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Abstract

In this paper, we explore the method of almost conservation laws
proposed in [1] for integrable systems. In particular, we consider the
Korteweg-de Vries initial value problem and give a rigorous proof on
how the ”algorithm” that generates these almost conservation laws can
be used to recover infinitely many conserved integrals that make the
KdV an integrable system. In addition, we applied the same idea of
almost conservation laws to the cubic nonlinear Schrédinger equation.



1 Introduction

As presented in [1], the method of almost conservation laws can be used
to extend local well-posedness results of this equation to global-wellposedness
ones, which the authors apply to the KdV equation,

Oy + Ogu + 30,(u?) = 0,
{ u(zx,0) = ug(x) ()

This method is based on studying some norms like ||/ul|,,, where I is a
functional given by a certain Fourier multiplier, and u is the solution of
our equation. In practice, it requires a careful analysis of how conservation
laws are proved in frequency space, in order to gain understanding on how
different frequencies interact. A simple example of this idea is the following:
consider the L? conservation law for the solution of the KdV equation above.
One can use Plancherel to write:

/ un (2)|? i = /5 )R (&) s
1+82=

By using the Fourier transform of the equation, one can get the following
identity

g [P =i [ e a ) dads
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The first term is clearly zero, and the second term becomes zero after
writing & + & = —&3 and symmetrizing.

As explained in [1] and [2], an interesting idea in order to prove these
global results is to define a hierarchy of modified energies E(t) for the solu-
tion of our dispersive equation that are comparable to the norm ||ul,. that
we are trying to control, but whose increments decrease as generations evolve.
Whether such a hierarchy can be found depends on the cancellations that
occur on a more general type of integrals resembling (2) above. However,
these cancellations are not yet well-understood, and therefore we will start
with a simpler choice of the multiplier I, with which one may recover the
classical conservation laws. A guess for what this choice would be and the
proof for the first three conservation laws appears in [2], and in this paper
we will provide the full proof.



Another goal of this paper is to study the analogous case of the cubic
NLS equation
i0u + Au = |ul?u,
{ u(z,0) = ug(x)

for x € T, which also enjoyes infinitely many conserved quantities, and to try
to accomplish the same objectives as with the KdV equation.

In Section 2 we provide some definitions and introduce some notation that
will be useful throughout the paper. In Section 3 we provide the main results
and proofs. In Section 4 we set out the analogous problem for the cubic NLS
equation. And finally, in Section 5 we discuss possible future directions of
research on these topics.

The results presented in this paper were developed in collaboration with
Ricardo Grande Izquierdo.

2 Preliminary Definitions

Definition 2.1. Throughout this paper, we define the spatial Fourier trans-
form of f(x) to be

FUNE) = 1) 1= [ e ()i

R

Note that with this definition of the Fourier transform, we have

—_— ~

opf(x) = (16)" f(£).

In this paper, we consider the conservation laws of the KdV equation, defined
as the following

Definition 2.2. We define the KdV equation to be the following:

o+ Pu+ u(Opu) =0
u(z,0) = ug(x)
We then define the operator [.

Definition 2.3. Suppose u is a solution to the KdV equation, then we define
an operator I, usually called Fourier multiplier, such that

Tu(€) = m(€)a(e).



As shown in the introduction, the symmetrization describes the nonlinear
interaction of the frequencies of the solution u to the KdV equation. Through
this method, we keep track of the various pieces of 4. Now we introduce some
notation that will be frequently used in the rest of the paper.

Definition 2.4. A k-multiplier m is a function m : R — C. A k-multiplier
is symmetric if m(§) = m(o(§)) for all o € S,. The symmetrization of a

k-multiplier is
[l (©) = 5 35 m(

’ €S

A k-multiplier generates the k-linear functional via the integration
Ai(m) = . m(&y, o §) (&) (&) € .. d
k

where Ak = {(51, 7§k) . 51 + -+ fk = 0}

Remark. This notation does not refer to integrating over a k-dimensional set
of measure zero, instead it refers to k — 1 integrals, i.e.

