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Abstract

This paper is a mostly expository account of zeta functions in number theory. In Section 2 we prove

the functional equation for the Dedekind zeta function using the methods of Tate’s thesis. In Section 3

we introduce a natural generalization to zeta functions of schemes and show that for well-behaved schemes

of finite type over the spectrum of a subring of Q the zeta functions can be extended by 1
2

beyond their

abscissa of convergence, slightly generalizing a classical result. Finally we briefly mention class field theory

and adelic methods in higher dimensions.
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1 Introduction

In 1740, Leonhard Euler introduced the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− p−s

on Re s > 1, with the equivalence of the definitions equivalent to the fundamental theorem of
arithmetic. It acquired its name in 1859 when Riemann showed that it satisfied the functional
equation

Λ(1− s) = Λ(s)

for Λ(s) = π−s/2Γ(s/2)ζ(s). His ideas were critical to the proof of the prime number theorem

π(x) ∼ x

log x

in 1896 by Hadamard and de la Vallée Poussin, where π(x) is the number of primes less than or
equal to x. Four years after Riemann’s paper, Richard Dedekind generalized the Riemann zeta
function to the Dedekind zeta function for general number fields K

ζK(s) =
∑
I⊆OK
I 6=(0)

1

N(I)s
=
∏
p

1

1−N(p)−s

where the sum is taken over nonzero ideals of OK , the product is over nonzero prime ideals of OK ,
and N(I) = |OK/I|. The Riemann zeta function is the special case for K = Q. The Dedekind zeta
function in turn is at the heart of Landau’s prime ideal theorem and many other results in algebraic
number theory. Riemann’s argument did not immediately seem to apply to the general case, and
it was more than fifty years before Erich Hecke managed to modify the proof to find the functional
equation for the Dedekind zeta function

Λ(s) = Λ(1− s)

for Λ(s) = |∆K |s/2
(
π−s/2Γ(s/2)

)r1
(2(2π)−sΓ(s))

r2 ζK(s) where r1 and r2 are the number of real
and complex embeddings of K respectively, as well as for the larger class of Hecke L-functions

L(s, χ) =
∑
I⊆OK

(I,m)=1

χ(I)

N(I)s
=
∏
p

1

1− χ(p)N(p)−s

where χ is a Hecke character with modulus m with a mildly more complicated functional equation.
Emil Artin only a few years later generalized the functional equation to Artin L-functions, where
we allow χ in the definition of the Hecke L-function to be the trace of any representation of the
associated Galois group, and his student Margaret Matchett wrote her thesis in 1946 on interpreting
zeta functions as products over ideles, introduced in 1936 by Claude Chevalley.

In 1950 John Tate, another student of Artin, used Matchett’s interpretation to reprove the
functional equation for Hecke L-functions. Whereas in Hecke’s proof there seemed to be extra
apparently artificial factors required to make the functional equation hold, in Tate’s proof the
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completed zeta function emerged naturally, with the extra factors corresponding to archimedean
places and the L-function to the nonarchimedean factors.

There are two main sections to this paper. The first is an exposition of Tate’s thesis, proving the
functional equation for the Dedekind zeta function. We specialize to number fields and to unramified
characters, i.e. limiting ourselves to the Dedekind zeta function rather than more general Hecke
L-functions, for simplicity of exposition, but the same methods can be generalized to handle both
Hecke L-functions and function fields simultaneously.

The second section introduces the notion of schemes and discusses some of their properties
before introducing the zeta function for schemes

ζX(s) =
∏
x∈X

1

1− |k(x)|−s
.

In this view, the Riemann zeta function is ζSpecZ and the Dedekind zeta function is ζSpecOK . In both
cases we are viewing Z and OK respectively as one-dimensional rings with spectra corresponding to
one-dimensional topological spaces, so the natural generalization is to higher-dimensional spaces.
We prove that for irreducible schemes X of finite type over the spectrum S of a subring of Q
satisfying certain technical conditions the associated zeta functions are similar in the sense that

ζX(s+ dimX − 1)

ζS(s)`

can be extended to a meromorphic function on Re s > σ − 1
2 holomorphic on Re s > 1

2 , where
Re s = σ is the abscissa of convergence of ζS(s). This implies that if ζS(s) can be meromorphically
extended to Re s > σ− 1

2 then so can ζX(s+dimX−1), that the pole of ζX(s) at s = σ+dimX−1
looks like the pole of ζS(s) at s = σ up to residue, and that the zeros of ζX(s) and ζS(s+dimX−1)
coincide and are of the same order on Re s > 1

2 . At least the first two of these facts and likely
the third are already known for the case S = SpecZ, and the only original research in this paper
is extending the result to all subrings of Q. It may be possible to extend it further to subrings of
number fields generally or potentially to all Dedekind domains or even higher-dimensional schemes
with suitable hypotheses.

Finally we briefly discuss higher-dimensional class field theory and attempts to apply the meth-
ods of Section 2 to the problem posed in Section 3.

Acknowledgments
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2 Tate’s thesis

This section is mainly based on Tate’s thesis itself [20] and Professor Poonen’s expository notes
[17].

Consider a number field K, that is a finite field extension of Q. The completions of K correspond
precisely to the places of K, that is the equivalence classes of absolute values on K. These places
are either archimedean (infinite) which correspond to the embeddings of K in the real or complex
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numbers, or nonarchimedean (finite, which correspond to nonzero prime ideals of the ring of integers
OK of K. Tate’s idea was to construct an object which would behave like the product of the
completions, or local fields, together with a certain function that would factor into contributions
from the local fields. This gives a finitely many factors from the infinite places times a product over
primes, which for the correct construction will be the Dedekind zeta function.

Now that we have the zeta function naturally arising out of this construction, we want to use
this interpretation to find its analytic continuation to the complex plane. We will do this by first
finding a local functional equation for each factor and then using a generalized form of Poisson
summation to get a global functional equation for an object known as the zeta integral. Then by
combining these we get a functional equation for the zeta function itself.

2.1 Places

Definition 2.1.1. A function |·| : K → R≥0, where K is a field and R≥0 is the group of nonnegative
reals, is called an absolute value if it satisfies the following properties:

i) |x| = 0 if and only if x = 0;

ii) for all x, y ∈ K we have |x · y| = |x| · |y|;
iii) for all x, y ∈ K we have |x+ y| ≤ |x|+ |y|.

The trivial absolute value is the map |0| = 0, |x| = 1 for x 6= 0.
We say that two absolute values | · |1, | · |2 are equivalent if there exists some positive real number

c such that | · |1 = | · |c2.

Definition 2.1.2. The places of K are the equivalence classes of nontrivial absolute values on K.

We say that an absolute value | · | is nonarchimedean or finite if it satisfies |x+y| ≤ max(|x|, |y|)
for every x, y ∈ K, and archimedean or infinite otherwise. We see that this is in fact a property of
the place: if | · |1 and | · |2 are equivalent and | · |1 is finite, then there exists some positive c such
that |x + y|2 = |x + y|c1 ≤ max(|x|1, |y|1)c = max(|x|c1, |y|c1) = max(|x|2, |y|2), so | · |2 is also finite.
By symmetry | · |1 is finite if and only if | · |2 is, so each place can be classified as finite or infinite.

We will generally be concerned only with places rather than absolute values, primarily because
of the following lemma.

Lemma 2.1.3. The completions of a field K with respect to two absolute values are isomorphic if
and only if the absolute values are equivalent.

Proof following [15]. If | · |1 and | · |2 are equivalent, then defining a metric on K by d(x, y) = |x−y|
for | · | either absolute value and topologizing K with respect to this metric we see that the two
absolute values define the same open sets, so the topologies are equivalent and so the completions
are isomorphic.

Now suppose that the completions with respect to | · |1 and | · |2 are isomorphic. Then a sequence
{an} in K converges to 0 in the completion with respect to | · |1 if and only if it converges to 0 in the
completion with respect to | · |2. Consider the sequence an = xn for some x ∈ K. This converges
to 0 with respect to an absolute value | · | if and only if |x| < 1, so |x|1 < 1 if and only if |x|2 < 1.
Choose some x, y ∈ K with |y|1 > 1 and let {an/bn} be a decreasing sequence of rational numbers

converging to α = log |x|1
log |y|1 . Then |x|1 = |y|α1 < |y|an/bn1 for every natural n, so

|x|bn1
|y|an1

=
∣∣∣ xbnyan

∣∣∣
1
< 1,
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so by the above it follows that
∣∣∣ xbnyan

∣∣∣
2
< 1, so |x|2 < |y|an/bn2 . Taking n → ∞ gives |x|2 ≤ |y|α2 . If

we take an/bn to instead be an increasing sequence of rational numbers converging to α then the

same argument gives |x|2 ≥ |y|α2 , so |x|2 = |y|α2 . Therefore α = log |x|1
log |y|1 = log |x|2

log |y|2 , so log |x|1
log |x|2 = log |y|1

log |y|2 .

Fixing some y with |y|1 > 1, since x is arbitrary we get |x|1 = |x|c2 for some real c. Since |y|1 > 1,

we know that |y2| > 1, so log |y|1
log |y|2 = log |x|1

log |x|2 = c is positive.

Specializing to the case of a number field allows us to describe the places explicitly.

Definition 2.1.4. The ring of integers OK of a field K containing Z is the set of elements of K
which are zeros of monic polynomials in Z[x].

Example 2.1.5. Let K = Q[i]. Then the ring of integers of K is the set of complex numbers of
the form a+ bi for a and b integers.

We can easily define certain places. The embeddings i : K ↪→ R of K into R, if any exist, each
induce a place via the standard absolute value | · | on R: for x ∈ K we define |x|i = |i(x)|. Similarly
the embeddings i : K ↪→ C of K into C which are not purely real induces a place for each pair i, ī
according to |x|{i,̄i} = |i(x)|2, where | · | is the standard absolute value on the complex numbers.
We will refer to these as real and complex places respectively. All of these are archimedean places.
We can also easily define nonarchimedean places: for x ∈ K, we can write

xOK =
∏
p

pap(x),

where the product is over prime ideals p of OK and the ak(x) are integers, all but finitely many
of which are 0. Then we can define the nonarchimedean absolute value |x|p = N(p)−ap(x) and a
corresponding distinct nonarchimedean place for each prime ideal p. In fact we claim that these
are all the places of K.

Theorem 2.1.6 (Ostrowski’s theorem for number fields). The only archimedean places of a number
field K are those induced by its real and complex embeddings, and the only nonarchimedean places
are the p-adic places with representatives |x|p = N(p)−ap(x).

We first need a lemma describing the archimedean places of Q.

Lemma 2.1.7. The only archimedean place of Q is the equivalence class of the usual archimedean
absolute value on R restricted to Q.

Proof. Suppose that | · | is an archimedean absolute value on Q. For any natural x we have
|x| = |1 + 1 + · · ·+ 1| ≤ x|1| = x, since |1 · y| = |y| = |1| · |y| so |1| = 1. Then for any two natural
numbers m,n both greater than 1 we can write m = a0 + a1n+ · · ·+ arn

r for ai ∈ {0, 1, . . . , n− 1}
and nr ≤ m, so r ≤ logm

logn and |ai| ≤ ai ≤ n, so

|m| ≤
r∑
j=0

|aj ||n|j ≤
r∑
j=0

n · |n|j ≤ (1 + r)n · |n|r ≤
(

1 +
logm

log n

)
n · |n|logm/ logn,

so |m| ≤ |n|logm/ logn. Since m and n were arbitrary, we can do the same argument with their

places reversed, so we have |m| = |n|logm/ logn, or log |m|
logm = log |n|

logn for all natural m,n greater than
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1. Fixing say n gives log |m|
logm equal to a positive real constant, say c, so |m| = mc for some positive

real c, so recalling that |1| = 1 on the naturals | · | is equivalent to the standard absolute value.
Extending it to the rationals by multiplicativity gives the result on all of Q.

