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Abstract

In this paper, we explore the method of almost conservation laws
proposed in [1] for integrable systems. In particular, we consider the
Korteweg-de Vries initial value problem and give a rigorous proof on
how the ”algorithm” that generates these almost conservation laws can
be used to recover infinitely many conserved integrals that make the
KdV an integrable system. In addition, we applied the same idea of
almost conservation laws to the cubic nonlinear Schrödinger equation.



1 Introduction

As presented in [1], the method of almost conservation laws can be used
to extend local well-posedness results of this equation to global-wellposedness
ones, which the authors apply to the KdV equation,

"

Btu` Bxu`
1
2
Bxpu

2q “ 0,
upx, 0q “ u0pxq

(1)

This method is based on studying some norms like ‖Iu‖Hs , where I is a
functional given by a certain Fourier multiplier, and u is the solution of
our equation. In practice, it requires a careful analysis of how conservation
laws are proved in frequency space, in order to gain understanding on how
different frequencies interact. A simple example of this idea is the following:
consider the L2 conservation law for the solution of the KdV equation above.
One can use Plancherel to write:ˆ

|utpxq|
2 dx “

ˆ
ξ1`ξ2“0

putpξ1qputpξ2q dξ1dξ2

By using the Fourier transform of the equation, one can get the following
identity

d

dt

ˆ
|utpxq|

2 dx “ ´i

ˆ
ξ1`ξ2“0

pξ31 ` ξ
3
2q putpξ1qputpξ2q dξ1dξ2

´ i

ˆ
ξ1`ξ2`ξ3“0

pξ1 ` ξ2q putpξ1qputpξ2qputpξ3q dξ1dξ2dξ3 (2)

The first term is clearly zero, and the second term becomes zero after
writing ξ1 ` ξ2 “ ´ξ3 and symmetrizing.

As explained in [1] and [2], an interesting idea in order to prove these
global results is to define a hierarchy of modified energies Ei

Iptq for the solu-
tion of our dispersive equation that are comparable to the norm ‖u‖Hs that
we are trying to control, but whose increments decrease as generations evolve.
Whether such a hierarchy can be found depends on the cancellations that
occur on a more general type of integrals resembling (2) above. However,
these cancellations are not yet well-understood, and therefore we will start
with a simpler choice of the multiplier I, with which one may recover the
classical conservation laws. A guess for what this choice would be and the
proof for the first three conservation laws appears in [2], and in this paper
we will provide the full proof.
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Another goal of this paper is to study the analogous case of the cubic
NLS equation

"

iBtu`∆u “ |u|2u,
upx, 0q “ u0pxq

for x P T, which also enjoyes infinitely many conserved quantities, and to try
to accomplish the same objectives as with the KdV equation.

In Section 2 we provide some definitions and introduce some notation that
will be useful throughout the paper. In Section 3 we provide the main results
and proofs. In Section 4 we set out the analogous problem for the cubic NLS
equation. And finally, in Section 5 we discuss possible future directions of
research on these topics.

The results presented in this paper were developed in collaboration with
Ricardo Grande Izquierdo.

2 Preliminary Definitions

Definition 2.1. Throughout this paper, we define the spatial Fourier trans-
form of fpxq to be

Fpfqpξq :“ f̂pξq :“

ˆ
R
e´ixξfpxqdx

Note that with this definition of the Fourier transform, we have

{Bnxfpxq “ piξq
nf̂pξq.

In this paper, we consider the conservation laws of the KdV equation, defined
as the following

Definition 2.2. We define the KdV equation to be the following:

#

Btu` B
3
xu` upBxuq “ 0

upx, 0q “ u0pxq

We then define the operator I.

Definition 2.3. Suppose u is a solution to the KdV equation, then we define
an operator I, usually called Fourier multiplier, such that

xIupξq “ mpξqûpξq.
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As shown in the introduction, the symmetrization describes the nonlinear
interaction of the frequencies of the solution u to the KdV equation. Through
this method, we keep track of the various pieces of û. Now we introduce some
notation that will be frequently used in the rest of the paper.

Definition 2.4. A k-multiplier m is a function m : R Ñ C. A k-multiplier
is symmetric if mpξq “ mpσpξqq for all σ P Sk. The symmetrization of a
k-multiplier is

rmssympξq “
1

k!

