each element of the resulting chain and replace it with the corresponding skyscraper
sheaf on A3 at 0.

Hence for any sheaf F that is the pushforward of a sheaf from G/B, π∗(F) will
have cohomology that is just some vector spaces supported at 0. Now, π∗ is just the
inverse image functor composed with tensor product. To take the derived functor of
π∗ we can note that A3 is affine, so we can use projective resolutions; in particular
we can use the Koszul resolution of vector spaces that are supported at 0. These
will be n direct-sum copies of the Koszul resolution of k (supported at 0), so our
main task is to compute the Koszul resolution of k.

In the case of A3 the Koszul resolution looks like the following, where the right-
most k[h, e, f ]〈1〉 is in degree 0 and degree decreases as you go left.

0→ k[h, e, f ]〈ω〉 → k[h, e, f ]〈δ, ε, θ〉 → k[h, e, f ]〈α, β, γ〉 → k[h, e, f ]〈1〉 → 0

Here the the last map sends

α 7→ h1

β 7→ e1

γ 7→ f1.

The second-to-last map sends



14 DAVID ANTHONY BAU

δ 7→ fβ − eγ
ε 7→ hγ − fα
θ 7→ eα− hβ.

Finally, the first map sends

ω 7→ hδ + eε+ fθ.

We can use this projective resolution to evaluate (up to cohomology) of the left
derived functor of π∗ on k. To do so, we pull back each of these modules (i.e.
trivial vector bundles) by tensoring with Og̃, then compute the cohomology of the
resulting chain.

We will compute this by computing it locally on a 6= 0 and then computing the
gluing map. Locally on a 6= 0 we get the following chain.

0→ k[
b

a
, x, y]〈ω〉 → k[

b

a
, x, y]〈δ, ε, θ〉 → k[

b

a
, x, y]〈α, β, γ〉 → k[

b

a
, x, y]〈1〉 → 0

Here the last map sends

α 7→ (x− b

a
y)1

β 7→ y1

γ 7→ (2
b

a
x− (

b

a
)2y)1.

The second-to-last map sends

δ 7→ (2
b

a
x− (

b

a
)2y)β − yγ

ε 7→ (x− b

a
y)γ − (2

b

a
x− (

b

a
)2y)α

θ 7→ yα− (x− b

a
y)β.

Finally, the last map sends

ω 7→ (x− b

a
y)δ + yε+ (2

b

a
x− (

b

a
)2y)θ.

5.4. The sheaf H0. We will first compute the cohomology sheaf H0. Since this
is the first element in the chain, its kernel is the whole sheaf, so we simply wish
to take the quotient by the image from k[ ba , x, y]〈α, β, γ〉. We thus get, locally at
a 6= 0,

H0({a 6= 0}) = k[
b

a
, x, y]/(y, x− b

a
y, 2

b

a
x− (

b

a
)2y).

Noting that these three elements (y, x− b
ay, 2

b
ax− ( b

2

a2 )y) generate x and y and
are generated thereby, this is just the ideal (x, y) so we get

H0({a 6= 0}) = k[
b

a
, x, y]/(x, y).

Similarly, H0({b 6= 0}) = k[ab , x, y]/(x, y). The gluing map here sends the gen-
erators to each other, so this is the pushforward ψB∗OP1 .
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5.5. The module H−1 on a 6= 0. We can now compute the cohomology module
H−1. First, we need to compute the kernel of this map into the k[ ba , x, y]〈1〉.

The kernel includes, at least, the following element

2
b

a
(α+

b

a
β)− (

b

a
)2β − γ

= 2
b

a
α+ (

b

a
)2β − γ

since its image is 2 ba (x− b
ay+ b

ay)− ( ba )2y− (2 bax− ( ba )2y) = 0. Hence, modulo
the kernel, γ is generated by α and β. This means that we can factorize the map
k[ ba , x, y]〈α, β, γ〉 → k[ ba , x, y]〈1〉 as follows.

k[
b

a
, x, y]〈α, β, γ〉 → k[

b

a
, x, y]〈α, β, γ〉/(2 b

a
α+(

b

a
)2β−γ) ' k[

b

a
, x, y]〈α, β〉 → k[

b

a
, x, y]〈1〉

To compute the kernel of this factorized morphism, one can take the kernel of
the map k[ ba , x, y]〈α, β〉 → k[ ba , x, y]〈1〉 and take its preimage under the quotient

by (2 baα + ( ba )2β − γ). Now, the kernel of the map α 7→ (x − b
ay)1 and β 7→ y1 is

generated by yα− (x− b
ay)β since the ideals y and (x− b

ay) are coprime, so their
intersection is their product. Then the preimage under the quotient, and hence the
kernel of the map k[ ba , x, y]〈α, β, γ〉 → k[ ba , x, y]〈1〉, will be generated by the two
elements

〈yα− (x− b

a
y)β, 2

b

a
α+ (

b

a
)2β − γ〉.

To compute the cohomology module H−1 we want to take the quotient of this
module by the image from k[ ba , x, y]〈δ, ε, θ〉, which is

〈(2 b
a
x− (

b

a
)2y)β − yγ, (x− b

a
y)γ − (2

b

a
x− (

b

a
)2y)α, yα− (x− b

a
y)β〉.

We note that one of the generators of the kernel, yα − (x − b
ay)β, lies in this

image. Thus this cohomology group will be generated by the equivalence class of
2 baα+ ( ba )2β − γ.

Denote for convenience z = 2 baα + ( ba )2β − γ. Note that xz and yz are both in
the image. We can generate xz in the following fashion.

ε− b

a
δ − (

b

a
)2θ =

(x− b

a
y)γ − (2

b

a
x− (

b

a
)2y)α− b

a
((2

b

a
x− (

b

a
)2y)β − yγ)− (

b

a
)2(yα− (x− b

a
y)β)

= xγ − (2
b

a
x− (

b

a
)2y)α− (2(

b

a
)2x− (

b

a
)3y)β − (

b

a
)2(yα− (x− b

a
y)β)

= xγ − 2
b

a
xα+ (

b

a
)2yα− 2(

b

a
)2xβ + (

b

a
)3yβ − (

b

a
)2yα+ (

b

a
)2xβ − (

b

a
)3yβ)

= xγ − 2
b

a
xα− (

b

a
)2xβ

= −xz
We can also generate yz in the following fashion.
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δ + 2
b

a
θ

= (2
b

a
x− (

b

a
)2y)β − yγ + 2

b

a
(yα− (x− b

a
y)β)

= 2
b

a
xβ − (

b

a
)2yβ − yγ + 2

b

a
yα− 2

b

a
(x− b

a
y)β

= 2
b

a
xβ − (

b

a
)2yβ − yγ + 2

b

a
yα− 2

b

a
xβ + 2(

b

a
)2β

= 2
b

a
yα+ 2(

b

a
)2β − yγ

= yz

Hence the submodule (x, y)z is in the image, and conversely everything in the
image is in (x, y)z since every term in every coefficient in the image includes a factor
of either x or y. Hence we get the submodule k[ ba , x, y]〈2 baα+ ( ba )2β − γ〉/(x, y).

We thus see that we have some pushforward of some line bundle on P1. To see
what the twist of that line bundle is, we can compute the module on the other
affine open and the relevant gluing map.

5.6. The module H−1 on b 6= 0. On the other affine open, the relevant map
whose kernel we are trying to compute is as follows.

α 7→ (
a

b
x̂− ŷ)1

β 7→ (2
a

b
x̂− (

a

b
)2ŷ)1

γ 7→ ŷ1

Meanwhile the map whose image we are trying to compute is as follows.