Proof of Theorem 2.1.6, following [15]. Suppose that | · | is an archimedean absolute value on K,
and K is the completion of K with respect to | · |. Then since K contains Q, K contains the
completion of Q with respect to | · |. The restriction of | · | to Q is an archimedean absolute value,
and so by Lemma 2.1.7 must be equivalent to the standard absolute value on the reals restricted
to Q, so K must contain the real numbers, the smallest field containing Q complete with respect
to this absolute value. Therefore we can define fx(z) = |x2 − (z + z̄)x+ zz̄| where x ∈ K and z is
complex, noting that z+ z̄ and zz̄ are both real and therefore in K. Since fx is continuous in z and
tends to +∞ as |z| → ∞ it takes a minimum value m. Let z0 be the point such that fx(z0) = m
and if fx(z) = m then |z| ≤ |z0|.

Suppose that m > 0 and consider the polynomial g(y) = y2 − (z0 + z̄0)y + zz̄ + a for some
0 < a < m. Let z1 and z̄1 be the roots of g. Then z1z̄1 = z0z̄0 + a, so that |z1| > |z0|, so by the
definition of z0 we have f(z1) > m.

Fix some natural number n and let G(z) = (g(z)− a)n − (−a)n. Then G(z1) = (g(z1)− a)n −
(−a)n = (−a)n − (−a)n = 0. Suppose that the roots of G(z) are z1, . . . , z2n. Then for x ∈ K as
before

|G(x)|2 =

2n∏
j=1

|x− zj |2 =

2n∏
j=1

(x2 − (zj + z̄j)x+ zj z̄j) =

2n∏
j=1

fx(zj) ≥ fx(z1)m2n−1.

On the other hand

|G(x)| ≤ |x2 − (z0 + z̄0) + z0z̄0|n + | − a|n = fx(z0)n + an = mn + an,

so fx(z1)m2n−1 ≤ (mn + an)2, so

fx(z1) ≤ m
(

1 +
( a
m

)n)2

.

Since a < m, taking n → ∞ gives fx(z1) ≤ m. But from above we have fx(z1) > m, so our above
assumption was incorrect and m ≤ 0, and in fact m = 0 since fx is manifestly positive. Therefore
there exists some z0 such that x2 − (z0 + z̄0)x + z0z̄0 = 0, so every x ∈ K is the root of a real
quadratic polynomial, so K can be embedded in either R or C, and so so can K. If the roots of
all such polynomial are real then the embedding is real and unique; if some are complex then there
are two possible complex embeddings which are conjugate to each other.

We have shown that each archimedean absolute value on K has a corresponding real embedding
i or pair of conjugate complex embeddings i, ī. If two absolute values correspond to the same real
embedding i or complex embeddings i, ī then the completions of i(K) in R or the completions of
i(K) and ī(K) in C are the same, so as the embeddings are isomorphisms the completions K are
the same, so by Lemma 2.1.3 the absolute values are equivalent. Therefore the map from (real and
complex) archimedean absolute values to (real and complex) embeddings is injective. Since every
embedding gives rise to an absolute value as described in the discussion before the theorem, the
map is also surjective, so the archimedean absolute values are as claimed.

Now suppose that | · | is a nonarchimedean valuation. For a natural number n we have |n| =
|1 + 1 + · · ·+ 1| ≤ |1| = 1. For x ∈ OK there exist integers a0, . . . , an−1 such that a0 + a1x+ · · ·+
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an−1x
n−1 + xn = 0. Therefore |x|n = | − a0 − a1x − · · · − an−1x

n−1| ≤ maxj(aj |x|j) ≤ maxj |x|j
where j ranges over the integers from 0 to n− 1. Therefore there exists a j in this range such that
|x|n ≤ |x|j , so |x| ≤ 1.

If every element of OK has absolute value 1, then since K = FracOK the absolute value is
trivial, so let I be the set of elements of OK with norm less than 1. By the multiplicativity of the
norm, the fact that it is nonarchimedean, and the fact shown above that |x| ≤ 1 for x ∈ OK , this
is an ideal of OK . Suppose that xy ∈ I for x, y ∈ OK , that is |xy| < 1. Since |x| ≤ 1 and |y| ≤ 1
it follows that at least one of x and y has absolute value less than 1, so I is a prime ideal, and we
have seen that it is not the zero ideal.

Write
xOK =

∏
p

pap(x)

for x ∈ OK where the product is taken over prime ideals of OK , with ap(x) ≥ 0 and equal to 0 for
all but finitely many prime ideals. Then |x| < 1 if and only if x ∈ I, that is if aI(x) ≥ 1. Writing
xOK = yOK · In for some yOK relatively prime to I where n = aI(x), we have |x| = |y| · |I|n for
some norm |I| assigned to the prime ideal I. Since y 6∈ I we have |x| = |I|n and |x| < 1, so |I| < 1, so
we can choose some positive constant c such that |I|c = N(I)−1, so that |x| = N(I)aI(x). Therefore
every nonarchimedean absolute value is of the form claimed, and since all such are nonarchimedean
absolute values the result follows.

2.2 Review of required analysis

We will assume a vague familiarity with the language of algebraic number theory, basic algebra,
complex analysis, and measure theory. The analysis is generally fairly simple, but for reference we
list a few useful definitions.

Definition 2.2.1. A Haar measure on a locally compact abelian group is a measure µ invariant
under the action of the group: µ(g + S) = µ(S) for every measurable set S.

Given a locally compact abelian group, a Haar measure always exists and is unique up to a
scaling constant.

Definition 2.2.2. A Schwartz function on the real or complex numbers is an infinitely differentiable
function f(x) such that every derivative of f tends to 0 as |x| → ∞ faster than x−n for any natural
n.

Definition 2.2.3. A Schwartz-Bruhat function on the real or complex numbers in the first case
or on a finite extension of the p-adic numbers in the second case is a Schwartz function in the first
case or a locally constant function of compact support in the second.

The main importance of Schwartz-Bruhat functions for our purposes is that for an appropriately
defined Fourier transform on any of the fields on which we have defined them they obey the Fourier
inversion theorem.

2.3 Local theory

Fixing a place v of K, we can now define the fundamental objects of the local theory. Let p be the
prime ideal of OK corresponding to v, Kv = Kp be the completion of K at v or equivalently at p,
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and Ov = Ov be the ring of integers of Kv. We choose an absolute value | · |v in v on K normalized
by |p|v = N(p)−1 if v is nonarchimedean, the standard absolute value on the reals if v is real, and
the square of the standard absolute value if v is complex (although this is not strictly an absolute
value, it will work as one and satisfactorily represents the place; the square comes from the two
equivalent embeddings i and ī).

We normalize the measure dx on the reals to be the standard Lebesgue measure, on the complex
numbers to be twice the Lebesgue measure corresponding to the chosen absolute value | · |2, and on

the p-adic numbers to be such that
∫
Ov dx = N(d)−

1
2 , where d is the different ideal of Ov, so that

every measure is self-dual (see the proof of Lemma 2.3.7).
We are now ready to define the main object of the local theory. Let f be a Schwartz-Bruhat

function on Kv and d×x be the multiplicative Haar measure on K×v .

Definition 2.3.1. The local zeta integral is

Zv(f, s) =

∫
K×
v

f(x)|x|sv d×x.

Example 2.3.2. For some intuition on this, consider the case in which v is real. Then

Zv(f, s) =

∫
R×

f(x)|x|s dx
x

= 2

∫ ∞
0

f(x)xs−1 dx

is just the Mellin transform.

We compute Zv(f, s) for certain cases of f for v real, complex, or nonarchimedean in the proof
of Proposition 2.3.7.

Proposition 2.3.3. For any Schwartz-Bruhat function f , the local zeta integral Zv(f, s) converges
absolutely for Re s > 0.

Proof following [17]. Let σ = Re s. For |x|v large, f(x) decays rapidly, since it is Schwartz-Bruhat,
so since the integrand is bounded in absolute value by f(x)xσ the integral over |x|v > 1 converges.
On the other hand f(x) is bounded for |x|v ≤ 1, so it is enough to show that

∫
0<|x|v≤1

xσ d×x

converges. Choose a ∈ K×v such that |a|v < 1, and let An = {x : |a|n+1
v < |x|v ≤ |a|nv} for

every nonnegative integer n. The closure of An in K×v is compact and |x|σv is finite, so each In =∫
An
|x|σv d×x is finite; and In+1 = |a|σv In since d×x is a Haar measure with respect to multiplication,

so the integral over 0 < |x|v ≤ 1 is the sum of a geometric series, which converges absolutely if
σ > 0.

Corollary 2.3.4. As a function of s, Zv(f, s) is holomorphic on Re s > 0.

Proof. By Lemma 2.3.3 Zv(f, s) is absolutely convergent for Re s > 0, so we can differentiate under
the integral, and since the integrand is differentiable so is Zv(f, s), so Zv(f, s) is holomorphic.

Lemma 2.3.5. For any Schwartz-Bruhat functions f and g on Kv and s with real part in the open
interval (0, 1), we have

Zv(f, s)Zv(ĝ, 1− s) = Zv(f̂ , 1− s)Zv(g, s).
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Proof. Assume without loss of generality that d×x = dx
|x|v . Expanding, we have

Zv(f, s)Zv(ĝ, 1− s) =

∫
K×
v

f(x)|x|sv d×x
∫
K×
v

ĝ(y)|y|1−sv d×y

=

∫
K×
v

f(x)|x|sv d×x
∫
K×
v

(∫
Kv

g(z)ψ(yz) dz

)
|y|1−sv d×y

=

∫
K×
v

∫
K×
v

∫
Kv

f(x)g(z)|xy−1|1−sv ψ(yz)|y|v d×x d×y dz

=

∫
(K×

v )3
f(x)g(z)|xy−1|svψ(yz)|yz|v d×x d×y d×z

=

∫
(K×

v )3
f(x)g(z)|xzt−1|svψ(t)|t|v d×x d×t d×z

which is manifestly symmetric in f and g, where we justified exchanging the order of integration
by Proposition 2.3.3 and where we set t = yz.

This shows that on 0 < Re s < 1 the meromorphic function

Zv(f, s)

Zv(f̂ , 1− s)

is independent of the choice of f . Therefore it suffices to compute it for a single f . In fact we will
see that it is more natural for the purposes of the functional equation to consider the adjustment
of the zeta integral by certain terms known as L-factors.

Definition 2.3.6. If v is nonarchimedean, the local L-factor Lv(s) is given by 1
1−|$|sv

, where $

is a uniformizer, or a generator of the maximal ideal p. If v is archimedean, we define ΓR(s) =
π−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s) = ΓR(s)ΓR(s + 1) and set Lv(s) = ΓR(s) if v is real and
Lv(s) = ΓC(s) if v is complex, where Γ(s) =

∫∞
0
e−xxs dxx is the gamma function.

In particular, we will be interested in the function

ρv(s) :=
Zv(f, s)/Lv(s)

Zv(f̂ , 1− s)/Lv(1− s)
.

Proposition 2.3.7. For 0 < Re s < 1, ρ(s) is 1 if v is archimedean and is N(d)s−
1
2 if v is

nonarchimedean.