ÿ

σPSk

mpσpξqq

A k-multiplier generates the k-linear functional via the integration

Λkpmq “

ˆ
Ak

mpξ1, ..., ξkqûpξiq...ûpξkq dξ1 . . . dξk

where Ak “ tpξ1, ..., ξkq : ξ1 ` ¨ ¨ ¨ ` ξk “ 0u.

Remark. This notation does not refer to integrating over a k-dimensional set
of measure zero, instead it refers to k ´ 1 integrals, i.e.

Λkpmq “

ˆ
R
¨ ¨ ¨

ˆ
R
mpξ1, . . . , ξkqûpξiq...ûpξk´1qûp´

k´1
ÿ

i“1

ξiqdξ1 ¨ ¨ ¨ dξk´1

By observation, we find that

||Iuptq||2L2
“

ˆ
A2

mpξ1qmpξ2qûpξ1qûpξ2qdξ1dξ2 “ Λ2pmpξ1qmpξ2qq

Hence we have the following useful proposition, which can be found in [1].

Proposition 2.1. Suppose u satisfies the KdV equation, and m is a sym-
metric k-multiplier and Λkpmq is the k-linear functional generated by m,
then

d

dt
Λkpmq “ Λkpαkmq ´ i

k

2
Λk`1pm̃pξ1, ..., ξk`1qq.

where

m̃pξ1, . . . , ξk`1q “ pξk ` ξk`1q ¨mpξ1, . . . , , ξk´1, ξk ` ξk`1q

Proof.

d

dt
Λkpmq “

d

dt

ˆ
Ak

mpξ1, ..., ξkqûpξ1q ¨ ¨ ¨ ûpξkqdξ1 ¨ ¨ ¨ dξk

“

ˆ
Ak

mpξ1, ..., ξkq
d

dt
pûpξ1q ¨ ¨ ¨ ûpξkqqdξ1 ¨ ¨ ¨ dξk
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Substitute in the equation

Btû “ ´piξq
3û´

1

2
iξ pu2

then we have

d

dt
Λkpmq “ ´

k
ÿ

i“1

ˆ
Ak

piξiq
3mpξ1, ..., ξkqûpξ1q ¨ ¨ ¨ ûpξkq

´

k
ÿ

i“1

ˆ
Ak

1

2
piξiqûpξ1q ¨ ¨ ¨ pu2pξiq ¨ ¨ ¨ ûpξkqmpξ1, ..., ξkq

Since
pu2pξiq “ ûpξiq ˚ ûpξiq “

ˆ
R
ûpξi ´ ξk`1qûpξk`1qdξk`1

By symmetry on the set Ak we obtain the desired identity.

With the above notation, we now define the chain of modified energies
following the notation in [1],

Definition 2.5. We recursively define the chain of energies Ekptq as the
following:

E2
I ptq “ ||Iuptq||

2
L2 “ Λ2pmpξ1qmpξ2qq

where uptq is the solution to the KdV equation and I is an operator such

that {Ifpξq “ mpξqf̂pξq, then

Ek
I ptq “ Ek´1

I ptq ` Λkpσkq,

where σk is an operator chosen such that

d

dt
Ek
I ptq “ Λk`1pMk`1q.

Note that by Proposition 2.1, we have the explicit form

Mk`1 “ ´i
k

2
rσkpξ1, ..., ξk´1, ξk ` ξk`1q ¨ pξk ` ξk`1qssym

It was proposed in [1] that by setting the operator I “ Bnx , i.e. mpξq “
piξqn and putting E2ptq “ ||Iu||2L2

“ Λ2pmpξ1qmpξ2qq, we can recover all the
conservation laws of the KdV equation. It was also shown explicitly in [1]
that the first two conservation laws can be recovered by the proposed method,
yet a rigorous proof was not given. Before illustrating this construction with
an example, we first note some properties of the symmetrization operation
that will help with the calculations involved in the example. The proof of
the following lemmas are straight-forward.
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Lemma 2.1. (Linearity) Suppose m : Rk Ñ C, n : Rk Ñ C are two k-
multipliers, then we have

rm` nssym “ rmssym ` rnssym

Lemma 2.2. Suppose m : Rk Ñ C is a k-multiplier and σ P Sk, then

rmpξqssym “ rmpσpξqqssym

Lemma 2.3. Let m,n be two k-multipliers, if m is symmetric, then

rmnssym “ mrnssym

We now provide a detailed example to explicitly illustrate how the chain
of modified energies recover a conservation law of the KdV equation.