/ /m&m,a@/wﬁ Z@@ iy

By observation, we find that

\m@%zéﬁﬁMﬁM@wm@@:mm@m@»

Hence we have the following useful proposition, which can be found in [1].

Proposition 2.1. Suppose u satisfies the KdV equation, and m is a sym-
metric k-multiplier and Ag(m) is the k-linear functional generated by m,

then
d

EAk( m) = Ak(akm)—igAk+1(m(§1a-~>5k+1))-

where

ﬁl(fb e ,fk+1) = (fk + fk+1) : m(fh v &1, & + £k+1)
Proof.
d d
ZpAw(m) = dt/ m(&r, ey G)A(E) - - (Er)dEr - - d&

d

Apg



Substitute in the equation
~ . \3 A~ 1 %
o = —(i&)°a — §z§u2
then we have

d
—A S s 3 e
o 2 / () m(E, - E)i(6) (€

- Z/ (1&:)a .JZ(&) e u(§e)m(&a, - )

Since
R(6) = () 1(6) = [ 86— Gur)l6un )i
R
By symmetry on the set A we obtain the desired identity. O]

With the above notation, we now define the chain of modified energies
following the notation in [1],

Definition 2.5. We recursively define the chain of energies E*(¢) as the
following:

Ef(t) = [[Tu®)llz2 = Aa(m(&)m(&2))
where u(t) is the solution to the KdV equation and I is an operator such

that Tf(¢) = m(£)f(€), then
Ef(t) = By~ (t) + Ax(ow),
where oy, is an operator chosen such that

d
thz( ) = N1 (M)

Note that by Proposition 2.1, we have the explicit form

My, = —ig[ak(ﬁh o &1 & F &) - (& F &rr1) Jsym

It was proposed in [1] that by setting the operator I = 07, i.e. m(§) =
(i)™ and putting E*(t) = |[Tu||7, = Aa(m(&)m(&)), we can recover all the
conservation laws of the KdV equation. It was also shown explicitly in [1]
that the first two conservation laws can be recovered by the proposed method,
yet a rigorous proof was not given. Before illustrating this construction with
an example, we first note some properties of the symmetrization operation
that will help with the calculations involved in the example. The proof of
the following lemmas are straight-forward.

4



Lemma 2.1. (Linearity) Suppose m : R — C,n : R¥ — C are two k-
multipliers, then we have

[+ nlsym = [m]sym + [P ]sym

Lemma 2.2. Suppose m : R¥ — C is a k-multiplier and o € Sj, then

[m(&)]sym = [m(a(€)]sym

Lemma 2.3. Let m,n be two k-multipliers, if m is symmetric, then

[mn] sym = M [n] sym

We now provide a detailed example to explicitly illustrate how the chain
of modified energies recover a conservation law of the KdV equation.

Example 2.1. In the case where n = 3, we have
E2(t) = [|03ullz, = A((i&7)(i&5))  m(§) = i€’
Then €]
1
O = —
G

m*(£1)& + m*(§2)€ + m* (&3 + €4) (€ + &)
RISTS
§+E+ (& + 54)7]
38182
([&7] + 3[&1&] + 5[E€3))
351

= —?[éffg]

7
= —5[5553]

1
My = 5

i
= _5[
_n

3

]

then
M, 35[&3¢2 35 4 1 35
nim M E% = DN - 516 = Sl

Note that we have the following identities

E+E+8+ G+ =8+8+8— (G +&+8&)
= 56 +E)(E+E)(EL+E)E+E+HE+ &b+ 68 + &)

E+8+8+ G+’ =8+8+8 - (G +&+8)°
= —3(& + &) (6 + &)L + &)



Therefore we have

Ms = —2i04(&1, &2, 83,84+ &5) - (&4 + &5)
il 1(5152 +66+ 66— (G +E+E)D)(E+EL+ &)

—9;. 22
18 6
= —g—i - 3[&16263]

Note that

[£1&283] = —%[5152(51 +&)] = _g[fffz] = é[fio’]

i.e. [§1§2§3] = ﬁag, Therefore

My 35 17

as 54 10 108

Oy =

Notice that E°(t) = E?(t)+ A(o3) + A(oy) + A(os) is exactly the conservation
law according to [4]

7 35 7
3,2 2,12 2 2 5
/R((&:Cu) 4u(é’$u) + RY (Opu) Tog Ydoz = C

3 Results

We now provide a proof for the correspondence between the chain of
modified energies and the conservation laws. We first start with three useful
lemmas.