Proof. First, suppose that v is real. Let f(x) = e−πx
2

. Then f̂ = f , and

Zv(f, s) =

∫
R×

e−πx
2

|x|s dx
x

= 2

∫ ∞
0

e−πx
2

xs
dx

x
.

Letting t = πx2, we have dt = 2πx dx, so this is

1

π

∫ ∞
0

e−t(t/π)s/2
dt

t/π
= π−s/2Γ(s/2) = ΓR(s) = Lv(s),
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so Zv(f, s)/Lv(s) = 1, so ρ(s) = 1
1 = 1.

Next, suppose that v is complex. Let f(x) = e−2π|x|2 . Then we have again f̂ = f (note that
here the integral in the definition of the Fourier transform is taken over C rather than over R), and

Zv(f, s) =

∫
C×

e−2π|z|2 |z|2s d×z = 4π

∫ ∞
0

e−2πr2r2s−1 dr,

so letting t = 2πr2 we have dt = 4πr dr, so this is∫ ∞
0

e−t
(
t

2π

)s− 1
2 dt√

t
2π

= (2π)1−sΓ(s) = πΓC(s) = πLv(s),

so Zv(f, s)/Lv(s) = π, so ρ(s) = π
π = 1.

Finally, suppose that v is nonarchimedean, with f(x) = 1Ov (x) equal to 1 if x is a p-adic integer
and 0 otherwise. Its Fourier transform is

f̂(y) =

∫
Ov
ψ(xy) dx,

so letting t = xy we have dt = y dx, so

f̂(y) =
1

|y|p

∫
yOv

ψ(t) dt,

so f̂(y) is
∫
Ov dx if y is in the inverse different ideal d−1 of Ov and 0 otherwise. Since we have

chosen our measure dx such that
∫
Ov dx = N(d)−

1
2 , we get f̂(y) = N(d)−

1
2 1d−1(y).

Note that the computation of these three Fourier transforms, together with the similar compu-

tations in the reverse direction, show that
ˆ̂
f = f and so prove our earlier claim that these are the

normalizations which make each measure self-dual with respect to the standard additive character.
Integrating,

Zv(f, s) =

∫
Ov\{0}

|x|sp d×x = N(d)−
1
2

1

1−N(p)−s
= N(d)−

1
2Lv(s).

Write Am for the set of elements of order m and d = pd, so that d−1 is the disjoint union
⋃
m≥−dAm.

Then

Z(f̂ , s) = N(d)−
1
2

∞∑
m=−d

∫
Am

|x|sp d×x = N(d)−
1
2

∞∑
m=−d

N(p)−ms
∫
Ov
dx

=
N(d)−1N(p)ds

1−N(p)−s
=

N(d)s−1

1−N(p)−s
= N(d)s−1Lv(s),

so

ρ(s) =
N(d)−

1
2

N(d)(1−s)−1
= N(d)s−

1
2 .

Remark 2.3.8. We can now extend the zeta integral to the entire complex plane via the equation of

holomorphic functions Zv(f,s)
Lv(s) = ρv(s)

Zv(f̂ ,1−s)
Lv(1−s) , since by Corollary 2.3.4 and the fact that Lv(s) has

no zeros the left-hand side defines a holomorphic function on Re s > 0 and the right hand defines
a holomorphic function on Re s < 1, since ρv(s) is itself holomorphic for all v by Proposition 2.3.7.
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2.4 Adeles

Now that we at least to some extent understand the local zeta integrals, we want to see how to
assemble them into some sort of global object. The key to this will be a construction called the
adeles A.

Definition 2.4.1. Let {α} be a set of indices, and for every α associate with it a locally compact
abelian group Gα such that for all but finitely many α there exists a subgroup Hα ⊂ G which is
open and compact. Then the restricted product

A =
∏′

α

(Gα, Hα)

is the subset of the direct product
∏
αGα in which every vector x = (xα) ∈ A is such that for all

but finitely many α we have xα ∈ Hα. It is equipped with the topology defined by the basis of
open sets those given by ∏

α

Uα

where each Uα is open in Gα and for all but finitely many of the α we have Uα = Hα.

For any restricted product, the additive characters are equivalent to the restricted product of
additive characters: that is, there exists a canonical isomorphism ψ → (ψ

∣∣
Gα

) taking ψ to the

collection of its restrictions such that each ψ
∣∣
Gα

further restricted to Hα is 1 for all but finitely
many α.

Definition 2.4.2. For any number field K, the adeles are defined by the restricted product

A =
∏
v

(Kv,Ov)

with the finitely many archimedean places those for which Ov is undefined.

We can think of the adeles as elements of the direct product, subject to additional restrictions,
so that each element corresponds to an infinite vector with elements in the corresponding Kv.
The restricted topology ensures that the adeles are locally compact, so that we can define a Haar
measure and Fourier theory on them.

We choose the standard additive character on A to be the direct product of the standard
characters ψv over v, so that at any x there are finitely many factors of ψ(x) not equal to 1. The
adeles are locally compact, so we can define the Fourier transform on A. Let ψa(x) = ψ(ax), and

let Â denote the group of additive characters of A.

Proposition 2.4.3. There is a canonical isomorphism of locally compact groups Ψ : A→ Â taking
a to ψa.

Proof. For each place v there is a corresponding canonical isomorphism Ψv : Kv → K̂v, so the map
of restricted products ∏′

v

(Kv,Ov)
Ψ→
∏′

v

(K̂v, K̂v/Ov)

is an isomorphism.
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Definition 2.4.4. For {fv} a collection of Schwartz-Bruhat functions with respect to the local
place v such that for all but finitely many v we have fv = 1Ov , let f : A → C be the function
defined by f(x) =

∏
v fv(xv). Then the Schwartz-Bruhat functions on A are the space of finite

C-linear combinations of such functions.

We set the measure to be the Tamagawa measure dx =
∏
v dxv, the product of the local

measures, where each dxv is normalized to be self-dual with respect to the standard additive
characters ψv. It has the property that for any basic open set of the form

∏
v Uv we have∫∏

v Uv
dx =

∏
v

∫
Uv
dxv.

Let K ↪→
∏
vKv be the diagonal embedding a→ (. . . , a, a, a, . . .). By a slight abuse of notation

we will also refer to the image of this embedding as K as a subset of
∏
vKv. We can also define a

norm on the adeles: |x| =
∏
v |xv|v. Embed K into A via the diagonal embedding a→ (a).

Proposition 2.4.5. For any a ∈ K×, |a| = 1.

Proof. We have ∫
aA/K

dx =
1

|a|

∫
A/K

dx,

but the map A/K → A/K defined by x → ax is an isomorphism for a ∈ K×, so the two integrals
must be equal. Since they are nonzero and finite |a| = 1.

Lemma 2.4.6. The standard additive character ψ restricted to K is 1.

Proof. Let {a}v be the fractional part of a with respect to v, which for archimedean v is the standard
fractional part and for nonarchimedean v is the rational number with denominator a power of N(pv)
such that a− {a}v is in Ov. Then

ψ(a) = exp

(
−2πi

∑
v

{a}v

)
,

so it is enough to show that ∑
v

{a}v

is an integer, and in fact we can reduce to the cases where v is a rational prime or a single real
archimedean place, as modulo 1 we can bundle together all prime ideals lying over a single rational
prime and all archimedean primes. To do so, let q be a rational prime. Then this is∑

p 6=q

{a}p + {a}q − {x}∞

where the first sum is over prime ideals of OK not lying over q, the second is over those lying
over q, and the last is over archimedean places. The first sum is really a finite sum, since a is a
p-adic integer for all but finitely many p, and is a q-adic integer, since the denominator of the sum
written as a fraction will not be divisible by q, and by definition {a}q − {x}∞ = −(x − {a}q) is a
q-adic integer, so

∑
v{a}v is a q-adic integer. Since q was arbitrary this is true for every rational

prime q, and the only numbers which are q-adic integers for every q are the rational integers, so
ψ(a) = e−2πin(a) for some integer n(a), which is just 1.
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We can now define the Fourier transform

f̂(y) =

∫
A
f(x)ψ(xy) dx

where multiplication of adeles is defined elementwise: (xv)(yv) = (xvyv). Let f : A/K → C be a
K-periodic function, that is a function such that for all x ∈ A and a ∈ K we have f(x+ a) = f(x).
Then we can also define the Fourier transform

f̂(a) =
1

VolD

∫
D

f(x)ψ(ax) dx

where D is a fundamental domain for A/K, that is a set of adeles such that the disjoint union⋃
a∈K(D+ a) gives the full set of adeles A, and VolD =

∫
D
dx. For f continuous and L1 with f̂ in

L1(K) the Fourier inversion theorem

f(x) =
∑
a∈K

f̂(a)ψ(ax)

holds as usual.

Proposition 2.4.7. If f : A → C is a Schwartz-Bruhat function which can be written as the
product of local Schwartz-Bruhat functions fv, then its Fourier transform is given by the product of
the local Fourier transforms f̂(y) =

∏
v f̂v(yv).

Proof. We can write the Fourier transform as

f̂(y) =

∫
Kv1

∫
Kv2

· · · f(x)ψ(xy) dx =
∏
v

∫
Kv

fv(xv)ψv(xvyv) dxv =
∏
v

f̂v(yv)

since fv = 1Ov for all but finitely many v, so we are ensured that the integrals are taken only over
Ov for all but finitely many v.

Finally we define the group of units of A.

Definition 2.4.8. The group of ideles is A× =
∏′

(K×v ,O×v ).

Proposition 2.4.9. The ideles are precisely the elements of A with nonzero norm.

Proof. Since the absolute value is given by a finite product, |x| = 0 if and only if |xv|v = 0 for some
place v. Therefore the restriction to K×v is necessary and sufficient, and O×K is the corresponding
open compact group under multiplication.

We define the multiplicative Haar measure on A× to be
∏
v d
×xv where d×xv = dxv

|x|v if v is infinite

and d×x = 1
1−N(pv)

dxv
|x|v otherwise, with the addition factor for finite places so that

∫
O×
v
d×xv is 1

for all but finitely many places v.
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2.5 Global theory

We can now define the global analogue of the local zeta integral. Let f : A → C be a Schwartz-
Bruhat function.

Definition 2.5.1. The global zeta integral is

Z(f, s) =

∫
A×

f(x)|x|s d×x.

Lemma 2.5.2. If f : A→ C is the product over v of local Schwartz-Bruhat functions fv : Kv → C
such that for all but finitely many v fv = 1Ov , then we can factor the global zeta integral as

Z(f, s) =
∏
v

Zv(fv, s).

Proof. Ordering the places of K as in the proof of Proposition 2.4.7, we can write the global zeta
integral as

Z(f, s) =

∫
A×
K

f(x)|x|s d×x =

∫
K×
v1

∫
K×
v2

· · · f(x)|x|s d×x =
∏
v

∫
K×
v

fv(x)|x|sv d×xv =
∏
v

Zv(fv, s)

since fv = 1Ov for all but finitely many v, so we are ensured that the integrals are taken only over
Ov for all but finitely many v.

Before examining the properties of the global zeta integral, let’s explicitly compute an example.