Example 2.1. In the case where n “ 3, we have

E2
ptq “ ||B3xu||

2
L2
“ Λppiξ31qpiξ

3
2qq mpξq “ iξ3

Then

σ3 “ ´
rξ71s

3rξ31s
“ ´

7

3
rξ21ξ

2
2s

M4 “
i

2
r
m2pξ1qξ1 `m

2pξ2qξ2 `m
2pξ3 ` ξ4qpξ3 ` ξ4q

3ξ1ξ2
s

“ ´
i

2
r
ξ71 ` ξ

7
2 ` pξ3 ` ξ4q

7

3ξ1ξ2
s

“ ´
7i

3
prξ51s ` 3rξ41ξ2s ` 5rξ31ξ

2
2sq

“ ´
35i

3
rξ31ξ

2
2s

then

σ4 “ ´
M4

α4

“
35

12

rξ31ξ
2
2s

rξ31s
“

35

12
p
4

3
rξ31srξ

2
1s ´

1

3
rξ51sq “

35

18
rξ1ξ2s

Note that we have the following identities

ξ51 ` ξ
5
2 ` ξ

5
3 ` pξ4 ` ξ5q

5
“ ξ51 ` ξ

5
2 ` ξ

5
3 ´ pξ1 ` ξ2 ` ξ3q

5

“ ´5pξ1 ` ξ2qpξ1 ` ξ3qpξ2 ` ξ3qpξ
2
1 ` ξ

2
2 ` ξ

2
3 ` ξ1ξ2 ` ξ1ξ3 ` ξ2ξ3q

ξ31 ` ξ
3
2 ` ξ

3
3 ` pξ4 ` ξ5q

3
“ ξ31 ` ξ

3
2 ` ξ

3
3 ´ pξ1 ` ξ2 ` ξ3q

3

“ ´3pξ1 ` ξ2qpξ1 ` ξ3qpξ2 ` ξ3q

5



Therefore we have

M5 “ ´2iσ4pξ1, ξ2, ξ3, ξ4 ` ξ5q ¨ pξ4 ` ξ5q

“ 2i ¨
35

18
¨

1

6
pξ1ξ2 ` ξ1ξ3 ` ξ2ξ3 ´ pξ1 ` ξ2 ` ξ3q

2
qpξ1 ` ξ2 ` ξ3q

“ ´
35

54
¨ 3rξ1ξ2ξ3s

Note that

rξ1ξ2ξ3s “ ´
1

3
rξ1ξ2pξ1 ` ξ2qs “ ´

2

3
rξ21ξ2s “

1

6
rξ31s

i.e. rξ1ξ2ξ3s “
1
30i
α5 Therefore

σ5 “ ´
M5

α5

“
35

54
¨

1

10
“

7

108

Notice that E5ptq “ E2ptq`Λpσ3q`Λpσ4q`Λpσ5q is exactly the conservation
law according to [4]

ˆ
R
ppB

3
xuq

2
´

7

4
upB2xuq

2
`

35

18
u2pBxuq

2
´

7

108
u5qdx “ C

3 Results

We now provide a proof for the correspondence between the chain of
modified energies and the conservation laws. We first start with three useful
lemmas.

Lemma 3.1. Suppose Λkppq “ 0, then p “ 0 on the set Ak.

