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Abstract

In this paper we study the properties of the wrong derived functors LHom and
R
⊗. We will prove identities that relate these functors to the classical Ext and Tor.

With these results we will also prove that the functors LHom and
R
⊗ form an adjoint

pair. Finally we will give some explicit examples of these functors using spectral
sequences that relate them to Ext and Tor, and also show some vanishing theorems
over some rings.
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1 Introduction

In this paper we will discuss derived functors. Derived functors have been used in homo-
logical algebra as a tool to understand the lack of exactness of some important functors;
two important examples are the derived functors of the functors Hom and Tensor Prod-
uct (⊗). Their well known derived functors, whose cohomology groups are Ext and Tor,
are their right and left derived functors respectively.

In this paper we will work in the category R-mod of a commutative ring R (although
most results are also true for non-commutative rings). In this category there are differ-
ent ways to think of these derived functors. We will mainly focus in two interpretations.
First, there is a way to concretely construct the groups that make a derived functor as
a (co)homology. To do this we need to work in a category that has enough injectives or
projectives, R-mod has both. The second way is a categorical construction that defines
the derived functors as left or right Kan Extension for homotopy categories. To see that
these definitions agree see [1].

Now we present some of the reasons why people are mostly interested on the left
(right) derived functor LF (RF ) of a right (left) exact functor F ; there is a result that
shows the equality of functors

L0F = F (R0F = F )

this result is equivalent to saying that the left (right) derived functor will give informa-
tion related to the exactness of the functor F . However, in this paper we focus on giving
an insight on the properties that the left (right) derived functor LF (RF ) of a left (right)
exact functor F has.

In this paper we will study derived functors that are not as natural, we study the ex-

plicit examples of the functors LHom, ∗LHom and
R
⊗, the left and right derived functors

of the functors Hom(A,−), Hom(−, A) and −⊗A respectively. To study these functors

we prove some identities that will relate them to the traditional RHom and
L
⊗. One of

these results, surprisingly, shows that LHom(M,−) a −
R
⊗M is an adjoint pair whenever

M is a finitely generated module.

To summarize some of the similarities and differences between the classical derived
functors of Hom and ⊗ and the derived functors studied in this paper we present the
following table:

RHom LHom ∗LHom
L
⊗

R
⊗

Type of Resolution Projective Projective Injective Flat Injective
or Injective

Type of Kan Extension Left Right Right Right Left



2 Statement of Results

The main results in this paper are the following three theorems. These relate the wrong

derived functors we study in this paper, LHom and
R
⊗ to the functors Tor and Ext,

when evaluated at some dual modules. In particular, we will look at the dual mod-
ule M∨ = Hom(M,R), and also consider for an injective cogenerator E the modules
M+ = Hom(M,E) and M e = Hom(E,M). With this notation, we have the following
results:

Theorem 2.1. For a finitely presented module M and any module N , we have the
following isomorphism in the derived category of R-mod:

LHom(M,N) 'M∨
L
⊗N.

Theorem 2.2. For a finitely presented module M and any module N , we have the
following isomorphism in the derived category of R-mod:

M
R
⊗N ' RHom(M∨, N).

From Theorem 2.1 (6.1) and Theorem 2.2 (6.2) we get the following corollary:

Corollary 2.1. For a finitely generated module M , the functors

LHom(M,−) a −
R
⊗M,

form an adjoint pair.

We do not know of any reference where these functors have been studied explicitly.
We only know of general results for derived functors and these theorems give more ex-

plicit properties for the functors LHom and
R
⊗ that resemble properties of the functors

RHom and
L
⊗; the most surprising of these results being that the wrong derived functors

form an adjoint pair.

These results may suggest that there may be other interesting properties for the
wrong derived functors of other well-known functors, particularly that they might form
an adjoint pair. In the case of ⊗ and Hom it was necessary that the module was finitely
presented–which can be related to some conditions of commutativity with certain colim-
its. If there is a way to extend these results to general adjoint pairs it cannot be done
following the proofs of the theorems above as they are dependent on properties of Hom
and ⊗.

In the next section we show a set of three spectral sequences, one for each of LHom,

∗LHom and
R
⊗, that converges to the modules Ext(M,N), Ext(M,N) and M⊗N respec-

tively. We get this result by one of the possible filtrations; while in the other filtration

we get a different E2 page which contains the functors LHom, ∗LHom and
R
⊗. We give

as an illustrative example the E2 page for LHom.