Example 2.5.3. Let fv be the function we chose for each place v in the proof of Proposition 2.3.7,
that is fv(x) = e−πx

2

if v is real, fv(x) = e−2π|x|2 if v is complex, and fv(x) = 1Ov (x) if v is
nonarchimedean, and let f(x) =

∏
v fv(x). Then by Lemmas 2.5.2 and 2.3.7, letting r1 and r2 be

the numbers of real and complex places respectively we get

Z(f, s) =
∏
v

Zv(fv, s) =

( ∏
v real

Lv(s)

) ∏
v complex

πLv(s)

( ∏
v finite

N(dv)
− 1

2Lv(s)

)

= |∆K |−
1
2 ΓR(s)r1(πΓC(s))r2

∏
p

1

1−N(p)−s
,

which we note looks interestingly similar to the Dedekind zeta function.

Proposition 2.5.4. For any Schwartz-Bruhat function f the global zeta integral Z(f, s) converges
absolutely for Re s > 1.

Proof. Without loss of generality we can assume that f =
∏
v fv is the product of local functions,

since any Schwartz-Bruhat function is a linear combination of such functions, so if the result holds
for these then by the linearity of integration it holds for all f . We replace the integrand by its
absolute value, so we can assume f nonnegative and real and s real. Decomposing by Lemma 2.5.2,
we have

Z(f, s) =
∏
v

Zv(fv, s).
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For all but finitely many v, all of which are nonarchimedean, fv = 1Ov , in which case Zv(fv, s) =

N(dv)
− 1

2Lv(s) by the proof of Proposition 2.3.7, and by Remark 2.3.8 Zv(fv,s)
Lv(s) is holomorphic

on the entire complex plane, so since each Lv(s) is holomorphic on Re s > 0 it follows that

Z(f, s) converges absolutely if and only if
∏
v finiteN(dv)

− 1
2Lv(s) does. Splitting this product into(∏

v finiteN(dv)
− 1

2

)
(
∏
v finite Lv(s)), the first product is just |∆K |−

1
2 where ∆K is the discriminant

of the number field K, since the absolute value of the discriminant is the product of the norms of
the local different ideals. The second product is just the Dedekind zeta function of K. Since there
are at most [K : Q] places of K lying over each rational prime p, each corresponding to a prime
ideal with norm at least p, for s real and greater than 1 the Dedekind zeta function of K is positive
and at most ∏

p

(1− p−s)[K:Q],

which is just the Riemann zeta function

ζ(s) =
∏
p

1

1− p−s
=
∞∑
n=1

1

ns

raised to the [K : Q]-th power. Since the Riemann zeta function is bounded by
∫∞

1
(x+ 1)−s dx =

21−s

s−1 it converges absolutely for Re s > 1, so so does the Dedekind zeta function, so so does Z(f, s).

We would like to find a functional equation for the global zeta integral, so that we can combine
it with the functional equations for the local factors by Lemma 2.5.2 to get a functional equation
for

L(s) :=
∏
v

Lv(s).

However, in order to do so we will need a more powerful method than the direct manipulations we
could use in the proof of Lemma 2.3.5. Following in the footsteps of Riemann, we will use a form
of generalized Poisson summation.

Lemma 2.5.5. For any Schwartz-Bruhat function f : A→ C,∑
a∈K

f(x+ a)

converges absolutely and uniformly on all compact subsets of A to a K-periodic function.

Proof. Assume without loss of generality that we can write f as a product of local Schwartz-Bruhat
functions fv. All compact subsets of A are contained in some set U =

∏
v Uv for the Uv open subsets

of Kv with Uv = Ov for all but finitely many v, so it suffices to show the claim on sets of the form
of U . For v nonarchimedean fv is locally constant of compact support, so we have fv(Uv + a)
identically 0 unless a either has |a|v ≤ 1 or is one of finitely many exceptions, so that these a form
a fractional ideal Iv of Ov. Therefore the intersection of these over all v is a fractional ideal I of
OK . Multiplying by the archimedean fv which go to 0 rapidly and summing over this ideal gives
absolute and uniform convergence on S. Further the sum is K-periodic, as adding an element of K
to the input permutes the sum but by absolute convergence gives the same result.
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Theorem 2.5.6. For any Schwartz-Bruhat function f : A→ C,∑
a∈K

f(a) =
∑
a∈K

f̂(a).

Proof. Let F (x) =
∑
a∈K f(x+a). Note that F is a function on A/K, and so its Fourier transform

F̂ is a function on its Pontryagin dual Â/K ∼= K. Explicitly,

F̂ (b) =
1

VolD

∫
D

∑
a∈K

f(x+ a)ψ(bx) dx.

By Lemma 2.5.5 we can exchange the order of the summation and integration to get

F̂ (b) =
1

VolD

∑
a∈K

∫
D

f(x+ a)ψ(bx) dx

=
1

VolD

∑
a∈K

∫
D+a

f(x)ψ(b(x− a)) dx

=
1

VolD

∑
a∈K

ψ(−ab)
∫
D+a

f(x)ψ(bx) dx.

By Lemma 2.4.6 ψ is trivial on K, so ψ(−ab) = 1, so this is

1

VolD

∑
a∈K

∫
D+a

f(x)ψ(bx) dx =

∫
A
f(x)ψ(bx) dx = f̂(b).

Therefore by Fourier inversion we have

F (x) =
1

VolD

∑
a∈K

F̂ (a)ψ(ax).

Substituting in the definition of F (x) on the left-hand side and the above result on the right, we
get ∑

a∈K
f(x+ a) =

1

VolD

∑
a∈K

f̂(a)ψ(ax),

and setting x = 0 gives ∑
a∈K

f(a) =
1

VolD

∑
a∈K

f̂(a).

Applying this result to f̂ gives∑
a∈K

f̂(a) =
1

VolD

∑
a∈K

ˆ̂
f(a) =

1

VolD

∑
a∈K

f(a)

by the self-duality of the measure, so (VolD)2 = 1, so VolD = 1, which in combination with the
above gives the result.
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Corollary 2.5.7. For any Schwartz-Bruhat function f : A→ C,∑
a∈K

f(ax) =
1

|x|
∑
a∈K

f̂(a/x).

Proof. Let gz(x) = f(zx) for an idele z. Then gx is a Schwartz-Bruhat function with Fourier
transform

ĝz(y) =

∫
A
gz(x)ψ(xy) dx =

∫
A
f(xz)ψ(xy) dx,

so letting u = xz we have du = |z| dx, so this is

1

|z|

∫
A
f(u)ψ(uyz−1) du = f̂(y/z).

Applying Theorem 2.5.6 immediately gives the result.

For t > 0 write A×t for the set of ideles with norm t, and let

Z(f, s; t) =

∫
A×
t

f(x)|x|s d×x,

so that

Z(f, s) =

∫ ∞
0

Z(f, s; t)
dt

t
.

Let

g(f, s, t) = Z(f, s; t) + f(0)

∫
A×
t /K

×
|x|s d×x,

where d×x by an abuse of notation is the induced measure on A×t /K× compatible with both the
multiplicative Haar measure d× on the ideles and the Haar measure on the group of positive reals
dt
t .

Lemma 2.5.8. For any Schwartz-Bruhat function f : A→ C we have g(f, s, t) = g(f̂ , 1− s, t−1).

Proof. We have

Z(f, s; t) =

∫
A×
t

f(x)|x|s d×x

=

∫
A×
t /K

×

∑
a∈K×

f(ax)|ax|s d×x

=

∫
A×
t /K

×
|x|s

∑
a∈K×

f(ax) d×x

since |a| = 1 for a ∈ K× by Lemma 2.4.5. In order to apply Theorem 2.5.6 we add a term from
a = 0 and continue:

Z(f, s; t) + f(0)

∫
A×
t /K

×
|x|s d×x =

∫
A×
t /K

×
|x|s

∑
a∈K

f(ax) d×x.
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By Corollary 2.5.7 this is ∫
A×
t /K

×
|x|s−1

∑
a∈K

f̂(a/x) d×x.

Letting y = 1
x , since d×x is invariant under this substitution we have

g(f, s, t) =

∫
A×

1/t

|y|1−s
∑
a∈K

f̂(ay) d×y.

But this is the same form as we found before for g with f → f̂ , s → 1 − s, and t → t−1, so
g(f, s, t) = g(f̂ , 1− s, t−1).

Let V =
∫
A×

1 /K
× d
×x.

Lemma 2.5.9. For any t > 0, ∫
A×
t /K

×
|x|s d×x = V ts.

Proof. We have ∫
A×
t /K

×
|x|s d×x = ts

∫
A×
t /K

×
d×x.

If a is an idele of norm t, then ∫
A×
t /K

×
d×x =

∫
aA×

1 /K
×
d×x,

and since d×x is invariant under scaling by an idele∫
aA×

1 /K
×
d×x =

∫
A×

1 /K
×
d×x = V.

Combining these gives the result.

Theorem 2.5.10. For any Schwartz-Bruhat function f the global zeta integral extends to a mero-
morphic function on the complex plane and satisfies the functional equation

Z(f, s) = Z(f̂ , 1− s).

Further Z(f, s) is holomorphic everywhere except at s = 0 and s = 1, at each of which it has simple

poles with residues −f(0)V and f̂(0)V respectively.

Proof. Let

I1(f, s) =

∫ 1

0

Z(f, s; t)
dt

t
, I2(f, s) =

∫ ∞
1

Z(f, s; t)
dt

t
,

so that Z(f, s) = I1(f, s) + I2(f, s). By Lemma 2.5.9, g(f, s, t) = Z(f, s; t) + f(0)V ts, so by Lemma

2.5.8 we have Z(f, s; t) = Z(f̂ , 1− s; t−1 + f̂(0)V ts−1 − f(0)V ts. Therefore

I1(f, s) =

∫ 1

0

Z(f̂ , 1− s; t−1 dt

t
+ f̂(0)V

∫ 1

0

ts−1 dt

t
− f(0)V

∫ 1

0

ts
dt

t

=

∫ ∞
1

Z(f̂ , 1− s; t) dt
t
− f̂(0)V

1− s
− f(0)V

s
,
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so

Z(f, s) = I1(f, s) + I2(f, s) = I2(f, s) + I2(f̂ , 1− s) +
f̂(0)V

1− s
+
f(0)V

s
.

This is manifestly symmetric under f → f̂ , s→ 1− s. Further since Z(f, s) converges for Re s > 1
by Proposition 2.5.4, so since it converges better as Re s becomes smaller it must converge for all
complex s, so Z(f, s) is holomorphic except for the simple poles coming from the latter two terms
with locations and residues as claimed.

Combining this with Lemma 2.3.5 gives the functional equation for the Dedekind zeta function.
Let ΛK(s) = |∆K |s/2ΓR(s)r1ΓC(s)r2ζK(s), where r1 and r2 are the numbers of real and complex
places respectively and

ζK(s) =
∑
I⊆OK
I 6=(0)

N(I)−s =
∏
p

1

1−N(p)−s

is the Dedekind zeta function of K.

Corollary 2.5.11. For every complex number s not equal to 0 or 1, Λ(s) = Λ(1− s).

Proof. Choose f : A→ C to be a Schwartz-Bruhat function given by the product of local Schwartz-
Bruhat functions fv. By Lemma 2.5.2 we have

Z(f, s) =
∏
v

Zv(fv, s).

Therefore ∏
v

Zv(fv, s)

Lv(s)
=
Z(f, s)

L(s)

where
L(s) =

∏
v

Lv(s).

On the other hand by Remark 2.3.8 this is

∏
v

ρv(s)
Zv(f̂f , 1− s)
Lv(1− s)

,

which separating and again applying Lemma 2.5.2 and Lemma 2.4.7 is

ρ(s)
Z(f̂ , 1− s)
L(1− s)

where
ρ(s) =

∏
v

ρv(s).