δ 7→ ŷβ − (2
a

b
x̂− (

a

b
)2ŷ)γ

ε 7→ (
a

b
x̂− ŷ)γ − ŷα

θ 7→ (2
a

b
x̂− (

a

b
)2ŷ)α− (

a

b
x̂− ŷ)β

We observe that we can obtain the previous case by doing the replacements
α 7→ −α, β 7→ γ, γ 7→ β, ab 7→

b
a , δ 7→ −δ, ε 7→ −θ, θ 7→ −ε. Hence the kernel should

be

k[
a

b
, x̂, ŷ]〈−2

a

b
α+ (

a

b
)2γ − β〉/(x̂, ŷ).

5.7. The sheaf H−1. We can write these two modules as k[ ba , x, y]〈z1〉/(x, y) and

k[ab , x, y]〈z2〉/(x, y) where z2 = (ab )2z1. This gives this module as having a twist of
2. Thus the first cohomology module is π∗O(−2).
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5.8. The sheaf H−2. Locally, we want to determine the kernel of the following
map.

δ 7→ (2
b

a
x− (

b

a
)2y)β − yγ

ε 7→ (x− b

a
y)γ − (2

b

a
x− (

b

a
)2y)α

θ 7→ yα− (x− b

a
y)β

This kernel will be the submodule of linear combinations

cδδ + cεε+ cθθ

that are sent to zero. In order for such a linear combination to be sent to zero,
the coefficient of γ in the image must be zero. This means cε(x − b

ay) − cδy = 0.

Again by coprimality of (x− b
ay) and (y), we have that cε = yc0 and cδ = (x− b

ay)c0
for some c0.

Now noting that the coefficient of α in the image must also be zero, we get

ycθ − (2
b

a
x− (

b

a
)2y)cε = 0

ycθ = (2
b

a
x− (

b

a
)2y)yc0.

Now since y is not a zero divisor this means:

cθ = (2
b

a
x− (

b

a
)2y)c0.

But then this gives that everything in the kernel is also in the image of the map
ω 7→ (x− b

ay)δ+ yε+ (2 bax− ( ba )2y)θ. Thus the second cohomology module is zero
(since this calculation works symmetrically on the other affine open).

5.9. The sheaf H−3. The third cohomology module will (locally) be the kernel
of the map ω 7→ (x − b

ay)δ + yε + (2 bax − ( ba )2y)θ. But this kernel is zero, since y
is not zero divisor and anything in the kernel would have to have an image with
vanishing coefficient of ε.

5.10. Putting everything together for the affine braid group. Hence π∗

applied to k gives a chain with cohomology H0 = ψG∗OP1 , H−1 = ψG∗OP1(−2),
and all other cohomologies zero.

We will give this functor by applying it to the pushforwards of the line bundles
OP1 , OP1(−1). Recall that the derived global sections of O(i) is ki+1 as the zeroth
cohomology and k−i−1 is the first cohomology. We can tensor these together to see
that π∗π∗ψG∗O(i) gives something with cohomology

H1(π∗π∗ψG∗O(i)) = k−i−1 ⊗ ψG∗O
H0(π∗π∗ψG∗O(i)) = k−i−1 ⊗O(−2)⊕ ki+1 ⊗ ψG∗O

H−1(π∗π∗ψG∗O(i)) = ki+1 ⊗O(−2).

Recall that sα takes cone(π∗π∗ψG∗O(i)→ O(i))[−1]. We thus get the following
long exact sequence of cohomology.
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H1(sα(ψG∗O(i))) k−i−1 ⊗ ψG∗O 0

H0(sα(ψG∗O(i))) k−i−1 ⊗ ψG∗O(−2)⊕ ki+1 ⊗ ψG∗O ψG∗O(i)

H−1(sα(ψG∗O(i))) ki+1 ⊗ ψG∗O(−2) 0

← → ← →

←→ ←→←

→

← → ← →←

→

Applying this in particular to i = 0 yields the following long exact sequence.

H1(sα(ψG∗O)) 0 0

H0(sα(ψG∗O)) ψG∗O ψG∗O

H−1(sα(ψG∗O)) ψG∗O(−2) 0

← → ← →

← → ← →←

→

←→ ← →←

→

Here the map in degree zero is the identity map. Hence we obtain a module that
has cohomology ψG∗O(−2) in degree −1 and zero elsewhere.

Applying this in particular to i = −1 gives the following long exact sequence in
cohomology.

H1(sα(ψG∗O(−1))) 0 0

H0(sα(ψG∗O(−1))) 0 ψG∗O(−1)

H−1(sα(ψG∗O(−1))) 0 0

←→ ← →

←→ ←→
←

→

←→ ← →←

→

Hence we get cohomology of ψG∗O(−1) in degree 1 and zero elsewhere.

Finally, to compute tsαt
−1, we would also like to apply this to ψG∗O(−2). Here

we get the following long exact sequence in cohomology.

H1(sα(ψG∗O(−2)) ψG∗O 0

H0(sα(ψG∗O(−2)) ψG∗O(−2) ψG∗O(−2)

H−1(sα(ψG∗O(−2))) 0 0

← → ← →

←→ ←→
←

→

← → ← →←

→

There are multiple possibilities for what the unknown cohomology groups here
could be. However, we also know that this functor is exact, hence, from the exact
sequence ψG∗O(−2) → ψG∗O(−1)⊕2 → ψG∗O, we should have an exact triangle
sα(ψG∗O(−2))→ sα(ψG∗O(−1)⊕2)→ sα(ψG∗O), and thus the following long exact
sequence of cohomology.
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H1(sα(ψG∗O(−2)) ψG∗O(−1)⊕2 0

H0(sα(ψG∗O(−2)) 0 0

H−1(sα(ψG∗O(−2)) 0 ψG∗O(−2)

←→ ← →

← → ← →←

→

← →← → ← →
←

→

From this we get H0 = ψG∗O(−2) and H1 = ψG∗O(−1)⊕2, which also fits in to
the long exact sequence from the pullback-pushforward adjunction above.

We thus get the following table for the action of the affine braid group.
sα(ψG∗O(−1)) sα(ψG∗O) tsαt

−1(ψG∗O(−1)) tsαt
−1(ψG∗O)

H−1 0 ψG∗O(−2) 0 0
H0 0 0 ψG∗O(−1) 0
H1 ψG∗O(−1) 0 k2 ⊗ ψG∗O ψG∗O

5.11. The correspondence in the SL2 case. We are now ready to conclude our
proof of Theorem 1.

Proof of Theorem 1. Recall that the affine braid group action on theDb(Coh0 SSL2
)

commutes with the pushforward functor Db(Coh0 SSL2
) → Db(Coh0 g̃); hence the

table of Section 5.10 also applies to the action on Db(Coh0 SSL2
) by replacing ψG

with the inclusion ι : P1 → SSL2
.

Then the tables from Sections 4.4 and 5.10, recalling that these functors are
exact and that O, O(−1) generate the category, we can see that the two actions
correspond in cohomology in the SL2 case, with

H•(Φs∗O(−1)(F)) = H•(sα(F))

H•(Φs∗O(F)) = H•(tsαt
−1(F))

This proves the theorem. �

6. Spherical twists in the SL3 case

We are now ready to proceed to the SL3 case. The action by spherical twists in
the SL3 case can be computed in a manner analogous to the SL2 case. Instead of
computing this here, we refer the reader to [4], where this computation is done.

The result from [4] uses as the basis for its Grothendieck group the three bundles
[S0, S1, S2] where S0 = s∗O, S1 = s∗Ω

1(1)[1], and S2 = s∗O(−1). Using this basis,
the resulting actions on the Grothendieck group are as follows.

ΦS0
=

1 3 −3
0 1 0
0 0 1



ΦS1
=

 1 0 0
−3 1 3
0 0 1


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ΦS2
=

1 0 0
0 1 0
3 −3 1


To compare this action to the affine braid group action action, we will choose

instead the basis [O,O(1),O(−1)]. Performing the basis change to this basis instead
(using the exact sequence 0→ Ω1 → O(−1)⊕3 → O → 0), we obtain the following.