Lemma 3.1. Suppose Ag(p) = 0, then p = 0 on the set Aj.

Proof. By definition

Au(p) = /A D(Ers oo €)(ED) - 260 dE - d

Suppose by contradiction that p # 0, using Plancherel’s theorem and taking
the inverse Fourier transform, we have

Aw(p) = /P/(Uo,uh ooy Udeg(p))dx = 0
R

where p' is a homogeneous differential polynomial of u of degree k, and wu;
denotes the j-th derivative of u. Then since this is true for every time t,
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this implies that fR p'dx is a conservation law, hence it suffices to argue that
fR p'dx cannot be a conservation law of the KdV equation. Note that every
conservation law (), can be written as

@:/amzZm%)
R k=2

where P, is a differential polynomial of u homogenous of rank n according
to [4]. The rank of each term in the form ug°uy" - - - u;* is defined to be

l
1
:=E 1+ =7)a;
r j_0< 2])%

Note that for the polynomial p’, each monomial has Zé‘:o a; = k. Suppose
p’' is a conservation law of rank n, n > k, then for each monomial in p/,
we must have Z;:oj ~a; = 2(n — k), j < deg(p), therefore the choice of
a; must corresponds to a proper subset of the monomials in C,,. Since the
conservation law of rank n for the KdV equation is unique, p’ cannot be a

conservation law, contradiction. Hence we can conclude that p = 0 on the
set Ay. O

Lemma 3.2. Suppose that for all solutions of the KdV equation A, (p) +
An(q) =0, n < m. Then A,(p) = 0,A,,(¢) = 0. In particular, p = 0 and
g = 0 on the set A,, and A,, , respectively.

Proof. Suppose that u is a solution of KdV, then (with the corresponding
scaling of the initial data) the following is also a solution of KdV for all A € R

ux(t, ) = A\ 2u(N*t, \x)
Then taking the Fourier transform with respect to x, we obtain
a(t,§) = AN AT

If A, (p) + Arn(q) = 0 holds for all solutions of KAV, it holds for u, and note
that

An(p) = / PlErs.  E)TE) - TR(E)E - dE,

Then by change of variables sending &; to \§; we obtain

Anlp) = / P& &) alEn)dEs - dé,



where

/ __ ydeg(p)—2n+1 ] iLl U g;an
p(flv"'agn) =\ 9P ZCZ)\Z?:1ai_deg(p)
Similarly
M) = [ d@il6) il de
where

by bm
' — )\deg(g)=2m+1 RS SR
q (& &) = A Zdz ADI bi—deg(q)

Since n < m, then deg(p) < deg(q), and therefore

1 , ,
\deg(p)—2n+1 (An(@) + A(q)) =0

Then we have

an

/ Z G )\Zz 1@ 'd6g n+2n 1 )a(£1> A(fn)d& ce dgn

+/ ()\deg —deg(p)+2(m—n Zd ) é”bm ) (51) A(é’ )d&df =0
A )\ZZ 1 bi—deg(q m m

We now consider the case ¢ = 0 and reduce the solution to the initial data
Ug-
By taking A — 0, the second term vanishes and we have

[, Seser (&) o (2)d - d, = 0

Note that >} | a; < deg(p) — 2n + 1, therefore we have

[T g o) ds - dgy =0

™ist. Y 4 aj=deg(p)

Since this is true for every initial data, the polynomial

ST g

is.t. 20 1 a;=deg(p)

must be zero on the set A,. However, this produces a contradiction about
the degree of p unless deg(p) = 0, in which case by the same reasoning as
above, p = 0. Then A, (p) = 0, and therefore the initial hypothesis becomes
A (q) = 0. By Lemma 3.1, ¢ = 0.