Therefore
Z(f, s)

L(s)
= ρ(s)

Z(f̂ , 1− s)
L(1− s)

.
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But by Theorem 2.5.10 Z(f, s) = Z(f̂ , 1− s), so this is the statement L(1− s) = ρ(s)L(s). Now by

Proposition 2.3.7 ρv(s) is N(dv)
s− 1

2 if v is finite and 1 otherwise, so

ρ(s) =

(∏
p

N(dp)

)s− 1
2

= |∆K |s−
1
2 .

Therefore L(1 − s) = |∆K |s−
1
2L(s), or more symmetrically L(1 − s)|∆K |(1−s)/2 = L(s)|∆K |s/2.

Further L(s) is the product of of r1 factors of LR(s) = ΓR(s), r2 factors of LC(s) = ΓC(s), and a
factor of 1

1−N(p)−s for each nonarchimedean place v at a nonzero prime ideal p. Therefore

L(s) = ΓR(s)r1ΓC(s)r2
∏
p

1

1−N(p)−s
= ΓR(s)r1ΓC(s)r2ζK(s),

so |∆K |s/2L(s) is both equal to Λ(s) and is symmetric under s→ 1− s.

Example 2.5.12. We can recover the functional equation for the Riemann zeta function by setting
K = Q, so that ∆Q = 1, r1 = 1, and r2 = 0, so ΛQ(s) = ΓR(s)ζQ(s) = π−s/2Γ(s/2)ζ(s) is symmetric
under s→ 1− s.

Remark 2.5.13. The theory extends naturally to Hecke L-functions by viewing the functions | · |sv
as multiplicative characters of the local field Kv and generalizing to other “ramified” characters.
Similarly the global theory views |·|s as the unramified character and generalizes to Hecke characters,
which in this view are the characters of the idele class group A×/K×. This extension is conceptually
not much more difficult but computationally intensive; the interested reader should feel free to
explore it themselves.

3 Schemes and the arithmetic zeta function

We introduce another generalization of the Riemann and Dedekind zeta functions, this time with
a more geometric flavor. Each ring of integers OK is a one-dimensional ring, in a sense to be made
precise below, and can in some sense be viewed as a curve. Therefore it is natural to generalize
zeta functions to higher-dimensional spaces. In order to do so rigorously, we need to introduce the
notion of schemes. We assume familiarity with commutative algebra, in particular smooth ring
maps and the properties of Noetherian rings, and some basic topology.

Much of the expository material on schemes is based on material from the Stacks Project and
Peter Nelson’s lecture notes [14].

3.1 Schemes

Let R be a commutative ring with identity. Then we define X = SpecR to be the topological space
consisting of the set of prime ideals of R under the Zariski topology, defined by having closed sets

V (I) = {p ∈ SpecR : I ⊆ p}.

In this topology the closed points are the maximal ideals. Henceforth the topology is assumed to
be the Zariski topology. For each closed point x of X we can associate to it a field k(x), known as
its residue field, given by R/x.
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A sheaf of rings OX takes each open subset U of X a ring OX(U), the ring of regular functions
on U , with the requirement that these rings be compatible: if U ⊆ V are open sets of X, then
there is a natural restriction map resV,U : OX(V ) → OX(U) such that resU,U is the identity, if
V ⊆W then resW,V ◦ resV,U = resW,U , and for any collection of open sets if there is a corresponding
regular function on each which agree on the intersections of the sets then there exists a unique
regular function on the union of the sets which is equal to each function when restricted to the
corresponding set. An affine scheme X is a locally ringed topological space defined by SpecR for
some ring R equipped with the sheaf of rings OX fixed by OX(X) = R. (By a mild abuse of notation
we will write SpecR for the affine scheme with space SpecR and sheaf of rings the “structure sheaf”
defined by the compatibility relations and OSpecR(SpecR) = R.)

Example 3.1.1. Let K be an algebraically closed field. Then SpecK[x1, . . . , xn] is affine n-space
over K.

Example 3.1.2. Keeping K as above, SpecK[x1, . . . , xn]/(f1, . . . , fm) has closed points corre-
sponding by the Nullstellensatz to the zero loci cut out by f1, . . . , fm.

Example 3.1.3. The affine scheme SpecZ consists of a closed point (p) for each prime p as well
as the open or generic point (0), whose closure is the entire space. The residue field of each closed
point (p) is Z/(p) ∼= Fp.

More generally, a scheme X is a locally ringed space space which is locally isomorphic to an
affine scheme, or explicitly a topological space equipped with a sheaf of rings such that there exists
an open cover {Uα} of X with each Uα isomorphic to an affine scheme. We can still define the field
k(x) for any closed point x of X: let OX,x be the local ring given by the stalk of the sheaf OX at
x and let mX,x be its maximal ideal. Then k(x) := OX,x/mX,x.

Note that schemes generalize varieties: for an algebraically closed field K, the maximal ideals
of the ring R = K[x1, . . . , xn]/I for some ideal I = (f1, . . . , fm) are by the Nullstellensatz (x1 −
a1, x2−a2, . . . , xn−an) for ai ∈ K, that is to solutions to the system of equations f1(x1, . . . , xn) =
· · · = fm(x1, . . . , xn) = 0, so that the closed points of the affine scheme SpecR correspond to
the variety cut out by these equations. We can similarly view the solution set of polynomials
f1, . . . , fm ∈ K[x1, . . . , xn] over a general field K in its algebraic closure K as a scheme, with
structure sheaf K[x1, . . . , xn]/(f1, . . . , fm).

Similarly projective schemes, which we can form by gluing together affine schemes, generalize
projective varieties.

We will need to be able to discuss several properties of schemes and of morphisms between them.
Specific references can be found in the references section; generally all of these definitions can be
found in the Stacks Project ([1], [5], [11], [16], [18], [19]), and several of the proofs are also due to
articles in it.

Definition 3.1.4. A morphism of rings f : A→ B is of finite type if B is finitely generated as an
A-algebra, or equivalently if B ∼= A[x1, . . . , xn]/I for some nonnegative integer n and some ideal I
of A[x1, . . . , xn].

Definition 3.1.5. A morphism of schemes f : X → Y is locally of finite type if there exists an
affine open cover {Uα} of Y such that for every Uα there exists an open cover {Vαβ} of f−1(Uα)
such that the induced map OY (Uα) → OX(Vαβ) is a ring morphism of finite type for every α, β.
We further say that f is of finite type if the open covers {Vαβ} can be chosen to be finite.

21



Definition 3.1.6. The Krull dimension of a ring, if it exists, is the largest nonnegative integer n
such that there exists a chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn where all inclusions are strict. If
there is no such number then the ring is said to have infinite Krull dimension.

Definition 3.1.7. The dimension of a scheme X, if it exists, is the maximum over affine open sets
S ⊆ X of the Krull dimension of OX(S). If there exists such an S with OX(S) of infinite Krull
dimension or with arbitrarily high dimension then X is said to be infinite-dimensional.

Example 3.1.8. A field K has Krull dimension 0, so that SpecK is topologically a point, while
K[x1, . . . , xn] has Krull dimension n, so affine n-space over K SpecK[x1, . . . , xn] is n-dimensional.
Less intuitively, Z has Krull dimension 1, so that SpecZ is one-dimensional and can be thought of
as a curve, while Z[x1, . . . , xn] is n+ 1-dimensional.

Definition 3.1.9. We say that a morphism of schemes f : X → Y is dominant or that X dominates
Y if the image of f is dense in Y .

Definition 3.1.10. Given two pairs of scheme morphisms X → Z, Y → Z, the fiber product of X
and Y with respect to Z is the scheme X ×Z Y equipped with scheme morphisms to X and to Y
such that the diagram

X ×Z Y X

Y Z

commutes which is universal among such diagrams.

Remark 3.1.11. Since the fiber product is defined by a universal property, it is unique up to a
unique isomorphism. In the affine case it is the dual construction to the tensor product of rings,
with X ×Z Y = Spec(A⊗C B) if X = SpecA, Y = SpecB, and Z = SpecC, and so exists; gluing
together the affine subschemes gives existence in the general case. The morphism X ×Z Y → Y is
the pullback of the morphism X → Z along the morphism Y → Z.

Example 3.1.12. Let Z = SpecZ, Y = SpecFp, and X = SpecZ[x1, . . . , xn]/I for some ideal I of
Z[x1, . . . , xn]. Then X ×Z Y = Spec(Z[x1, . . . , xn]/I ⊗Z Fp) = SpecFp[x1, . . . , xn]/Ī where Ī is the
reduction of I modulo (p).

Proposition 3.1.13. Let f : X → Y be a morphism of schemes, let Z ⊆ Y be an open or closed
subscheme of Y , and let h be the projection map X ×Y Z → X. Then f(x) ∈ Z ⊂ Y if x = h(p)
for some p ∈ X ×Y Z.

Proof. Let g be the natural inclusion map Z ↪→ Y . Letting f∗ be the induced map X ×Y Z → Z,
by the definition of the fiber product we have f(h(p)) = g(f∗(p)), so since the image of f∗ is Z and
g is an inclusion map we get the result.

In fact we will identify f−1(Z) with the topological space underlying X×Y Z, and define f−1(Z)
as a scheme by equipping it with the sheaf structure of X ×Y Z.

Given a morphism of schemes f : X → Y , we call XZ the fiber of X lying over Z for any
subscheme Z of Y .

Proposition 3.1.14. If f : X → Y is a morphism of schemes of finite type and Y is finite-
dimensional, then each fiber of X is finite-dimensional.
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Proof. Since Y is finite-dimensional, each ring OY (U) has bounded Krull dimension for each open
neighborhood of every y ⊆ Y so since f is of finite type f−1(U) can be covered by finitely many
finitely generated OY (U)-algebras, each of which is finite-dimensional. Therefore there exists a
finite maximum of the Krull dimensions of these rings, so every fiber Xy is finite-dimensional.

Proposition 3.1.15. If f : X → Y and g : Z → Y are of finite type, then the induced morphism
f∗ : X ×Y Z → Z is of finite type.

Proof. Cover Y by open affines {Uα}. Since g is of finite type, for each α there exist a finite set of
open affines {Vαβ} covering g−1(Uα), for each of whichOY (Uα)→ OZ(Vαβ) is a ring homomorphism
of finite type. By Lemma 3.1.13, (f∗)−1(Vαβ) = (X ×Y Z)×Z Vαβ = X ×Y Vαβ = (X ×Y Uα)×Uα
Vαβ = f−1(Uα) ×Uα Vαβ . Since f is of finite type, we can cover f−1(Uα) with finitely many
open affine Wαγ , for each of which OY (Uα) → OX(Wαγ) is a ring homomorphism of finite type.
Therefore (f∗)−1(Vαβ) is covered by a set of finitely many affines of the form Wαγ ×Uα Vαβ =
Spec(OX(Wαγ) ⊗OY (Uα) OZ(Vαβ)), which is the spectrum of a ring which is a finitely generated
OZ(Vαβ)-algebra, so by definition f∗ is of finite type.

Definition 3.1.16. We say that a morphism of schemes f : X → Y of finite type is of relative
dimension d if for every x ∈ X we have dimXf(x) = d.

Example 3.1.17. The morphism SpecZ[x] → SpecZ is of relative dimension 1, as each fiber is
SpecFp[x] for some p, which is one-dimensional (see Example 3.1.8).

Lemma 3.1.18. If f : X → Y is of finite type and of relative dimension d and Z → Y is of finite
type, then the induced morphism f∗ : X ×Y Z → Z is also of finite type and of relative dimension
d.