ΦS0 =

1 3 −3
0 1 0
0 0 1


ΦS1 =

10 27 −9
−3 −8 3
0 0 1


ΦS2 =

1 0 0
0 1 0
3 6 1


7. The affine braid group action in the SL3 Case

7.1. Lifting to equivariant sheaves on G×X. Our strategy for computing the
affine braid group action will be to notice that G/B → P2 is a fibration with fiber
P1, and that we can therefore lift the morphisms in such a way that the three-
dimensional and two-dimensional cases become intimately related.

Specifically, as we did in the two-dimensional case, note that we have the follow-
ing commutative diagram.

g̃ g̃S

G/B P2

π

ψG

π′

ψP

To compute π∗π∗ψG∗F for some sheaf F on G/B, we can note that π∗ψG∗ =
ψP∗π

′
∗, and so compute π∗ψP∗π

′
∗. Now we claim the following.

Lemma 4. For any P -space X, consider the variety G×X as a P -space by letting
p(g, x) = (gp−1, px). Then there exist actions of P on (P×LieB)/B, LieP , (P/B),
and pt, and morphisms π, π′, ψG, ψP , making the following diagram commute.

G× (P × LieB)/B G× LieP

G× (P/B) G× pt

g̃ g̃S

G/B P2

1×π

/P
/P

/P

1×ψG

1×π′

/P

1×ψP

π

ψG

π′

ψP

Proof. We choose the following actions.

• Choose the action of P on P/B to be by left multiplication.
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• Choose the action on pt to be trivial.
• The action on LieP to be the adjoint action.
• The action on (P ×LieB)/B to be by left-multiplication on the copy of P .

In (P × LieB)/B, the action of B is by right inverse multiplication on P ,
and the adjoint action on LieB.

We first show that these actions indeed give the appropriate quotients. The
fact that (G × P/B)/P = G/B and (G × pt)/P = G/P = P2 is clear. We have
G× LieP = g̃S from Lemma 3. To see that g̃ = (G× (P × LieB)/B)/P , we recall
from Lemma 3 that g̃ = (G× LieB)/B, and note that

(G× LieB)/B = ((G× P )/P × LieB)/B = (G× P × LieB)/(P ×B)

= (G× (P × LieB)/B)/P.

We now choose the four maps π, π′, ψG, ψP .

• The map P/B → pt is the only possible one.
• The map pt→ LieP is the inclusion as the zero point.
• The map (P/B)→ (P × LieB)/B sends pB 7→ (p, 0).
• The map (P × LieB)/B → LieP maps (g, p, b) 7→ (g, pbp−1).

To finish the proof we merely need to see that each of these causes the square
attached to them to commute. To see that the square

G× (P/B) G× pt

G/B P2

1×π′

/P /P

π

commutes, we check the equation

(1× π′)(g, pB) = π((g, pB)).

Evaluating both sides yields

g = π(gpB)

gP = gpP

and this is true. Similarly, to check the square for ψP we need to check the
equation

(1× ψP )(g) = ψP (g)

(g, 0) = ψP (gP )

(gP, 0) = (gP, 0)

which is true. To check the square for ψG we check a similar equation

(1× ψG)(g, p) = ψP ((g, p))

(g, p, 0) = ψG(gpB)

(gpB, 0) = (gpB, 0)

which is also true. Finally, to check the square for π, we check

(1× πP )(g, p, b) = π((g, p, b))
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(g, p, pbp1) = π(gB, pbp−1)

(gpP, (gp)b(gp)−1) = (gP, (gp)b(gp)−1)

which is also true. This finishes the proof.
�

7.2. Descending to equivariant sheaves on fibres. The fact that each map
takes the form 1× f means that all such maps are equivariant with respect to the
action of G that acts by left-multiplication on the copy of G. This is useful, because
all of the bundles O(λ) we begin with on G/B are equivariant with respect to the
left multiplication action by G. This means that, after lifting, we will begin with
a line bundle on G × (P/B) that is G-equivariant, and, since all the morphisms
G-equivariant, all of the sheaves will stay equivariant after applying the functors.

G× (P × LieB)/B G× LieP

G× (P/B) G× pt

g̃ g̃S

G/B P2

(P × LieB)/B LieP

P/B pt

1×π

/P

/G

/P

/G

/P

/G

1×ψG

1×π′

/P

/G

1×ψP

π

ψG

π′

ψP

π

ψG

π′

ψP

This gives us the following lemma, which we will use as our main tool to compute
the affine braid group action in the SL3 case.

Lemma 5. For each variety X of P/B, pt, (P × LieB)/B,G × LieP , there is an
equivalence of categories EX

EX : Db(CohX)→ Db(Coh(G×X)/P )

and for each of the morphisms f : X → Y in π, π′, ψG, ψP we have the following
commutativity equations

f∗EX = EXf∗

f∗EX = EXf∗

Proof. We recall that since the actions of P and G on each G × X is free, we
have two equivalences of categories F : Db(Coh(G × X)/P ) → Db(G × X) and
G : Db(Coh(G ×X)/P ) → Db(X). We choose EX = G ◦ F , which has the desired
commutativity properties since G and F do. �
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7.3. Finding the SL2 case in diagram of fibres. The P -equivariant diagram
(bottom square) is very similar to the diagram for the SL2 case.

First, we observe that P/B = P1 = SL2/B2, where by B2 we mean the Borel in
SL2. It will be useful later to also compute how P acts on SL2 in this quotient.

Lemma 6. We have an isomorphism of P -spaces P/B ' SL2/B2, where p ∈ P
acts on SL2 by

p(

[
s11 s12

s21 s22

]
) =

[
p22 p23

p32 p33

] [
s11 s12

s21 s22

] [
p11

1

]
.

Proof. Note that every element of P has a factorization of the following form.p11 p12 p13

p22 p23

p32 p33

 =

1
p11p22 p23

p11p32 p33

p11 p12 p13

p−1
11 0
0 1


Since the latter matrix is in B, this means that every point (p, b) ∈ P/B is equal

to some s ∈ P of the form

1
∗ ∗
∗ ∗

. Let L subgroup of P consisting of such s,

noting that L ' SL2. We can thus consider this variety to be a quotient L/(B∩L)
instead of (P × LieB)/B.

To compute the action of p on SL2/B2, we pass to its action on P/B as follows.

p(

[
s11 s12

s21 s22

]
) ∈ SL2/B2

=

p11 p12 p13

p22 p23

p32 p33

1
s11 s12

s21 s22

 ∈ P/B
=

p11 p12s11 + p13s21 p12s12 + p13s22

p22s11 + p23s21 p22s12 + p23s22

p32s11 + p33s21 p32s12 + p33s22

 ∈ P/B
= (

1
p22s11 + p23s21 p22s12 + p23s22

p32s11 + p33s21 p32s12 + p33s22

p11 p12s11 + p13s21 p12s12 + p13s22

1
1

 ∈ P/B
=

1
p22 p23

p32 p33

1
s11 s12

s21 s22

1
p11

1

p11 p12s11 + p13s21 p12s12 + p13s22

p−1
11

1

 ∈ P/B
=

1
p22 p23

p32 p33

1
s11 s12

s21 s22

1
p11

1

 ∈ P/B
∼
[
p22 p23

p32 p33

] [
s11 s12

s21 s22

] [
p11

1

]
. ∈ SL2/B2

Noting that this means the action descends from an action on SL2 given by

p(

[
s11 s12

s21 s22

]
) =

[
p22 p23

p32 p33

] [
s11 s12

s21 s22

] [
p11

1

]
, we are done.