]



Lemma 3.3. Suppose that S is a finite subset of positive integers and
Dres Me(pre) = 0. Then p, = 0 on the set Ay, for every k€ S.

Proof. The same scaling trick as in Lemma 3.2 should prove that py, = 0
for kg = ming k. From then on, one simply iterates the idea, the key fact
being that the exponent of A in each integral is positive, i.e. deg(py) —
deg(pr,) + 2(k — ko) > 0 for k # ko, which allows every other item to vanish
as A — 0. [

We are now ready to give the main theorem of this paper

Theorem 3.4. Let C,, denote the n-th conservation law of the KdV equation,
then
Chi1 = E?;rgg (t) n=0

Proof. Note that for n > 0
Covr = [ (@) 4 1),
R
where r,,1 is a differential polynomial in u and its first n — 1 derivatives

with each term no greater than degree n + 2. Taking the Fourier transform
of €11, we can write the following

n+2
Coni = %, [ [n(6ss e &i6) - il -
k=2 Ak

Note that by the Plancherel theorem, C/'n: = Chy1
By differentiating with respect to time and with Proposition 2.1, we have

n+2

atc”""l - Z (/ ak[pk(flv 33 gk)]ﬂ(€1> T a(fk)dfl s d&c
k=2 7 Ak
k

- §i/A (D815 s Skr))(E1) - @(Epyr)dEr - - - dEpya),

where

Pe(€1y s Ehr1) = Pe(&1s s 15 & + &rr) - (§ + &gr)-

Since 0,C, 41 = 0 and for all 3 < k < n — 2, each integral on Ay has the



form [, (=i*3*[pr—1] + al[pr])a(&r) - - (&) d&r - - - d
@mﬂz/IMM@@mwmmwﬁm&
+ Z/

v (—z’”;'Q[ﬁn+2]>a(§1)---a(§n+3>d§1-~d§n+3 -
An+3

1)+ anfpe])@(6r) - w(Er)dEy - - d

n—+ 2

Ao(az[pa]) + Z Ay, (—ik ! [Pe—1] + ak[pk])) + Npys(—i [Priz2]) =0

2

Notice that ap, = 0 on the set A,, hence the integral ng aopo (&1, &)u(Er)u(&r)dE1dEy =
0. Since the term with the highest degree in C,,; consists no derivatives of
u, i.e. pn+2 is a constant, therefore p,, o = 0 on the set A, .3, therefore

fAnH - pn+2] (&) (Enyz)dy - - - dnis = 0. Hence

%Ak (—Zkgl[pk 1] +Ozk[pk])> _0

By Lemma 3.3, for every k = 3,...,n + 2 we have

k ; ! [pk 1] + Oék[pk] =0 on Ak (3)

By construction of the chain of modified energies

E}_op(t) = Br 25, () + Ar(on)  Ef_op(t) = Aa((i61)" (1€2)") = (o),

where o), = —g—: and M, = —i%[ak_l]. By definition we have oy = [ps]
and therefore M3 = 65 = [p2]. Therefore continuing this process and taking
into account (3), notice that M, = —i51[j,_;] and we choose o such that

My, + apoyp = 0, then o = [p].
Remember than the algorithm created a chain of modified energies satis-
fying:

E?igg (t) = E?:alg (1) + Aps2(0n2)
n+2

= E?:%L (t) + 2 Ag(ow)

By the explanation above, it is now clear that

Coi = EZ3(1) n>0.
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4 Cubic NLS

From the results above, it is natural to consider applying the same idea to
other integrable equations. Another frequently studied integrable equation is
the cubic nonlinear Schrodinger (NLS) equation, which also satisfies infinitely
many conservation laws, defined as the following

Definition 4.1. We define the cubic nonlinear Schrédinger (NLS) equation
as the following
¢($70) = ¢0($)

According to [3], the conservation laws of the cubic NLS equation are
given by the following recursive formula