Proof. Choose a point p ∈ X ×Y Z. Then the fiber of X ×Y Z of f∗(p) is determined by the
commutative diagram

X ×Y Spec k(f∗(p)) X ×Y Z X

Spec k(f∗(p)) Z Y

f∗ f .

Since the morphism Spec k(f∗(p)) → Y factors through k(f∗(p)) → k(f(p̄)) → Y where p̄ is the
projection of p ∈ X ×Y Z onto X, we get a commutative diagram

X ×Y Spec k(f∗(p)) X ×Y Spec k(f(p̄)) X

Spec k(f∗(p)) Spec k(f(p̄)) Y

f∗ f .

We want to show that X ×Y Spec k(f∗(p)) is d-dimensional for every p if X ×Y Spec f(p̄) is d-
dimensional for every d, so this is equivalent by the second diagram to showing that the result
holds for finite field extensions k(f∗(p)) of k(f(p̄)), which is a finite field extension because the
morphism of schemes Spec k(f∗(p)) → Spec k(f(p̄)) is dual to the morphism of rings k(f(p̄)) =
k(f∗(p)), so this defines a field extension and since the original morphism was of finite type the
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field extension must be finite. But in this case each scheme has only one fiber, so it is sufficient
to show that if X ×Y SpecK is d-dimensional then X ×Y SpecK ′ is d-dimensional if K ′ is a
finite field extension of K. Let U = SpecA be an affine open subscheme of X ×Y SpecK with
dimension d. Then A is a finitely-generated K-algebra A = K[x1, . . . , xn]/I with inverse image
Spec(A ×K K ′) = SpecK ′[x1, . . . , xn]/Ī which has the same dimension as A, so the dimension
of X ×Y SpecK ′ is at least that of X ×Y SpecK. On the other hand mapping any affine open
subscheme of X×Y SpecK ′ to its image in X×Y SpecK gives something of this form, and all of the
affine open subschemes of X×Y SpecK have dimension at most d, so the dimension of X×Y SpecK ′

can also be at most d. Therefore the dimension of both is d.

Definition 3.1.19. A scheme is irreducible if the underlying topological space is irreducible.

Definition 3.1.20. A scheme is connected if the underlying topological space is connected.

Definition 3.1.21. A morphism of schemes f : X → Y locally of finite type is smooth if for every
x ∈ X there exist open affine neighborhoods x ∈ U ⊆ X and f(x) ∈ V ⊆ Y such that if U = SpecA
and V = SpecB then the induced ring homomorphism B → A is smooth.

In particular if Y is the spectrum of a field then this X → Y is smooth if it has no singular
points. We can partially extend this to general Y via the following proposition.

Proposition 3.1.22. Smoothness is stable under base change, that is if X → Y is smooth then
X ×Y Z → Z is smooth.

Proof. Smoothness as a property of ring maps is stable under base change via tensor products, so
the same is true locally for morphisms and so smoothness is preserved at every point.

Therefore it is a necessary, though not quite sufficient, condition for X → Y to be smooth
that every fiber over a point be smooth. In order to make this sufficient we would need an extra
condition about variation over the fibers, but intuitively we can think of X → Y being smooth as
requiring that all fibers are nonsingular.

Definition 3.1.23. A scheme X is Noetherian if there exists an affine open neighborhood U of
every point x such that U = SpecR for a Noetherian ring R and the underlying topological space
of X is quasi-compact.

Lemma 3.1.24. If a scheme has a finite cover by open affine subschemes then it is quasi-compact.

Proof. If X has such a cover, then since X is locally affine every open cover must contain the affine
cover and so must have a finite open subcover.

Proposition 3.1.25. If X → Y is a morphism of schemes of finite type and Y is Noetherian, then
X is Noetherian.

Proof. This reduces to the affine case as usual, where it is the dual statement to the fact that a
finitely generated ring over a Noetherian ring is Noetherian.

Proposition 3.1.26. A Noetherian scheme has finitely many irreducible components.

Proof. The underlying topological space is also Noetherian, so the result follows from the fact that
Noetherian topological spaces have finitely many irreducible components.
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Proposition 3.1.27. A Noetherian scheme X smooth over SpecK for K a field is irreducible if
and only if it is connected.

Proof. If X is irreducible then it is connected, so the difficulty lies in establishing the other direction.
Suppose X has at least two irreducible components. Since X is connected and Noetherian, they
have a nonempty intersection containing some closed point x. Since f is smooth, the induced
homomorphism k → OX,x is smooth. Since X is Noetherian OX,x is Noetherian as well as being
smooth over k and a local ring, so it must be regular, so OX,x must be an integral domain. On
the other hand U must contain the generic points of both irreducible components. Therefore
OX,x contains two ideals dividing (0), so it cannot be an integral domain. Therefore X must be
irreducible.

Lemma 3.1.28. For any scheme X and regular function f on X, the zero locus of f , that is the
set of points x ∈ X such that the image of f in OX,x/mX,x is 0 where OX,x is the local stalk at x
and mX,x is its maximal ideal, is closed.

Proof. For every x ∈ X, let U = SpecA be an open affine neighborhood of x. Then the zero locus
of f on U is the set of prime ideals of A containing f , which by the definition of the Zariski topology
is closed. Therefore X is everywhere locally closed and so closed.

Definition 3.1.29. A morphism of schemes X → Y is separated if the diagonal morphism X →
X ×Y X is a closed immersion.

Proposition 3.1.30. Separation is stable under base change, that is if X → Y is separated then
X ×Y Z → Z is separated.

Proof. The diagonal morphism X ×Y Z → (X ×Y Z) ×Z (X ×Y Z) = X ×Y (Z ×Z X) ×Y Z =
(X ×Y X)×Y Z is just the base change of the original diagonal morphism X → X ×Y X, so since
closed immersions are preserved under base change X ×Y Z → Z is separated if X → Y is.

Definition 3.1.31. A scheme X → SpecK for some field K is geometrically connected if X×SpecK

SpecK ′ is connected for every field extension K ′ of K. We say that X → SpecR is geometrically
connected if X ×SpecR Spec(FracR)→ Spec(FracR) is geometrically connected.

Definition 3.1.32. A scheme X → SpecK for some field K is geometrically irreducible if X×SpecK

SpecK ′ is irreducible for every field extension K ′ of K. We say that X → SpecR is geometrically
irreducible if X ×SpecR Spec(FracR)→ Spec(FracR) is geometrically irreducible.

Example 3.1.33. The scheme X = SpecR[x]/(x2 + 1) is irreducible, since x2 + 1 is a maximal
ideal, but is not geometrically irreducible, since x2 + 1 splits into (x+ i)(x− i) over C.

Definition 3.1.34. A scheme X is integral if it has an open cover by affine schemes {Uα} with
each Uα equal to SpecAα for Aα an integral domain.

This is equivalent to requiring that OX(U) be an integral domain for every open subscheme U .

Definition 3.1.35. A scheme X is reduced if it has an open cover by affine schemes {Uα} with
each Uα equal to SpecAα with Aα having no nilpotent elements.

Proposition 3.1.36. A scheme which is both irreducible and reduced is integral.
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Proof. Suppose that X is such a scheme which is not integral. Choose an affine irreducible open
subscheme U = SpecA. Suppose that f and g are nonzero elements of A such that fg = 0. Then
the sets V and W of points x ∈ U on which f and g respectively are 0, that is are in the prime
ideal of A associated to x, are both closed subsets of U by Lemma 3.1.28, since they are the zero
loci of regular functions, and have union equal to U , since the associated ideals to each x are prime,
so since fg is in every maximal ideal by definition at least one of f and g is in each. Since U is
irreducible, it follows that one of V or W , say V , must be equal to the entire set U . Therefore
f restricted to any open affine subscheme of U is in the intersection of the prime ideals of A and
therefore nilpotent, and since X is reduced the only nilpotent element is 0. Therefore A is an
integral domain, so since U was arbitrary X must be integral.

3.2 The zeta function and arithmetic schemes

In light of this perspective on the prime and maximal ideals of a ring, it is natural to look back at
the Riemann zeta function

ζ(s) =
∏
p

1

1− p−s
.

Thinking of the primes as the closed points of SpecZ and their numerical value as |Z/(p)|, the size
of the residue field at p, it is natural to generalize the zeta function as follows.

Definition 3.2.1. Let X be a scheme with set of closed points X, and let k(x) be the residue field
at a closed point x. Then we define the zeta function of X to be the function defined on some
complex half-plane by

ζX(s) =
∏
x∈X

1

1− |k(x)|−s
.

Example 3.2.2. If X = SpecZ, we get the Riemann zeta function ζX = ζ. If X = SpecOK for
OK the ring of integers of a number field, we get ζX = ζK , the Dedekind zeta function.

We interpret |k(x)|−s to be 0 in the case in which k(x) is infinite, so that the product is essentially
over x with finite residue field. For the moment we will consider this as a formal product and neglect
convergence.

We can view the zeta function as the multiplicative generating function for 0-cycles on X, that
is formal sums of closed points of X, possibly with multiplicity, analogous to the integers in the
case X = SpecZ. In particular note that ζX(s) ∈ Z[[p−s]].

For schemes of finite type over a finite field we have the following equivalent form. For a
variety X over a field K, we can study its solution set in its algebraic closure K, and then in any
subextension K ⊂ L ⊂ K. The points of X lying in L are the L-rational points of X, which we
will write as X(L), and also form a variety.

Example 3.2.3. Let X = Q[x, y]/(x2 + y2 − 1). Then for example
(

3
5 ,

4
5

)
is a Q-rational point,

while
(

1√
2
, 1√

2

)
is an R-rational point and (i,

√
2) is a C-rational point.

We can generalize this by defining X(L) to be the set of morphisms of K-schemes SpecL→ X.
For a finite field K = Fq and a finite extension L ∼= Fqm , note that although X(L) depends on the
extension all extensions of degree m differ by an isomorphism, so that Nm = |X(L)| depends only
on m (as well as implicitly on X and q).
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Proposition 3.2.4. Let X → Fq be of finite type. Then

ζX(s) = exp

∞∑
m=1

Nm
m

p−ms.

Proof. Since X → Fq is of finite type, each Nm is finite, and each closed point x ∈ X has residue
field a finite extension of Fq. The elements of X(Fqm) are in one-to-one correspondence with
the homomorphisms from k(x) to Fqm for each x such that k(x) is a subfield of Fqm . Writing

k(x) = Fqr , the union is over r dividing m, and there are
|Gal(Fqm/Fq)|
|Gal(Fqm/Fqr )| = m

m/r = r homomorphisms

from Fqr → Fqm , so letting ar be the number of x with k(x) = Fqr we get

|X(Fqm)| =
∑
r|m

rar.

Therefore

ζX(s) =
∏
x∈X

1

1− |k(x)|−s
=

∞∏
r=1

(1− q−rs)−ar = exp

∞∑
r=1

ar

∞∑
k=1

1

k
q−rks.

The inner sum is absolutely convergent for s > 0, so we can exchange the order of summation to
get

exp

∞∑
k=1

1

k

∞∑
r=1

arq
−rks = exp

∞∑
m=1

q−ms
∑
r|m

ar
r

m
=
Nm
m

q−ms.

Since both forms of the zeta function are analytic, they must agree on every domain to which the
zeta function can be defined.

Proposition 3.2.5. Given a morphism of schemes f : X → Y we can factor the zeta function of
X according to

ζX(s) =
∏
y∈Y

ζXy (s)

where Xy is the fiber of X lying over y and ζXy is the corresponding zeta function.