�
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Lemma 7. There is an isomorphism of varieties (P×LieB)/B = (SL2×LieB)/B2,
where B2 acts on LieB by adjoint action on the lower-right-hand block.

Proof. As in the proof of Lemma 6, recall every element p ∈ P has a factorization
p = lb for l ∈ L, b ∈ B. Thus every point (p, b) ∈ (P × LieB)/B is equal to
some (s, b′) where s ∈ L. We can thus consider this variety to be a quotient
(L× LieB)/(B ∩ L) instead of (P × LieB)/B. �

We can now also note that LieB can be decomposed into two B2-invariant
subspaces, namely

LieB = {

v1 v2 v3

−v12 0
−v12

} ⊕ {
0 0 0

u1 u2

−u1

}.
The action of B2 on the first subspace is trivial, and the second space is precisely

LieB2 with the adjoint action of B2. We can thus regard this as

(P × LieB)/B ' A3 × (SL2 × LieB2)/B2

' A3 × g̃SL2
.

Moreoever, since the adjoint action of SL2 is also trivial on the copy of A3, and
acts on the second copy exact as it does in the SL2 case, the map (p, b) 7→ p−1bp ∈
LieP can be written as

(1× π) : A3 × g̃SL2 → A3 × gSL2 .

Here by π we mean the morphism g̃ → g from the SL2 case. We can thus see
our entire P -equivariant diagram as follows.

A3 × g̃SL2
A3 × gSL2

SL2/B2 SL2/SL2

1×πSL2

i0×ψG,SL2

π′SL2

i0×ψP,SL2

Here by i0 we mean inclusion of the point as the zero point in A3 (where we are
viewing each variety SL2/B2 and SL2/SL2 as pt × SL2/B2 and pt × SL2/SL2,
respectively), and by each of ψG,SL2

, ψP,SL2
, π′SL2

, πSL2
, we mean those maps from

the SL2 case. This gives us

π∗SL2
ψP∗π′∗ = (1× πSL2)∗(i0 × ψP,SL2)∗π

′
SL2∗.

By factorizing the morphism i0 × ψP,SL2 , we can also extend this diagram to a
commutative diagram as follows.

A3 × g̃SL2
A3 × gSL2

g̃SL2 gSL2

SL2/B2 SL2/SL2

1×πSL2

i0×1

πSL2

i0×1

ψG,SL2

π′SL2

ψP,SL2
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This let us rewrite

π∗SL2
ψP∗π′∗ = (1× πSL2

)∗(i0 × 1)∗ψP,SL2∗π
′
SL2∗.

Then by flat base change on the uppermost square we have

π∗SL2
ψP∗π′∗ = (i0 × 1)∗π

∗
SL2

ψP,SL2∗π
′
SL2∗.

Thus it suffices to π∗SL2
ψP,SL2∗π

′
SL2

equivariantly, and our desired sheaves will

simply be these sheaves pushed forward along i0×1 into A3×g̃SL2
. We will compute

this for O,O(−1), and O(1).

7.4. The correspondence between G/B-bundles and equivariant P/B-bundles
explicity. Before we begin computing this, we need to lift a particular line bun-
dle O(λ) on G/B to a line bundle on P/B through this process. Define O(λ) to
be the vector bundle given by the projection (G × k)/B → G where b(g, x) =
(gb−1, λ(b)−1x). We choose this sign so that when λ is dominant then O(λ) has
global sections.

Lemma 8. Let ω1, ω2 be the fundamental weights, i.e. the characters of B where
ω1(b) = b−1

33 and ω2(b) = b11. Let ω0 be the character of B2 such that ω0(b′) =
b′11 = b′−1

22 . Then EP1(O(aω1 + bω2)) = O(aω0), equipped with the P -equivariant
structure where p ∈ P acts on O(aω0) = (SL2 × k)/B by sending p(s, x) =

(p(s), λ(

p11

p−1
11

1

)−1x).

Proof. Recall that O(λ) is defined as the line bundle (G × k)/B where B acts
by right inverse multiplication on G and by the character −λ on k. Using our
isomorphism G/B = (G× P/B)/P gives us a vector bundle defined by the map

(G× k)/B = (G× (P × k)/B)/P (G× P/B)/P .

We can lift this map to a P -equivariant map

G× (P × k)/B G× P/B .

This gives us the desired vector bundle on G× P/B. Quotienting this map out
by G-equivariance will give us a map

(P × k)/B P/B .

Here the map is the quotient by the action of B by right inverse multiplication
on P , and by the chosen character on k. Using an analogous argument to that used
in 7.3, we can rewrite P/B = SL2/B2 and (P × k)/B = (SL2 × k)/B2, where the
action of B2 is the action of B restricted to the subgroup of matrices of the form1

∗ ∗
∗

. This gives us a vector bundle

(SL2 × k)/B2 SL2/B2 .
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This is a recognizable vector bundle on P2.

The P -action on (SL2 × k)/B2 is defined as begin inherited from its action on
(P × k)/B follows. p11 p12 p13

p22 p23

p32 p33

 (

[
s11 s12

s21 s22

]
, v)

=

p11 p12 p13

p22 p23

p32 p33

 (

1
s11 s12

s21 s22

 , v)

= (

p11 p12 p13

p22 p23

p32 p33

1
s11 s12

s21 s22

 , v)

= (

p11 p12s11 + p13s21 p12s12 + p13s22

p22s11 + p23s21 p22s12 + p23s22

p32s11 + p33s21 p32s12 + p33s22

 , v)

= (

1
p22s11 + p23s21 p22s12 + p23s22

p32s11 + p33s21 p32s12 + p33s22

p11 p12s11 + p13s21 p12s12 + p13s22

1
1

 , v)

= (

1
p22 p23

p32 p33

1
s11 s12

s21 s22

1
p11

1

p11 p12s11 + p13s21 p12s12 + p13s22

p−1
11

1

 , v)

= (

1
p22 p23

p32 p33

1
s11 s12

s21 s22

1
p11

1

 , λ(

p11 p12s11 + p13s21 p12s12 + p13s22

p−1
11

1

)−1v)

= (

[
p22 p23

p32 p33

] [
s11 s12

s21 s22

] [
p11

1

]
, λ(

p11 p12s11 + p13s21 p12s12 + p13s22

p−1
11

1

)−1v)

Recalling that the characters λ are uniquely defined by their action on the torus,
we may equivalently write

= (

[
p22 p23

p32 p33

] [
s11 s12

s21 s22

] [
p11

1

]
, λ(

p11

p−1
11

1

)−1v).

= (p(s), λ(

p11

p−1
11

1

)−1v)

This gives the action of P on our bundle in terms of λ. Hence we may concretely
describe the correspondence between line bundles as sending O(λ) to the sheaf
(SL2 × k)/B2 where b ∈ B2 acts as b(s, v) = (sb−1, λ|L∩B(x)−1v) (i.e. the sheaf

O(aω0), and P acts on this sheaf by p(s, v) = (p(s), λ(

p11

p−1
11

1

)−1s).
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Now suppose we begin with a line bundle O(λ = aω1 + bω2) on G/B. Then the

restriction of λ to the subgroup L∩B is aω0, and λ(

p11

p−1
11

1

)−1 = p−b11 . Thus

O(λ) corresponds to O(aω0), equipped with the P -equivariant structure where p ∈

P acts onO(aω0) = (SL2×k)/B by sending p(s, x) = (p(s), λ(

p11

p−1
11

1

)−1x).

This finishes the proof.
�

7.5. Global sections equivariantly. We now compute πSL2∗ equivariantly, re-
calling that this functor is simply the derived global sections functor. We begin
with the line bundles

O(1),O,O(−1).

These can be constructed, respectively, as

(SL2 × kω0
)/B2, (SL2 × k0)/B2, (SL2 × k−ω0

)/B2.