{z'atm 026 +2|¢|*6 = 0

Definition 4.2. The Cubic NLS equation is an integrable system, its con-
servation laws can be recursively found as follows

wy = ¢(x)

dwy,,

Wiy = —i— (z) + ¢(x) 2 wi(x)wy, ()

The conserved quantities are

o0
Co= [ opun(a)
—o0
Hence the first four conservation laws are

Ci = [1ot)ds, Ca= [ ~idw)tos

Cy = / (—d(2)20(x) + |6(x)[*)de

Ci = [0k ~ 000, — o 60,0
Let ¢ be a solution to the cubic NLS equation, then ¢ satisfies
0 = (03¢ + 2|9[°9)
Take the fourier transform with respect to space, then
06 = (i€ + 20°0) = —i€%6 + 2idx D+ 6
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Note that a significant difference between the KdV equation and the cubic
NLS equation is that the solutions to the KdV equation are real functions
but the solutions to the cubic NLS equation are complex functions. Hence
we make the following modification to our previous definitions.

Definition 4.3. Suppose m is a k-multiplier for £ an even number, we define
the k-linear functional generated by m via integration to be the following

A

Ax(m) = / (Ers o E)DE) - H(E2)HEuarn) - H(E)E - dEy

Similarly, we have the following proposition

Proposition 4.1. Suppose ¢ is a solution to the cubic NLS equation, then

© Axm) = ~Au(osm) + 2KiMes(R(Er, . Euso)
where
=€t )
(€1 ey Err2) = m(E1, s Sty §k + Eprt + Ehpa)
Proof.
 Ax(m) = ) S5(E) - o) (e - d
pr m) = /Ak m(&ry s &k Eéb §1) - d(&kp2)(Erjagr) - - P(Ek)dEr - - - dE
/2 ) X L )
= > mf&r, ., E)d(&r) - (& D(E;) + 200« ¢ G(&)) - - D(Ex)dEr - - - &
=1
k ~ " N n 2 ~
+ Z m(&, .. E)P(&) - (—IEP(E) + 2i ¢ B(E))) -+ P(Ex)dEr -+ - &
—k/2+1
J . ) ) A A
= —Z/A M (&, -y &) (IE5)P(E1) - - - D(Expa) P(Erjain) - - - D(Ex)dEr - - - dEi
— Ja,
k/; IS — ~
£ [ w0 6 G e 6
j=17 A
k 2 b N
+ Z / m(Er, oy Ex)200(&1) - - O*D(&;) - - D(ER)dEy - - - &k
j=k/2+1 7 Ak
= —Ap(apm) + 2kiNg2(m(&1, -, Err2))
where

o =i+ + )
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(&1, Eer2) = MA&x, oy G5 & + g1 + Epr2)

Similarly, we provide an example for illustration

Example 4.1. In order to recover the conservation law C'3, we set

E*(t) = Aa((i61)°)

Then
My = —2i(4[€7] + 6[&:&]) = —4i[¢7]
My —4il€]]
T = .
Hence

B (t) = B2(t) + Au(ou) = / (B(2)P(x) — |6(a)]")dz

Therefore by similar intuition, we have the following conjecture for the
cubic NLS equation, which has not been rigorously proven

Conjecture 4.1. Let ('} denote the k-th conservation law of the cubic NLS
equation, then
Cry1 = E¥2(t) k= 0,k even

where

B3 (1) = / botode = Ay((i6)")

5 Future Research

In the future, it would be interesting to work out the details for the case
of cubic NLS and rigorously prove how the chain of modified energies recover
conservation laws. In addition, it would be interesting to consider different
multipliers m, for example the multiplier

gt <N
m(@_{N—ﬂas, €] > 10N

in order to obtain some results on extending local well-posedness to global
well-posedness. One important obstacle when tackling this problem would be
to better understand the cancellations that take place as one computes more
elements in the chain of modified energies. Even though we were expecting to
advance towards this goal when studying this method applied to the recovery
of conservation laws, the proofs we ended up producing don’t seem to shed
much light on these cancellations and new ideas might be necessary.
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