Proof. This is just the statement that the set X of closed points of X is the disjoint union of the
closed points of each Xy, which follows from the facts that if x1 ∈ Xy1 and x2 ∈ Xy2 are closed
points for y1 6= y2 then f(x1) = y1 6= y2 = f(x2) and that every closed point of X is mapped to a
closed point of Y by continuity, since f inherits a morphism of topological spaces from the scheme
structure.

We will mostly be interested in arithmetic schemes, or schemes of finite type over SpecZ.

Example 3.2.6. Let AnZ be affine space over SpecZ defined by AnZ = SpecZ[x1, . . . , xn]. Then by
Proposition 3.2.5 we can find the zeta function by multiplying together the zeta functions of its fibers
over closed points, which correspond to the rational primes p. By Proposition 3.1.13, the fiber of AnZ
over p is given by AnZ ×Z Spec k(p) = AnZ ×Z SpecFp. Recalling that the fiber product is dual to the
tensor product, by Remark 3.1.11 this is Spec(Z[x1, . . . , xn]⊗ZFp) = SpecFp[x1, . . . , xn]; in general
if A is a finitely-generated B-algebra then A ⊗B C corresponds to the base change from B to C,
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and so the same holds for fiber products of affine schemes. The zeta function of SpecFp[x1, . . . , xn]
by Proposition 3.2.4 is

exp

∞∑
m=1

pmn

m
p−ms = exp log

1

1− pn−s
=

1

1− pn−s

since every point (x1, . . . , xn) ∈ Fnpm corresponds to a closed point of AnFp , so Nm = pmn. Therefore
by Proposition 3.1.13

ζAnZ (s) =
∏
p

1

1− pn−s
= ζ(s− n)

where ζ(s) is the Riemann zeta function.

Example 3.2.7. Let PnZ be projective n-space over Z. By the same method as in the previous
example we reduce this to projective n-space over Fp, which consists of the disjoint union of affine
0-space, affine 1-space, etc. up to affine n-space, so that ζPnFp (s) = ζA0

Fp
(s)ζA1

Fp
(s) · · · ζAnFp (s). From

Example 3.2.8 we know that this is
∏n
k=0

1
1−pk−s , so

ζPnZ (s) =
∏
p

n∏
k=0

1

1− pk−s
=

n∏
k=0

ζ(s− k).

Example 3.2.8. Let R = Z[x, y]/(xy − 1). This is equal to the direct sum Z[x]⊕ Z[y] and so has
maximal ideals of the form (p, f(x)) and (q, g(y)) for polynomials f and g irreducible modulo p
and q respectively, so that letting X = SpecR we have Xp = SpecFp[x, y]/(xy − 1) = SpecFp[x] ∪
SpecFp[y], so ζXp(s) = (1− p−s)−2 as in Example , so that

ζX(s) =
∏
p

1

(1− p−s)2
= ζ(s)2.

3.3 Convergence and continuation

Analogous to the definition of the Riemann zeta function, we gave a definition of the zeta function
of an arithmetic scheme for some half-plane and want to extend it to a larger domain by analytic
continuation. In some special cases, such as Examples 3.2.8 and 3.2.7, we can define the zeta
function on the whole complex plane, except for finitely many well-understood poles. In general,
however, we can say much less.

Theorem 3.3.1. The zeta function ζX(s) of an arithmetic scheme X dominating SpecZ of di-
mension r converges and is nonzero for Re s > r, and extends to a meromorphic function on
Re s > r − 1

2 with a single pole at s = r of order equal to the number of dominant irreducible
components of codimension 0.

We will not prove this theorem directly, but will instead prove a mild generalization in subsection
3.4.
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3.4 A generalization

We replace Z in the definition of an arithmetic scheme with any subring R of Q. Note that a scheme
of finite type over SpecR is not necessarily an arithmetic scheme: suppose R = Z

[
1
3 ,

1
7 ,

1
11 , . . .

]
is

the integers adjoin the inverse of every prime congruent to 3 modulo 4. Then R is certainly not
finitely generated as a Z-algebra, so SpecR → SpecZ is not of finite type; but SpecR → SpecR
trivially is.

We aim to prove the following generalization of Theorem 3.3.1.

Theorem 3.4.1. Let R be a subring of Q and X be a scheme separated, dominant, and of finite
type over S = SpecR with ` irreducible components of codimension 0, all of which are geometrically

irreducible, and suppose that ζS(s) converges for Re s > σ. Then ζX(s+dimX−1)
ζS(s)`

converges and is

nonzero for Re s > σ and extends to the product of a rational function and a holomorphic function
on Re s > σ − 1

2 , which is holomorphic on Re s > 0.

Theorem 3.3.1 follows immediately for arithmetic schemes with every irreducible component
geometrically irreducible by choosing R = Z. If X has irreducible components of codimension 0
which are not geometrically irreducible, each contributes another factor to the pole, but the methods
necessary are different, using the Lang-Weil bound rather than the Weil conjectures, and do not
generalize well, so we will satisfy ourselves with this slightly weaker result.

Example 3.4.2. Choose R to be as above the subring of Q localized away from primes congruent
to 1 or 2 modulo 4, that is R = Z

[
1
3 ,

1
7 ,

1
11 , . . .

]
. Then

ζS(s) =
∏

p≡1 (mod 4)

1

1− p−s
,

which has abscissa of convergence Re s = 1 and as s → 1 we have ζS(s) = A
√
ζ(s) + O(1) =

A
√
s− 1

−1
+O(1) for some nonzero multiplicative constant A (approximately 0.8623339.)

In order to see that Theorem 3.4.1 is general, and indeed implies even this more limited form of
Theorem 3.3.1, it remains to see that every scheme of finite type over S = SpecR with all irreducible
components of codimension 0 geometrically irreducible has finitely many irreducible components.

Lemma 3.4.3. Every subring of Q is Noetherian.

Proof. Let R be a subring of Q. Since 1 ∈ R we have Z ⊆ R. Let P be the set of rational primes
which are not units in R. Then R contains the localization of Z away from P, i.e. if T is the
complement of P in the primes than T−1Z ⊆ R. If p ∈ P, then either (p) is prime in R or a

p ∈ R
for some integer a relatively prime to p, in which case (p) is replaced by (a) for a minimal a, which
can be prime only if a is prime and in P. Therefore every prime ideal of R is of the form (p) for
some p ∈ P, and so is finitely generated, so R is Noetherian.

Proposition 3.4.4. If R is a subring of Q and X → S = SpecR is of finite type, then X has
finitely many irreducible components.

Proof. By Proposition 3.4.3, Lemma 3.1.24, and Definition 3.1.23, S is Noetherian, since it is affine
and R is Noetherian. Therefore by Proposition 3.1.25 X is also Noetherian, and so by Proposition
3.1.26 it has finitely many irreducible components.
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We prove a weaker statement than Theorem 3.4.1 that will be useful later.

Proposition 3.4.5. Let R be a subring of Q and X be a scheme of finite type over S = SpecR,
and suppose that ζS(s) has abscissa of convergence σ. Then ζX(s) converges and is nonzero for
Re s > σ + dimX − 1.

Proof. By the proof of Proposition 3.4.4, X is Noetherian and therefore quasi-compact, so an open
cover of X by affines has a finite subcover, so there exists a finite cover of X by open affines. Since
X is of finite type over S, each of these open affines U is the spectrum of a finitely-generated R-
algebra A of finite Krull dimension, the maximal ideals of which are a subset of the maximal ideals
of R[x1, . . . , xdimA−1] since R is itself 1-dimensional, so ζX(s) is bounded by ζAdimX

S
(s)n for some

positive integer n. By the same logic as in Example 3.2.8 we have ζAdimX−1
S

(s) = ζS(s−dimX+ 1),

so since ζS(s) converges for Re s > σ we get that ζX(s) converges and is nonzero for Re s >
σ + dimX − 1.

Our main tool in the proof of Theorem 3.4.1 will be the Weil conjectures.

Theorem 3.4.6 (Weil conjectures). If X → SpecFq is smooth, separated, and of finite type and
X is geometrically connected and integral of dimension r, then

ζX(s) =

2r∏
k=0

Pk(q−s)(−1)k+1

where Pk(t) are polynomials with P0(t) = 1−t, P2r(t) = 1−qrt, and for 1 ≤ k ≤ 2r−1 Pk(0) = 1 and

the roots of Pk have absolute value q−
k
2 . Further if there exists a scheme X̃ → SpecR where R is a

ring containing a prime ideal p such that R/p ∼= Fq such that X̃×SpecRSpec(R/p) = X, then writing

bpk for the degree of each Pk for the reduction modulo p defined by X̃ → X̃ ×SpecR Spec(R/p) =
X = X(p) we have bpk independent of p provided R/p is finite. Further ζX(s) is a rational function
holomorphic on Re s > dimX even if X is not geometrically connected.

The proof of the Weil conjectures, due in various parts to Dwork, Grothendieck, and Deligne,
with contributions from Serre, Artin, and Verdier, is far beyond the scope of this paper. See for
example [7] for an exposition of the proof, and Dwork’s original paper [3] for the proof of rationality
in the general case.

We can, however, make use of the Weil conjectures to show convergence of the zeta functions
as in Theorem 3.4.1. In particular, we will first show the result in the case of smooth projective
varieties over S by factoring the zeta function according to Proposition 3.2.5 so that we can apply
the Weil conjectures to the factors and thence conclude the general case.

First we want to show that the product takes every closed point into account. Henceforth we
assume that f : X → S is of finite type with S = SpecR for R a subring of Q.

Proposition 3.4.7. If x ∈ X is a closed point, then its residue field k(x) is finite.

Proof following [13]. Let U = SpecA be an affine open neighborhood of x. Then x is closed in A,
so it corresponds to a maximal ideal m of A. Since f is of finite type and f(x) is a closed point of
S corresponding to a maximal ideal (p) for some p ∈ P, A is a finitely-generated Fp-algebra, the
quotients of which by maximal ideals are finite extensions of Fp, so k(x) = Fpm for some m.
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Let’s now show the result for smooth projective varieties, where by varieties we mean separated
and integral schemes of finite type over S, which we do not require to be the spectrum of a field.
Suppose that X ⊂ PnR = PnZ×SpecZ SpecR is a projective variety, that is the zero locus of the family
of homogeneous polynomials f1, . . . , fm in n + 1 variables with coefficients in R. We will suppose
further that X is smooth.

Let R be a subring of Q.

Lemma 3.4.8. If f ∈ R[x0, . . . , xn] does not factor over C, then its reduction modulo p for p not
a unit of R does not factor in the algebraic closure Fp of Fp for all but finitely many p.

Proof following [6]. The statement that f does not factor in C is equivalent to the statement that
the polynomial equation gh− f = 0 has no zeros for polynomials g, h ∈ C[x0, . . . , xn] of degree at
most r = deg f − 1. We can view gh− f = 0 as a system of equations with the coefficients of g and
h as determinants, fixing that gh−f be a polynomial with every coefficient equal to 0. By Hilbert’s
Nullstellensatz this system has a solution in C, corresponding to a factoring of f over C, if and only
if the ideal generated by solutions to gh − f = 0 contains 1, so there exist g1, . . . , gm, h1, . . . , hm
such that g1h1 + · · ·+ gmhm = 1. We can reduce this equation modulo p for all but finitely many
p and reverse the logic to get f modulo p irreducible over F p for all but finitely many p.

Lemma 3.4.9. If X is geometrically irreducible, then so is the fiber Xp for all but finitely many
primes p.