Here P acts trivially on the k component of each, and in the standard way
(described in the previous section) on the SL2 component of each.

Recall that, ignoring equivariant structure, taking the derived global sections
of O(−1),O,O(1) will give the following cohomologies in degree zero, with no
cohomology in any other degree.

RΓ(O(−1)) = 0

RΓ(O) = k

RΓ(O(1)) = k2

The P -equivariant structure on the first two of these are clear, since the first is
zero (so can only have the trivial structure) and the second is the space of constant
functions on P1, which has the trivial equivariant structure. The only difficulty is
with Γ(O(1)).

Lemma 9. The space of global sections Γ(O(1)) comes equipped with equivariant
structure where p ∈ P acts by sending

p(

[
u
v

]
) = p−1

11

[
p22 p32

p23 p33

]−1 [
u
v

]
.

Proof. We can deduce the P -action on the space of global sections by noting that
there should be a natural P -equivariant map

O ⊗ Γ(O(1))→ O(1).

These are P1-bundles, so we can write them as

(SL2 × k2)/B2 → (SL2 × k)/B2.

This map is the map which descends from the B2-equivariant map

SL2 × k2 → SL2 × k
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(

[
m11 m12

m21 m22

]
, u, v) 7→ (

[
m11 m12

m21 m22

]
,m11u+m21v).

We wish to equip k2 with a P -action such that this map becomes P -equivariant.
Recall from Lemma 6 that the action of P on SL2 is[
m11 m12

m21 m22

]
7→
[
p22 p23

p32 p33

] [
m11 m12

m21 m22

] [
p11

1

]
=

[
p11(p22m11 + p23m21) p22m12 + p23m22

p11(p32m11 + p33m12) p32m12 + p33m22

]
.

Thus we would like to solve for an action making the following diagram commute.

(

[
m11 m12

m21 m22

]
, u, v) (

[
p11(p22m11 + p23m21) p22m12 + p23m22

p11(p32m11 + p33m12) p32m12 + p33m22

]
, u′, v′)

(

[
m11 m12

m21 m22

]
,m11u+m21v) (

[
p11(p22m11 + p23m21) p22m12 + p23m22

p11(p32m11 + p33m12) p32m12 + p33m22

]
,m11u+m21v)

This is to say we would like to solve the following equation.

m11u+m21v = p11(p22m11 + p23m21)u′ + p11(p32m11 + p33m21)v′

= p11((p22u
′ + p32v

′)m11 + (p32u
′ + p33v

′)m21[
u
v

] [
m11 m21

]
= p11

[
p22 p23

p32 p33

] [
u′

v′

] [
m11 m21

]
Since this should be true for arbitrary m11,m21, we obtain[

u
v

]
= p11

[
p22 p32

p23 p33

] [
u′

v′

]
p−1

11

[
p22 p32

p23 p33

]−1 [
u
v

]
=

[
u′

v′

]
.

as desired.
�

7.6. Descending the global sections of O(1). Because we will need it later, it
is worth computing how O ⊗ Γ(O(1)) as a P -equivariant sheaf on P/B descends
to a sheaf on G/B. Since we are eventually going to pass to the Grothendieck
group anyway, we will only compute its class in the Grothendieck group. We will
do this by embedding in an exact sequence on P1 whose other elements are easier
to descend.

Lemma 10. The exact sequence of P1 sheaves

0→ O(−1)→ O⊗ Γ(O(1))→ O(1)→ 0

can be made P -equivariant, where P acts on O(−1) through ζ. Therefore, in the
Grothendieck group,

[E−1
P1 (O ⊗ Γ(O(1)))] = [O(−ω1 + ω2)] + [O(ω1)]
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Proof. In this exact sequence, the map O(−1) → O ⊗ Γ(O(1)) descends from the
B2-equivariant map ι : SL2 × k → SL2 × k2 mapping

ι : (

[
m11 m12

m21 m22

]
, v) 7→ (

[
m11 m12

m21 m22

]
,m12v,−m11v).

As before, we can deduce the P -action on O(−1) by solving for the commuta-
tivity of the following diagram.

(

[
m11 m12

m21 m22

]
, v) (

[
p11(p22m11 + p23m21) p22m12 + p23m22

p11(p32m11 + p33m12) p32m12 + p33m22

]
, v′)

(

[
m11 m12

m21 m22

]
,−m21v,m11v) (

[
p11(p22m11 + p23m21) p22m12 + p23m22

p11(p32m11 + p33m12) p32m12 + p33m22

]
, A,B)

p·−

ι ι

p·−

Here [
A
B

]
= p−1

11

[
p22 p32

p23 p33

]−1 [−m21v
m11v

]
.

This means we need to solve the following equation.[
−p11(p32m11 + p33m21)v′

p11(p22m11 + p23m21)v′

]
= p−1

11

[
p22 p32

p23 p33

]−1 [−m21v
m11v

]

p11

[
p33 −p32

−p23 p22

] [
−m21v

′

m11v

]
= p−1

11

[
p22 p32

p23 p33

]−1 [−m21v
m11v

]

p11

[
p22 p32

p23 p33

] [
p33 −p32

−p23 p22

] [
−m21v

′

m11v

]
= p−1

11

[
−m21v
m11v

]
p2

11

[
p22p33 − p32p23

p22p33 − p23p32

] [
−m21v

′

m11v

]
=

[
−m21v
m11v

]
Recalling that p22p33 − p32p23 = p−1

11 , this gives us

v′ = p−1
11 v.

Thus the equivariant structure can be viewed as having p(s, x) = (p(s), λ(

p11

p−1
11

1

)−1x)

where λ(

p11

p−1
11

1

)−1 = p−1
11 , so λ(

p11

p−1
11

1

) = p11. By Lemma 8 we

can thus descend O ⊗ Γ(O(1)) to something with Grothendieck group

[O(−ω1 + ω2)] + [O(ω1)]

as desired. �
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7.7. Derived pullback equivariantly. The pushforward pt→ LieP simply gives
the skyscraper sheaves on LieP with the same P -actions.

To finish computing π∗SL2
ψP,SL2∗π

′
SL2∗ equivariantly, then, the main task is to

compute the derived pullback π∗SL2
of a point equivariantly.

To do so, we can compute the P -action on the Koszul resolution of the point on
LieP , then tensor each element of this resolution with OA3×g̃SL−2

to pull it back,
and find the induced P -action on the cohomology of the resulting chain.

We can simplify this computation somewhat by recalling from Section 5 that
the cohomology will end up consisting only of (one-dimensional) line bundles. This
means the P -action on each of these line bundles will be determined by a single
character of P . But, by Jordan decomposition, a character of P is determined by
the action of the torus inside P . Hence it suffices to look at the action of the torus

T ⊆ P . Write t =

l z
w

 for an arbitrary element of T .

Moreoever, we can recall that the Koszul resolution only ended up having coho-
mology in grades zero and one. Thus we only need to look at the action on the first
and second elements in the Koszul resolution.

Lemma 11. Let F be the one-dimensional sksycraper sheaf on LieP . Then H0(π∗SL2
F) =

ψG∗O, corresponding to ψG∗O on g̃, and H−1(π∗F) = ψG∗O(−2), corresponding
to ψG∗O(−2ω1 + ω2) on g̃.

Proof. We will prove this in the following two sections.

7.8. The H0 sheaf equivariantly. Write the coordinate ring of g as k[h, e, f ],

representing

[
h e
f −h

]
. Now, the Koszul resolution begins with the structure sheaf

k[h, e, f ], with the trivial equivariant structure.
This pulls back to the sheaf O on g̃, again with the trivial equivariant structure.

Finally, the zeroth cohomology is a quotient of this module, so has the trivial
equivariant structure as well.