Proof. By definition

Λkppq “

ˆ
Ak

ppξ1, ..., ξkqûpξ1q ¨ ¨ ¨ ûpξkqdξ1 ¨ ¨ ¨ dξk

Suppose by contradiction that p ‰ 0, using Plancherel’s theorem and taking
the inverse Fourier transform, we have

Λkppq “

ˆ
R
p1pu0, u1, ..., udegppqqdx “ 0

where p1 is a homogeneous differential polynomial of u of degree k, and uj
denotes the j-th derivative of u. Then since this is true for every time t,

6



this implies that
´
R p

1dx is a conservation law, hence it suffices to argue that´
R p

1dx cannot be a conservation law of the KdV equation. Note that every
conservation law Cn can be written as

Cn “

ˆ
R
Pndx “

n
ÿ

k“2

Λkppkq

where Pn is a differential polynomial of u homogenous of rank n according
to [4]. The rank of each term in the form ua00 u

a1
1 ¨ ¨ ¨u

al
l is defined to be

r :“
l
ÿ

j“0

p1`
1

2
jqaj

Note that for the polynomial p1, each monomial has
řl
j“0 aj “ k. Suppose

p1 is a conservation law of rank n, n ě k, then for each monomial in p1,
we must have

řl
j“0 j ¨ aj “ 2pn ´ kq, j ď degppq, therefore the choice of

aj must corresponds to a proper subset of the monomials in Cn. Since the
conservation law of rank n for the KdV equation is unique, p1 cannot be a
conservation law, contradiction. Hence we can conclude that p “ 0 on the
set Ak.

Lemma 3.2. Suppose that for all solutions of the KdV equation Λnppq `
Λmpqq “ 0, n ă m. Then Λnppq “ 0,Λmpqq “ 0. In particular, p “ 0 and
q “ 0 on the set An and Am , respectively.

Proof. Suppose that u is a solution of KdV, then (with the corresponding
scaling of the initial data) the following is also a solution of KdV for all λ P R

uλpt, xq “ λ´2upλ3t, λxq

Then taking the Fourier transform with respect to x, we obtain

xuλpt, ξq “ λ´3pupλ3t, λ´1ξq

If Λnppq `Λmpqq “ 0 holds for all solutions of KdV, it holds for uλ and note
that

Λnppq “

ˆ
An

ppξ1, . . . , ξnqxuλpξ1q ¨ ¨ ¨xuλpξnqdξ1 ¨ ¨ ¨ dξn

Then by change of variables sending ξi to λξi we obtain

Λnppq “

ˆ
An

p1pξ1, . . . , ξnqûpξ1q ¨ ¨ ¨ ûpξnqdξ1 ¨ ¨ ¨ dξn
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where

p1pξ1, . . . , ξnq “ λdegppq´2n`1
ÿ

i

ci
ξa11 ¨ ¨ ¨ ξ

an
n

λ
řn

i“1 ai´degppq

Similarly

Λmpqq “

ˆ
Am

q1pξqûpξ1q ¨ ¨ ¨ ûpξmqdξ1 ¨ ¨ ¨ dξm

where

q1pξ1, . . . , ξnq “ λdegpqq´2m`1
ÿ

i

di
ξb11 ¨ ¨ ¨ ξ

bm
m

λ
řm

i“1 bi´degpqq

Since n ă m, then degppq ă degpqq, and therefore

1

λdegppq´2n`1
pΛnpp

1
q ` Λmpq

1
qq “ 0

Then we haveˆ
An

p
ÿ

i

ci
ξa11 ¨ ¨ ¨ ξ

an
n

λ
řn

i“1 ai´degppq`2n´1
qûpξ1q ¨ ¨ ¨ ûpξnqdξ1 ¨ ¨ ¨ dξn

`

ˆ
Am

pλdegpqq´degppq`2pm´nq
ÿ

i

di
ξb11 ¨ ¨ ¨ ξ

bm
m

λ
řm

i“1 bi´degpqq
qûpξ1q ¨ ¨ ¨ ûpξmqdξ1 ¨ ¨ ¨ dξm “ 0

We now consider the case t “ 0 and reduce the solution to the initial data
u0.