Proof. We will prove this in the case in which X is a hypersurface. For a full proof see Theorem
9.7.7 of [9].

Assume X is cut out by a single polynomial f in projective space. If X is geometrically irre-
ducible, then X ×S SpecQ is geometrically irreducible, that is X ×S SpecC is irreducible, which is
equivalent to the statement that f does not factor over C. Therefore we can apply Lemma 3.4.8
to get that X geometrically irreducible implies that for all but finitely many primes p ∈ P we have
f irreducible over Fp, and by reversing the logic we get Xp geometrically irreducible for all but
finitely many p ∈ P.

By Proposition 3.1.22 if X is smooth then so is each Xp. With X as above we have ζX(s) =∏
p ζXp(s), and for all but finitely many p ∈ P splitting X into its irreducible components we get

from Lemma 3.4.8 that Xp has the same number of irreducible components and all are geometrically
irreducible. We say for a prime p ∈ P that X has good reduction at p if this holds and has bad
reduction at p if p is one of the finitely many primes in P for which it fails.

Lemma 3.4.10. Projective varieties are separated.

Proof following [2]. If X → S is a projective variety, then there is a natural closed immersion into
PnS , so it suffices to show that PnS is separated over S, since then the diagonal morphism of X
has image a closed subset of the image of the diagonal morphism of PnS and therefore is a closed
immersion.

The diagonal morphism of PnS has image pairs of points (x, y) in projective space PnS×S PnS such
that xiyj = xjyi for all 0 ≤ i, j ≤ n, since this is when the coordinates represent the same point in
projective space. Therefore this is the zero locus of a family of polynomials homogeneous in each of
x and y, and therefore is closed, so PnS is separated over S, which by the above gives the result.
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From Lemma 3.4.10 and Proposition 3.1.30 we get that each Xp → Fp is separated. To apply
the Weil conjectures we need to show only that each irreducible component of Xp is integral over
Fp. By Proposition 3.1.36 this is equivalent to showing that each irreducible component is reduced,
which for a projective variety with defined by polynomials irreducible over C is clear. Therefore we
can prove Theorem 3.4.1 for smooth projective varieties with irreducible components geometrically
irreducible.

Proof of Theorem 3.4.1 in the special case. For all but finitely many primes p in P, by the above
the Weil conjectures apply to each irreducible component Yp,i of Xp. Therefore if Yp,i has dimension
ri then we have by the Weil conjectures

ζYp,i(s) =

2ri∏
j=0

Pij(p
−s)(−1)j+1

=

2ri∏
j=0

bij∏
k=1

(1− αijkp−s)(−1)j+1

with |αijk| = p
j
2 , with bij independent of p. Since X is smooth, by Propositions 3.1.22 and 3.1.27

the Yp,i are just the connected components of Xp, so ζXp(s) =
∏
i ζYp,i(s). Let Pb be the finite set

of primes in P at which X has bad reduction and Pg its complement in P. Then

ζX(s) =

∏
p∈Pb

ζXp(s)

 ∏
p∈Pg

ζXp(s)


=

∏
p∈Pb

ζXp(s)

 ∏
p∈Pg

m∏
i=1

2ri∏
j=0

bij∏
k=1

(
1− αijkp−s

)(−1)j+1

=

∏
p∈Pb

ζXp(s)

 m∏
i=1

2ri∏
j=0

bij∏
k=1

∏
p∈Pg

(
1− αijkp−s

)(−1)j+1

.

The innermost product converges absolutely if∏
p∈Pg

(
1 + |αijk|p−s

)
=
∏
p∈Pg

(
1 + p

j
2−s
)

converges, which is bounded by∏
p∈P

(
1 + p

j
2−s + p2( j2−s) + · · ·

)
=
∏
p∈P

1

1− p j2−s
= ζS

(
s− j

2

)

converges, which by definition is for Re s > σ+ j
2 . Therefore ζX(s) converges for Re s > σ+maxi ri.

By Lemma 3.1.18 and the fact that SpecR is one-dimensional while SpecFp is zero-dimensional,
each ri is one less than the dimension of the ith connected component Yi of X, and so maxi ri = r−1.
Therefore ζX(s) converges for Re s > σ + r − 1.

Now suppose that X has ` connected components of codimension 0, that is of dimension r.
Applying the Weil conjectures to each separately, each of these contributes a factor of 1

1−pr−1−s to

each ζXp . Other than these terms, we get factors converging for Re s > σ + j
2 for j ≤ 2(r − 2) for

connected components of codimension at least 1 and for j ≤ 2(r− 1)− 1 = 2r− 3 for the remaining

32



factors from the components of codimension 0, so in all the contribution from primes at which X
has good reduction to

ζX(s)

ζS(s− r + 1)`
=
∏
p∈P

(
1− pr−1−s)` ζXp(s)

converges and is nonzero for Re s > σ+ j
2 ≥ σ+r− 3

2 . There are only finitely many primes at which
X has bad reduction, and since ζXp(s) is still rational the contribution from them is a rational
function which is holomorphic and nonzero for Re s > r − 1

2 . Replacing s with s+ r − 1 gives the
result.

To generalize to Theorem 3.4.1 in full, we need to eliminate the assumption that X is a smooth
projective variety. To do so we need to discuss birational equivalence.

Definition 3.4.11. For U, V dense open subschemes of a scheme X, two scheme morphisms U → Y ,
V → Y are equivalent if they are equal on U ∩ V .

Definition 3.4.12. A rational map from X to Y is an equivalence class of morphisms from open
subschemes of X to Y .

Definition 3.4.13. A rational map f from X to Y is birational if there exists a rational map g
from Y to X such that f ◦ g is the identity on Y and g ◦ f is the identity on X. If there exists a
birational map from X to Y we say that X is birational to Y , or that X and Y are birationally
equivalent.

Lemma 3.4.14. Suppose that X and Y are birationally equivalent schemes satisfying the hypotheses
of Theorem 3.4.1. Then Theorem 3.4.1 holds for X if and only if it holds for Y .

Proof. Let U be an open subset of X such that dim(X \U) < dimX. Then ζX(s) = ζU (s)ζX\U (s),
and by Lemma 3.4.5 and the definition of U ζX\U (s) converges and is nonzero for Re s > σ +
dimX − 2, so the theorem holds for X if and only if it holds for U . Since every open subset of X is
isomorphic to an open subset of Y by birationality, the theorem holds for X if and only if it holds
for Y .

We now need the following results.

Lemma 3.4.15 (Hironaka’s Theorem). For any reduced scheme X over a field K of characteristic
0 there exists a scheme X̃ over SpecK such that the morphism of schemes X̃ → X is birational
and the composition X̃ → SpecK is smooth.

Lemma 3.4.16 (Chow’s Lemma). For any integral separated scheme of finite type X → S there
exists an integral separated projective scheme X̃ of finite type over S birational to X.

We will not prove these, but refer the reader to [10] and [8] respectively for the classical refer-
ences.

We are now ready to complete the proof of Theorem 3.4.1.

Proof of Theorem 3.4.1 in the general case. We can assume that X is reduced, since the closed
points of X and their residue fields do not change upon replacing X with its reduced form, and
we can assume for Theorem 3.4.1 that X is separated. Since the geometric connectedness property
is preserved by the birational morphism and we can assume by the above that X is smooth, the
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case in which X is irreducible implies the general case, since we can consider each irreducible
component separately and multiply the zeta functions of each to get the overall zeta function, so we
can also assume that X is irreducible, and therefore by Lemma 3.1.36 that X is integral. We can
then apply Lemmas 3.4.15 and 3.4.16 to X ×S SpecQ to get a geometrically irreducible projective
smooth integral separated scheme of finite type over SpecQ birational to X ×S SpecQ. Therefore
X̃ ×SpecQ S is birational to X has the same properties, so by Lemma 3.4.14 we can assume for the
purposes of proving Theorem 3.4.1 that X is smooth, projective, separated, integral, and of finite
type over S. Therefore by Lemma 3.4.14 the result in full generality follows from the special case
proven above.

4 A taste of higher-dimensional class field theory

We have managed to extend the zeta function of arithmetic schemes, as well as other S-schemes, to
a region slightly larger than its original domain on which it converges, but compared to the results
of Section 2 this is a fairly weak result. Can we do better?

For general subrings of Q the associated zeta function can have a natural barrier, that is a line
Re s = σ on which points at which the zeta function has a pole become dense, so it is probably
unreasonable to hope for a full duality-type result extending the zeta function to the entire complex
plane, so we will restrict ourselves to true arithmetic schemes.

The natural approach is to attempt to generalize the methods of Section 2, viewing Tate’s
thesis as a result on the zeta functions of certain one-dimensional schemes. We relied on essentially
one-dimensional objects such as local fields and rings of integers. A number of mathematicians,
in particular Alexey Parshin, Kazuya Kato, and Ivan Fesenko, have shown that it is possible to
generalize these. In particular, local fields are fields with ring of integers a local ring with residue
field a finite field. We can view the operation F → OF → OF /mF as a field map for F a valuation
field, that is such that OF is a local ring, and we say that F has dimension n as a valuation field
if we can iterate this map n times. Thus for example a local field is 1-dimensional as a valuation
field, since we can take this map once and then get a finite field, which is not a valuation field and
so has dimension 0 as a valuation field. We define n-dimensional local fields to be fields such that
n iterations of this map gives a finite field.

Example 4.1. Let Qp be the field of p-adic numbers, and let k = Qp((t)) be the field of Laurent
series over Qp. Then the ring of integers Ok of k is the ring Qp[[t]] of power series over Qp, which
has the unique maximal ideal (t), so that the residue field is Ok/(t) = Qp. Iterating the map, the
ring of integers of Qp is the ring Op = Zp of p-adic integers, which has the unique maximal ideal
(p), and the second residue field Op/(p) = Fp is a finite field. Therefore k is a valuation field of
dimension 2.

This then lets us define integral structures of different dimensions on each local field, which we
can use to define a set of adelic objects for higher-dimensional global fields and follow the analysis
of Section 2, with some modifications. For example, although Section 2 does not explicitly use class
field theory, in the background we have the local Artin reciprocity map

F× → Gal(F/F )ab

where Gal(F/F )ab denotes the abelianization of the Galois group Gal(F/F ) for F a local field. If
we take a global field, say Q, and assemble the local reciprocity maps at each completion Qv, we get
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the global reciprocity map in much the same way as we got the global zeta integral from the local
zeta integrals over each place. In higher dimensions, the analogue of F× is the topological Milnor
K-group Ktop

n (F ), from which we can define a similar reciprocity map and which we will use in place
of the multiplicative groups K×v to assemble the ideles. See e.g. [13] for an exposition of higher-
dimensional class field theory, and [6] for an analysis of the zeta functions of higher-dimensional
arithmetic schemes (in particular in dimension two) and for the analysis below.

Unfortunately the higher-dimensional analogue of Theorem 2.5.10 does not follow in the same
way from this analysis. Although we can use an analogue of Poisson summation to show the
appropriate analogue of Lemma 2.5.8, now with g(f, s, t) = g(f̂ , 2 − s, t−1), the boundary terms
which in the one-dimensional case were the straightforward integrals

f̂(0)V

∫ 1

0

ts−1 dt

t
− f(0)V

∫ 1

0

ts
dt

t

are in general apparently intractable. The analysis does allow us to reduce the analogue of Theorem
2.5.10 to a hypothesis on the mean-periodicity of the boundary term, but as of yet the boundary
term for the most part remains a mystery.
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