7.9. The H−1 sheaf equivariantly. As a P -equivariant sheaf, the second element
of Koszul resolution is Og ⊗ g, where Og has the trivial equivariant structure, and
g is the P -representation given by the space of linear sections of Og.

Recalling Og is just the module k[g] = k[h, e, f ], and writing g as 〈α, β, γ〉 we
wish for the following map ι to be P -equivariant.

ι : k[g]⊗ g→ k[g]

g ⊗ α 7→ hg

g ⊗ β 7→ eg

g ⊗ γ 7→ fg

where the maps are defined for any polynomial g ∈ k[h, e, f ].
This map will be equivariant if its pullback is compatible with the equivariance

isomorphisms; that is to say, if the following diagram commutes:
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k[g]⊗k[g] (k[g]⊗ g) k[g]⊗k[g] k[g]

k[g]⊗ g k[g]

ι⊗k[g]k[g]

ι

Now, the action of t sends[
h e
f −h

]
7→
[
h z

we
w
z f −h

]
.

Hence, upstairs, we have (α, β, γ) 7→ (h, zwe,
w
z f). The equivariant structure on

the right is trivial, so on the left we must have an equivarianct structure on the left
as t(α, β, γ) = (α, zwβ,

w
z γ).

Pulling this back into g̃ gives us the equivariant sheaf Og̃⊗g. Here g is equipped
with the same action as before, and Og̃ is equipped with the trivial equivariant
structure.

The H−1 cohomology sheaf then inherits its P -action as a subsheaf of this sheaf.
Noting that the first cohomology sheaf is supported at the zero section, we may
first consider the restriction of this to the zero section. The zero section is P1, so
we can view its structure sheaf as the graded module k[a, b]. We thus get the H−1

cohomology sheaf as a subsehaf of

k[a, b]⊗ g.

Then, we recall that the first cohomology sheaf is generated by the element
2abα+ b2β − a2γ. That is to say, we have an inclusion ι

ι : k[a, b][−2]→ k[a, b]〈α, β, γ〉
mapping 1 7→ 2abα + b2β − a2γ. To obtain the P -equivariant structure on the

H−1 cohomology sheaf, we simply need to solve so that this is P -equivariant.
We first wish to put these bundles into the form (G × (P × V )/B)/P , so that

we can understand how the resulting P -action descends using Lemma 8. To do so,
we would like to turn this map of sheaves into a map between the total spaces of
these bundles.

We first get dual map between the dual space, which will correspond to the
scheme map between total spaces. The dual space of k[a, b] ⊗ g is generated by
α, β, γ, where each of these represents the map that sends the respective generator
to 1 and the rest to zero (e.g. α(α) = 1 but α(β) = 0). Then the dual map sends

α 7→ 2ab

β 7→ b2

γ 7→ −a2.

We can then take this and deduce the map of points between the schemes

(SL2 × k)/B2 → (SL2 × k3)/B2

as descending from the B2-equivariant map
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SL2 × k → SL2 × k3

which sends

(

[
m11 m12

m21 m22

]
, v) 7→ (

[
m11 m12

m21 m22

]
,m11m21v,m

2
11v,−m2

21v).

We would now like to solve for the T -action on SL2×k making this P -equivariant,
i.e. such making the following diagram commute.

(

[
m11 m12

m21 m22

]
, v) (

[
m11 m12

m21 m22

]
,m11m21v,m

2
11v,−m2

21v)

(

[
lzm11 zm12

lwm21 wm21

]
, v′) (

[
lzm11 zm12

lwm21 wm22

]
,m11m21v,m

2
11

z
wv,−m

2
21
w
z v)

Hence we get the equations

(l2zw)m11m21v
′ = m11m21v

(l2z2)m2
11v
′ = m2

11

z

w
v

(l2w2)m2
21v
′ = m2

31

w

z
v.

All three of these simplify to the same v′ = (l2zw)−1v = l−1v. Hence the action

of T on this sheaf sends t(s, v) = (t(s), λ(

l l−1

1

)−1v) where λ(

l l−1

1

)−1 =

l−1. Thus by Lemma 8 this sheaf corresponds to O(−2ω1 +ω2). Thus the sheaf on
g̃ must be ψGO(−2ω1 + ω2). This completes the proof.

�

7.10. Combining the derived pullback with derived global sections. Us-
ing the previous two sections, we can compute the P -equivariant structure on
π∗SL2

ψP,SL2∗πSL2∗F (i.e. π∗SL2
πSL2∗ψG,SL2∗F) for each of our three line bundles

O(−1), O, and O(1). By applying the equivalences EX we can then compute all
the necessary sheaves π∗π∗ψGF in the SL3 case.

First, π∗SL2
ψP,SL2∗πSL2∗O(−1) = 0, since ψP,SL2∗πSL2∗O(−1) is already zero.

Second, π∗SL2
ψP,SL2∗πSL2∗O has

H−1 = ψG∗O(−2)(ω2)

H0 = ψG∗O(0)(0).

Here the second parenthetical indicates the P -action on the factor of k in each
line bundle (SL2 × k)/B2. Finally, π∗SL2

ψP,SL2∗πSL2∗O has

H−1 = (ψG∗O(−2))⊗ Γ(O(1))

H0 = (ψG∗O)⊗ Γ(O(1)).

Here Γ(O(1)) comes equipped with the action described in Lemma 9.
We can then descend these, at least in the Grothendieck group. We have clearly
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[π∗π∗ψG∗O(−ω1)] = 0

[π∗π∗ψG∗O] = [ψG∗O]− [ψG∗O(−2ω1 + ω2)].

Using the descent of O ⊗ Γ(O(1)) from Lemma 10, we also have

[π∗π∗ψG∗O(ω1)] = [ψG∗O(−ω1+ω2)]+[ψG∗O(ω1)]−[ψG∗O(−ω1+2ω2)]−[ψG∗O(−3ω1+ω2)].

These three, together with the projection formula, allow us to compute the
Grothendieck groups of the functor π∗π∗ for a full basis for Db

0(g̃) in the SL3 case.
From the appendix of [5] we have that the sheaves

ψG∗O, ψG∗O(−ω1), ψG∗O(−ω2), ψG∗π
∗
1Ω1(1), ψG∗π

∗
2Ω1(1), ψG∗O(−ω1 − ω2)

generate the category Db(Coh0 g̃) (here π1, π2 are the two projections G/B →
G/P ). We moreoever have that O(ω1),O together generate π∗1Ω1(1), and similarly
O(ω2),O together generate π∗2Ω1(1). We thus get that the following basis generates

Db(Coh0 g̃)

.

ψG∗O, ψG∗O(−ω1), ψG∗O(−ω2), ψG∗O(ω1), ψG∗O(ω2), ψG∗O(−ω1 − ω2)

Hence to compute the action on the Grothendieck group it suffices to give the
Grothendieck group classes of the functor applied to each of these. Recalling that
the functor was defined by sending F to cone(π∗π∗F → F)[−1]), we may compute
this as s1(F) = [π∗π∗F ] − [F ]. Hence we may write the following table, where
the last three rows are computed by using the projection formula to see that the
functor commutes with twists by ω2.
F [s1F ]
ψG∗O(−ω1) −[ψG∗O(−ω1)]
ψG∗O −[ψG∗O(−2ω1 + ω2)]
ψG∗O(ω1) [ψG∗O(−ω1 + ω2)]− [ψG∗O(−ω1 + 2ω2)]− [O(−3ω1 + ω2)]
ψG∗O(−ω2 − ω1) −[ψG∗O(−ω2 − ω1)]
ψG∗O(−ω2) −[ψG∗O(−2ω1)]
ψG∗O(ω2) [ψG∗O(−2ω1 + 2ω2)]

8. The affine braid group action on the Grothendieck group

The above table is not quite enough for us to examine the action on the Grothendieck
group, because we do not know how to express the Grothendieck group classes of
the resulting vector bundles in terms of the original basis. In this section we will
leverage the well-known basis of Schubert subvarieties for the Grothendieck group to
express the resulting bundles in terms of the Schubert basis and then base-changing
back to the original line bundle basis.