By taking λÑ 0, the second term vanishes and we haveˆ
An

p
ÿ

i

ci
ξa11 ¨ ¨ ¨ ξ

an
n

λ
řn

i“1 ai´degppq`2n´1
qû0pξ1q ¨ ¨ ¨ û0pξnqdξ1 ¨ ¨ ¨ dξn “ 0

Note that
řn
i“1 ai ď degppq ´ 2n` 1, therefore we have

ˆ
An

ÿ

i s.t.
řn

i“1 ai“degppq

ciξ
a1
1 ¨ ¨ ¨ ξ

an
n û0pξ1q ¨ ¨ ¨ û0pξnqdξ1 ¨ ¨ ¨ dξn “ 0

Since this is true for every initial data, the polynomial
ÿ

i s.t.
řn

i“1 ai“degppq

ciξ
a1
1 ¨ ¨ ¨ ξ

an
n

must be zero on the set An. However, this produces a contradiction about
the degree of p unless degppq “ 0, in which case by the same reasoning as
above, p “ 0. Then Λnppq “ 0, and therefore the initial hypothesis becomes
Λmpqq “ 0. By Lemma 3.1, q “ 0.
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Lemma 3.3. Suppose that S is a finite subset of positive integers and
ř

kPS Λkppkq “ 0. Then pk “ 0 on the set Ak for every k P S.

Proof. The same scaling trick as in Lemma 3.2 should prove that pk0 “ 0
for k0 “ minS k. From then on, one simply iterates the idea, the key fact
being that the exponent of λ in each integral is positive, i.e. degppkq ´
degppk0q ` 2pk ´ k0q ą 0 for k ‰ k0, which allows every other item to vanish
as λÑ 0.

We are now ready to give the main theorem of this paper

Theorem 3.4. Let Cn denote the n-th conservation law of the KdV equation,
then

Cn`1 “ En`2
I“Bnx

ptq n ě 0

Proof. Note that for n ě 0

Cn`1 “

ˆ
R
ppB

n
xuq

2
` rn`1qdx,

where rn`1 is a differential polynomial in u and its first n ´ 1 derivatives
with each term no greater than degree n ` 2. Taking the Fourier transform
of Cn`1, we can write the following

zCn`1 “
n`2
ÿ

k“2

ˆ
Ak

rpkpξ1, ..., ξkqsûpξ1q ¨ ¨ ¨ ûpξkqξ1 ¨ ¨ ¨ dξk

Note that by the Plancherel theorem, zCn`1 “ Cn`1.
By differentiating with respect to time and with Proposition 2.1, we have

BtCn`1 “
n`2
ÿ

k“2

p

ˆ
Ak

αkrpkpξ1, ..., ξkqsûpξ1q ¨ ¨ ¨ ûpξkqdξ1 ¨ ¨ ¨ dξk

´
k

2
i

ˆ
Ak`1

rp̃kpξ1, ..., ξk`1qsqûpξ1q ¨ ¨ ¨ ûpξk`1qdξ1 ¨ ¨ ¨ dξk`1q,

where
p̃kpξ1, ..., ξk`1q “ pkpξ1, ..., ξk´1, ξk ` ξk`1q ¨ pξk ` ξk`1q.

Since BtCn`1 “ 0 and for all 3 ď k ď n ´ 2, each integral on Ak has the
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form
´
Ak
p´ik´1

2
rp̃k´1s ` αkrp̃ksqûpξ1q ¨ ¨ ¨ ûpξkqdξ1 ¨ ¨ ¨ dξk

BtCn`1 “

ˆ
A2

α2rp2pξ1, ξ2qsûpξ1qûpξ2qdξ1dξ2

`

n`2
ÿ

k“3

ˆ
Ak

p´i
k ´ 1

2
rp̃k´1s ` αkrpksqûpξ1q ¨ ¨ ¨ ûpξkqdξ1 ¨ ¨ ¨ dξk

`

ˆ
An`3

p´i
n` 2

2
rp̃n`2sqûpξ1q ¨ ¨ ¨ ûpξn`3qdξ1 ¨ ¨ ¨ dξn`3 “

Λ2pα2rp2sq `
n`2
ÿ

k“3

Λk

ˆ

´i
k ´ 1

2
rp̃k´1s ` αkrpksq

˙

` Λn`3p´i
n` 2

2
rp̃n`2sq “ 0

Notice that α2 “ 0 on the setA2, hence the integral
´
A2
α2p2pξ1, ξ2qûpξ1qûpξ2qdξ1dξ2 “

0. Since the term with the highest degree in Cn`1 consists no derivatives of
u, i.e. pn`2 is a constant, therefore p̃n`2 “ 0 on the set An`3, therefore´
An`3