Recall that there is an equivalence of categories between G/B and bigraded
modules over the bigraded algebra R = k[x, y, z, x, y, z]/(xx, yy, zz), where (x, y, z)
are in degree (1, 0) and (x, y, z) are in degree (0, 1). The Schubert cells correspond
to the six modules

R/(y, z, x, y), R/(z, x, y), R/(y, z, x), R/(z), R/(x), R/(0).
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For notation’s sake we will label these, respectively,

Z,P1, P2, X1, X2, R.

Here Z is a point; the Pi are copies of P1; the Xi are codimension-1; and R is
the existing algebra. In this section we will prove the following.

Lemma 12. For each line bundle O(aω1 + bω2) we have the following equality in
the Grothendieck group.

[O(aω1 + bω2)] =

[R] + a[X1] + b[X2] +
a(a+ 2b+ 1)

2
[P1] +

b(2a+ b+ 1)

2
[P2] +

ab(a+ b)

2
[Z].

Proof. We will prove this in the following four sections.

8.1. Line bundles on the whole variety. We would like to express arbitrary
line bundles in terms of these Schubert cells. To do this, note that any line bundle
takes, as an R-module, the form

R[a, b]

for some a, b. Note also that there are exact sequences

R[a, b− 1]→ R[a, b]→ R[a, b]/(x)

R[a− 1, b]→ R[a, b]→ R[a, b]/(z).

This allows us to write the recurrence

[R[a, b]] = [R[a, b− 1]] + [X2[a, b]].

Hence

[R[a, b]] = [R[a, 0]] + ([X[a, 1]] + [X[a, 2]] + . . . [X[a, b]])

= [R[a, 0]] + (

b∑
i=1

[X[a, i]]).

We similarly may write the recurrence

[R[a, 0]] = [R[0, 0]] +

a∑
i=1

X1[i, 0].

Hence, in general,

[R[a, b]] = [R] + [

k∑
i=b

X2[a, i])] + (

a∑
i=1

X1[i, 0]).
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8.2. Line bundles on the codimension-1 Schubert subvarieties. We will
consider the case of R/(x); the case of R/(z) is analogous. We will make use of
three exact sequences. The first is

R[0,−1]/(x) R/(x) R/(x, y) ' R/(x, y, z).·y

That the sequence is exact is clear; to see the last isomorphism R/(x, y) '
R/(x, y, z) (which is an isomorphism of sheaves, even though it is not one of graded
modules), we note that R/(x, y) is the structure sheaf of the subvariety

k[x, y, z, z]/(zz).

This subvariety can be covered by three affine opens, corresponding to (x, z) 6= 0,
(y, z) 6= 0, and (z, z) 6= 0. Localizing to the first affine open gives

k[
x

x
,
y

x
,
z

x
,
z

z
]/(

z

x

z

z
) ' k[

y

x
] ' (R/(x, y, z))x,z.

Localizing at each other affine open similarly gives that this is locally isomorphic
to R/(x, y, z), and it is easy to check that the local isomorphisms commute with
the gluing maps.

The second exact sequence we use is

R[0,−1]/(x) R/(x) R/(x, z)·z .

The exactness of this sequence is clear. The third exact sequence is:

R/(x, z) R/(x, y, z)⊕R/(x, y, z) R/(x, y, y, z)
/(y)⊕/(y) e2/(y)−e1/(y)

.

To see that this is exact, we’ll first show the first map is injective. To see this,
we note that its kernel is the set of elements r ∈ R/(x, z) that lie in both (y)
and (y). Since these are both prime ideals, their intersection is their product (yy).
Thus the kernel is the ideal (yy); but since we have xx + yy + zz + 0 we have
yy = −xx− zz ∈ (x, z) and hence (yy) = 0 within R/(x, z). Thus this first map is
injective.

To then see that the kernel of the second map is exactly the image of the first
map, we first note that the image of the first map lies within the kernel of the
second map, since for any r ∈ R/(x, z) we have:

r 7→ (r/(y), r/(y)) 7→ r/(y, y)− r/(y, y) = 0.

We then note that the kernel of the second map lies within the image of the
first map, since if e1, e2 have e1/(y) = e2/(y), then since (y) and (y) are coprime
in R/(x, z) we have some element r ∈ R/(x, z) with r/(y) = e1 and r/(y) = e2 by
the Chinese Remainder Theorem.

Put together, this gives us the following three equations in the Grothendieck
group.

[X2] = [X2[0,−1]] + [P1]

[X2] = [X2[−1, 0]] + [R/(x, z)]

[R/(x, z)] = [P1] + [P2]− [Z]

Hence
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[X2] = [X2[−1, 0]] + [P1] + [P2]− [Z].

By twisting the first equation, we get, more generally,

[X2[a, b]] = [X2[a, b− 1]] + [P1[a, b]]

[X2[a, b]] = [X2[a, 0]] + [P1[a, 1]] + [P1[a, 2]] + · · ·+ [P1[a, b]]

[X2[a, b]] = [X2[a, 0]] +

b∑
i=1

P1[a, i].

By twisting the second equation, we get

[X2[a, 0]] = [X2[a− 1, 0]] + [P1[a, 0]] + [P2[a, 0]]− [Z[a, 0]].

We note immediately the Z[a, 0] ' Z as sheaves since Z is just the structure
sheaf of a point, and that similarly P2[a, 0] = P2. Hence

[X2[a, 0]] = [X2[a− 1, 0]] + [P1[a, 0]] + [P2]− [Z]

X2[a, 0] = [X2] + ([P1[1, 0]] + [P1[2, 0]] + . . . [P1[a, 0]]) + a[P2]− a[Z]

= [X2] +

a∑
i=1

P1[i, 0] + a([P2]− [Z]).

Hence, more generally,

[X2[a, b]] = [X2[a, 0]] +

b∑
i=1

P1[a, i]

[X2[a, b]] = [X2] +

a∑
i=1

P1[i, 0] + a([P2]− [Z]) +

b∑
i=1

P1[a, i].

Symmetrically, we have

[X1[a, b]] = [X1] +

b∑
i=1

P2[0, i] + a([P1]− [Z]) +

a∑
i=1

P2[i, b].

8.3. Line bundles on copies of P1. We note that there is an exact sequence

R[0,−1]/(x, y, z) R/(x, y, z) R/(x, y, y, z)
·y

.

Hence in the Grothendieck group we have

[P2] = [P2[0,−1]] + [Z].

Hence

[P2[a, b]] = [P2[0, b]] = [P2] + b[Z].

Symmetrically,

[P1[a, b]] = [P1] + a[Z].
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8.4. Putting it all together. We have the following equations in the Grothendieck
group.

[R[a, b]] = [R] + (

b∑
i=1

[X2[a, i]]) + (

a∑
i=1

X1[i, 0])

[X2[a, b]] = [X2] +

a∑
i=1

P1[i, 0] + a([P2]− [Z]) +

b∑
i=1

P1[a, i]

[X1[a, b]] = [X1] +

b∑
i=1

P2[0, i] + b([P1]− [Z]) +

a∑
i=1

P2[i, b]

[P2[a, b]] = [P2] + b[Z]

[P1[a, b]] = [P1] + a[Z]

Substituting upwards, we get

[X1[a, b]] = [X1] +

b∑
i=1

([P2] + i[Z]) + b([P1]− [Z]) +

a∑
i=1

([P2] + b[Z])

= [X1] + (a+ b)[P2] + b[P1] +
b(b+ 1)

2
[Z] + ab[Z]− b[Z]

= [X1] + (a+ b)[P2] + b[P1] + (
b(b− 1)

2
+ ab)[Z].

Symmetrically,

[X2] = [X2] + a[P2] + (a+ b)[P1] + (
a(a− 1)

2
+ ab)[Z].

And finally

[R[a, b]] = [R]+(

b∑
i=1

[X2]+a[P2]+(a+i)[P1]+(
a(a− 1)

2
+ai)[Z])+(

a∑
i=1

[X1]+i[P2])

= [R] + b[X2] + ab[P2] +
b(b+ 1)

2
[P1] + ab[P1] +

ba(a− 1)

2
[Z] +

ab(b+ 1)

2
[Z]

+a[X1] +
a(a+ 1)

2
[P2].

Collecting like terms:

= [R] + a[X1] + b[X2] +
a(a+ 2b+ 1)

2
[P1] +

b(2a+ b+ 1)

2
[P2] +

ab(a+ b)

2
[Z].

This completes the proof. �
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8.5. Change-of-basis matrices. This gives us a general way to express line bun-
dles on G/B in terms of the Schubert cells. In particular, it gives us the following
base-change matrix between the line bundle basis [O,O(−1, 0),O(0,−1),O(1, 0),O(0, 1),O(−1,−1)].

B =


1 1 1 1 1 1
0 −1 0 1 0 −1
0 0 −1 0 1 −1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 −1



B−1 =


1 1 1 −2 −2 −5
0 −1 0 1 0 2
0 0 −1 0 1 2
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 −1


8.6. The action as Grothendieck group automorphisms. Equipped with
these change-of-basis matrices and the formula for putting line bundles into the
Schubert basis, we can now compute the action of affine braid group action on the
Grothendieck group ofDb

0(g̃). Beginning with the basis [O,O(−1, 0),O(0,−1),O(1, 0),O(0, 1),O(−1,−1)],
we can compute the functor in terms of line bundles, then reexpress those line bun-
dles as linear combinations of the Schubert basis. We obtain the following table.

[R] [X1] [X2] [P1] [P2] [Z]
O -1 2 -1 1 1 -1
O(−ω1) 1 1 0 0 0 0
O(−ω2) -1 2 0 -1 0 0
O(ω1) -1 3 -2 3 3 -3
O(−ω2) -1 2 -2 3 1 0
O(−ω1 − ω2) -1 1 1 -1 -1 1

We can then use the change-of-basis matrix again to convert these back into the
line bundle basis, giving the following table.

O O(−ω1 O(−ω2) O(ω1) O(−ω2) O(−ω1 − ω2)
O 1 -3 0 0 0 1
O(−ω1) 0 -1 0 0 0 0
O(−ω2) 3 -3 0 -1 0 0
O(ω1) 3 -6 -1 0 0 3
O(−ω2) -9 1 3 3 1 0
O(−ω1 − ω2) 0 0 0 0 0 -1

This is to say that the action of s1 on the Grothendieck group (using the our
basis of six line bundles in the order listed in the table) can be written as the matrix

s1 =


1 0 3 3 −9 0
−3 −1 −3 −6 1 0
0 0 0 −1 3 0
0 0 −1 0 3 0
0 0 0 0 1 0
1 0 0 3 0 −1

 .
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By symmetry, we get that s2 must be the matrix

s2 =


1 3 0 −9 3 0
0 0 0 3 −1 0
−3 −3 −1 1 −6 0
0 0 0 1 0 0
0 −1 0 3 0 0
1 0 0 0 3 −1

 .

9. Failure of the correspondence

9.1. The kernel of the pushforward G/B → P2. As discussed in the intro-
duction, our aim is to see whether the two actions can be related by the push-
forward G/B → P2 by noting that this pushforward induces a homomorphism of
Grothendieck groups, and seeing if the two actions of the Grothendieck groups are
compatible with this homomorphism. We will here concern ourselves with specifi-
cally the pushforward forgetting the line (and preserving the plane) of the flag; this
is the same as the morphism G/B → P2 which would be used in the computation
of of s1 in the affine braid group action. As we saw in Section 7 (invoking Lemma
5), this pushforward is the functor mapping O(aω1 + bω2) 7→ O(b)⊗RΓ(OP1(a)).

If any subgroup of the affine braid group will be compatible with this homomor-
phism, it must certainly perserve the kernel of this pushforward. We can thus search
for elements of the extended affine braid group whose actions on the Grothendieck
group K(Db

0(g̃)) = K(G/B) preserves the kernel of the pushforward G/B → P 2.
To do so, we can first compute said kernel.

Lemma 13. The kernel of the pushforward π∗ between Grothendieck groups is
generated by the following.

〈3[O]− [O(−ω2)]− [O(ω1)], [O(−ω1)], [O(−ω1 − ω2)]〉

Proof. We know that the morphism of Grothendieck group is surjective, since
[O], [O(−1)], [O(1)] generateK(P2) and these are the pushforwards ofO,O(−ω2),O(ω2),
respectively. Hence, since this is a morphism Z6 → Z3, we should have a rank 3
kernel. We know that each of [O(−ω2)], [O(−ω1 +ω2], and [O(−ω1−ω2)] all do lie
within the kernel. They are moreover linearly independent, so they must generate
the kernel at least as a Q-vector space.

The Grothendieck group class of [O(−ω1 +ω2)] in terms of our line bundle basis
is 3[O]− [O(−ω2)]− [O(ω1)] (this can be computed e.g. expressing this line bundle
in the Schubert basis and then base-changing back to the lie bundle basis). Thus
our kernel is generated by:

〈3[O]− [O(−ω2)]− [O(ω1)], [O(−ω1)], [O(−ω1 − ω2)]〉
as desired. �

9.2. Results from exhaustive search. We can now recall that the extended
affine braid group is generated by s1, s2, ω1, where ω1 is the twist functor by ω1.
The twist functor by ω1 is easy to compute as an action on the Grothendieck group,
using our formula for expressing bundles in terms of the Schubert basis and then
base-changing back. The resulting action is:
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ω1 =


0 1 3 −3 −10 0
0 0 −1 1 3 0
0 0 0 0 3 1
1 0 0 3 3 0
0 0 −1 0 3 0
0 0 0 0 −1 0


The affine braid group has a natural set of generators s1, s2, r = ω1s1s2, and

s0 = rs2r
−1. Using the above matrices, we can get matrices representing each of

these generators. We ran a computer program to search for products of the three
matrices s0, s1, s2, r, and their inverses, which preserve the subspace

〈
[
3 0 −1 −1 0 0

]
,
[
0 1 0 0 0 0

]
,
[
0 0 0 0 0 1

]
〉

We ran a computer program to find such elements, searching for products up to
thirteen elements long. Every element found was generated by the following two
words.

{s1, ω1}

The twist ω1 descends to the Serre twist on P2. Meanwhile we can ask what s1

descends to by base-changing into a basis that isolates the kernel. We can shift to
the basis [O,O(−ω2),O(−ω1),O(−ω1 − ω2),O(−ω1 + ω2)], wherein the last three
basis elements span the kernel. The base-change matrix from the line bundle basis
to this basis is 

1 0 0 0 0 3
0 0 0 1 0 0
0 1 0 0 0 −1
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 0 1 0

 .

Conjugating by this basis change matrix gives s1 as:

s1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−3 −3 1 −1 0 0
1 0 0 0 −1 0
0 1 −3 0 0 −1

 .

From this it is clear that s1, when pushed forward acts trivially on the Grothendieck
group of P1.

Thus we get that the only nontrivial element of the affine braid group (of length
less than 13 when generated by s1, s2, ω1) which preserves the kernel is ω1 itself,
which descends to the Serre twist on P2. This is a significantly poorer correspon-
dence than in the SL2 case, suggesting that the generalization to higher dimensions
may require a different kind of relationship.
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