´in`2
2
rp̃n`2sûpξ1q ¨ ¨ ¨ ûpξn`3qdξ1 ¨ ¨ ¨ dξn`3 “ 0. Hence

n`2
ÿ

k“3

Λk

ˆ

´i
k ´ 1

2
rp̃k´1s ` αkrpksq

˙

“ 0

By Lemma 3.3, for every k “ 3, . . . , n` 2 we have

´i
k ´ 1

2
rp̃k´1s ` αkrpks “ 0 on Ak . (3)

By construction of the chain of modified energies

Ek
I“Bnx

ptq “ Ek´1
I“Bnx

ptq ` Λkpσkq E2
I“Bnx

ptq “ Λ2ppiξ1q
n
piξ2q

n
q “ Λpσ2q,

where σk “ ´
Mk

αk
and Mk “ ´i

k´1
2
rσ̃k´1s. By definition we have σ2 “ rp2s

and therefore M3 “ σ̃2 “ rp̃2s. Therefore continuing this process and taking
into account (3), notice that Mk “ ´i

k´1
2
rp̃k´1s and we choose σk such that

Mk ` αkσk “ 0, then σk “ rpks.
Remember than the algorithm created a chain of modified energies satis-

fying:

En`2
I“Bnx

ptq “ En`1
I“Bnx

ptq ` Λn`2pσn`2q

“ E2
I“Bnx

ptq `
n`2
ÿ

k“3

Λkpσkq

By the explanation above, it is now clear that

Cn`1 “ En`2
I“Bnx

ptq n ě 0.
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4 Cubic NLS

From the results above, it is natural to consider applying the same idea to
other integrable equations. Another frequently studied integrable equation is
the cubic nonlinear Schrödinger (NLS) equation, which also satisfies infinitely
many conservation laws, defined as the following

Definition 4.1. We define the cubic nonlinear Schrödinger (NLS) equation
as the following

#

iBtφ` B
2
xφ` 2|φ|2φ “ 0

φpx, 0q “ φ0pxq

According to [3], the conservation laws of the cubic NLS equation are
given by the following recursive formula

Definition 4.2. The Cubic NLS equation is an integrable system, its con-
servation laws can be recursively found as follows

w1 “ φpxq

wn`1 “ ´i
dwn
dx
pxq ` φ̄pxq

n´1
ÿ

k“1

wkpxqwn´kpxq

The conserved quantities are

Cn “

ˆ 8

´8

φ̄pxqwnpxq

Hence the first four conservation laws are

C1 “

ˆ
|φpxq|2dx, C2 “

ˆ
´iφ̄pxqBxφpxqdx

C3 “

ˆ
p´φ̄pxqB2xφpxq ` |φpxq|

4
qdx

C4 “

ˆ
pipφ̄B3xφ´ |φ|

2φBxφ̄´ 4|φ|2φ̄Bxφqdx

Let φ be a solution to the cubic NLS equation, then φ satisfies

Btφ “ ipB2xφ` 2|φ|2φq

Take the fourier transform with respect to space, then

Btφ̂ “ ippiξq2φ̂` 2yφ2φ̄q “ ´iξ2φ̂` 2iφ̂ ˚ φ̂ ˚ ˆ̄φ
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Note that a significant difference between the KdV equation and the cubic
NLS equation is that the solutions to the KdV equation are real functions
but the solutions to the cubic NLS equation are complex functions. Hence
we make the following modification to our previous definitions.

Definition 4.3. Suppose m is a k-multiplier for k an even number, we define
the k-linear functional generated by m via integration to be the following

Λkpmq “

ˆ
Ak

mpξ1, ..., ξkq
ˆ̄φpξ1q ¨ ¨ ¨

ˆ̄φpξk{2qφ̂pξk{2`1q ¨ ¨ ¨ φ̂pξkqdξ1 ¨ ¨ ¨ dξk

Similarly, we have the following proposition

Proposition 4.1. Suppose φ is a solution to the cubic NLS equation, then

d

dt
Λkpmq “ ´Λkpαkmq ` 2kiΛk`2pm̃pξ1, ..., ξk`2qq

where
αk “ ipξ21 ` ¨ ¨ ¨ ` ξ

2
kq

m̃pξ1, ..., ξk`2q “ mpξ1, ..., ξk´1, ξk ` ξk`1 ` ξk`2q

Proof.

d

dt
Λkpmq “

ˆ
Ak

mpξ1, ..., ξkq
d

dt
ˆ̄φpξ1q ¨ ¨ ¨

ˆ̄φpξk{2qφ̂pξk{2`1q ¨ ¨ ¨ φ̂pξkqdξ1 ¨ ¨ ¨ dξk

“

k{2
ÿ

j“1

mpξ1, ..., ξkq
ˆ̄φpξ1q ¨ ¨ ¨ p´iξ

2
j

ˆ̄φpξjq ` 2i ˆ̄φ ˚ ˆ̄φ ˚ φ̂pξjqq ¨ ¨ ¨ φ̂pξkqdξ1 ¨ ¨ ¨ ξk

`

k
ÿ

j“k{2`1

mpξ1, ..., ξkq
ˆ̄φpξ1q ¨ ¨ ¨ p´iξ

2
j φ̂pξjq ` 2iφ̂ ˚ φ̂ ˚ ˆ̄φpξjqq ¨ ¨ ¨ φ̂pξkqdξ1 ¨ ¨ ¨ ξk

“ ´

k
ÿ

j“1

ˆ
Ak

mpξ1, ..., ξkqpiξ
2
j q

ˆ̄φpξ1q ¨ ¨ ¨
ˆ̄φpξk{2qφ̂pξk{2`1q ¨ ¨ ¨ φ̂pξkqdξ1 ¨ ¨ ¨ dξk

`

k{2
ÿ

j“1

ˆ
Ak

mpξ1, ..., ξkq2i
ˆ̄φpξ1q ¨ ¨ ¨

{

φ¯ 2
pξjqφ ¨ ¨ ¨ φ̂pξkqdξ1 ¨ ¨ ¨ ξk

`

k
ÿ

j“k{2`1

ˆ
Ak

mpξ1, ..., ξkq2i
ˆ̄φpξ1q ¨ ¨ ¨

yφ2φ̄pξjq ¨ ¨ ¨ φ̂pξkqdξ1 ¨ ¨ ¨ ξk

“ ´Λkpαkmq ` 2kiΛk`2pm̃pξ1, ..., ξk`2qq

where
αk “ ipξ21 ` ¨ ¨ ¨ ` ξ

2
kq
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m̃pξ1, ..., ξk`2q “ mpξ1, ..., ξk´1, ξk ` ξk`1 ` ξk`2q

Similarly, we provide an example for illustration

Example 4.1. In order to recover the conservation law C3, we set

E2
ptq “ Λ2ppiξ1q

2
q

Then
M4 “ ´2ip4rξ21s ` 6rξ1ξ2sq “ ´4irξ21s

σ4 “
M4

α4

“
´4irξ21s

4irξ21s
“ ´1

Hence

E4
ptq “ E2

ptq ` Λ4pσ4q “

ˆ
pφ̄pxqB2xφpxq ´ |φpxq|

4
qdx

Therefore by similar intuition, we have the following conjecture for the
cubic NLS equation, which has not been rigorously proven

Conjecture 4.1. Let Ck denote the k-th conservation law of the cubic NLS
equation, then

Ck`1 “ Ek`2
I ptq k ě 0, k even

where

E2
I ptq “

ˆ
R
φ̄Bkxφdx “ Λkppiξ1q

k
q

5 Future Research

In the future, it would be interesting to work out the details for the case
of cubic NLS and rigorously prove how the chain of modified energies recover
conservation laws. In addition, it would be interesting to consider different
multipliers m, for example the multiplier

mpξq “

#

1, |ξ| ă N

N´s|ξ|s, |ξ| ą 10N

in order to obtain some results on extending local well-posedness to global
well-posedness. One important obstacle when tackling this problem would be
to better understand the cancellations that take place as one computes more
elements in the chain of modified energies. Even though we were expecting to
advance towards this goal when studying this method applied to the recovery
of conservation laws, the proofs we ended up producing don’t seem to shed
much light on these cancellations and new ideas might be necessary.
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