Proposition 2.1. Let M,N be two R modules. Then the spectral sequence that comes
from a sign change of the double complex Hom(PM , QN ) where PM := · · ·P2 → P1 →
P0 → 0 and QN := · · ·Q2 → Q1 → Q0 → 0 are projective resolutions of M and N
respectively, converges to E∞p,0 = Extp(M,N) under one of the filtrations and under the
other filtration we get the following E2 page:

LHom0(M,N) L0Ext1(M,N) L0Ext2(M,N) · · ·

LHom1(M,N) L1Ext1(M,N) L1Ext2(M,N) · · ·

LHom2(M,N) L2Ext1(M,N) L2Ext2(M,N) · · ·

...
...

...
. . .

Furthermore, if M is finitely generated and R is noetherian we can use that Hom(M,N) '
M∨ ⊗N and get the E2 page:

Tor0(Ext0(M,R), N) Tor0(Ext1(M,R), N) Tor0(Ext2(M,R), N) . . .

Tor1(Ext0(M,R), N) Tor1(Ext1(M,R), N) Tor1(Ext2(M,R), N) . . .

Tor2(Ext0(M,R), N) Tor2(Ext1(M,R), N) Tor2(Ext2(M,R), N) . . .

...
...

...
. . .

This result shows that the wrong derived functors are related to the classical derived
functors and that we do not need any assumption as finite generation as it is needed for
theorems 2.1 and 2.2. The second part of the result is related to theorems 2.1 and 2.2
as we consider the case of M finitely generated and use the same lemmas to get another
result.

The next section is motivated by the idea that we would wish that the derived functor

∗LHom had similar properties as those we have proved for LHom and
R
⊗. However, this

functor is more related to the injective cogenerator instead of the projective generator (as
R); unfortunately, the injective cogenerator E does not behave that well in this context
and for our results we are forced to work with modules E that satisfy special conditions.

Theorem 2.3. For any module M and N finitely copresented by E, an injective cogen-
erator with endomorphism ring End(E) = S, we have the following isomorphism in the



derived category of R-mod:

∗LHom(M,N) 'M+
L
⊗
S
N e.

Finally, in sections 9 and 10 we work to understand how these functors behave in
some particular rings. In section 9 we show that the higher (co)homology groups of the
wrong derived functors vanish for rings of projective (or injective) dimension 2 or lower.
In contrast, in section 10 we prove that we can find examples where the (co)homology
groups do not vanish. We prove this fact with an explicit construction using regular
local rings of dimension 3 or higher.

Theorem 2.4. Let R be a regular local ring of dimension d ≥ 3 and maximal ideal m,
let k := R/m be its residue field. Then for any integer 3 ≤ ` ≤ d−1 there exists a module
N such that:

N
R
⊗R ' k[−`]

in the derived category.

We see that the wrong derived functors also have some interesting properties and can
be, in some conditions, related to the derived functions that are already studied. The
results proved here cannot be straightforwardly extended to general derived functors,
but we hope it can give a little more understanding of this subject.
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4 Notation and Conventions

In this paper we will use the following notation and conventions. The ring of interest will
be a commutative ring R and all functors we consider will be functors from R-mod to
R-mod unless specified otherwise. We will omit the subindex R in functors HomR(A,B)
or ⊗R and so we will only write Hom(A,B) or ⊗ respectively. If it is based in another
ring it will be specified.

Another module that we will use is an injective cogenerator E of R-mod. There are
many ways to find an injective cogenerator an example is taking the character module
R+ = HomZ(R,Q/Z), this result comes from the fact that Q/Z is an injective cogenera-
tor of Z-mod. As a note, we add that in section 8 Injective Cogenerator we will assume
that the ring S = End(E) is noetherian or that E is a Morita duality module.



There will be three dual modules that we use for a module M . First, we take

M∨ := Hom(M,R).

Motivated from the notion of character module we write

M+ := Hom(M,E),

and finally we let
M e := Hom(E,M).

In the paper we will define the derived functors LHom, ∗LHom and
R
⊗, which are left

and right derived functors of Hom(M,−), Hom(−,M) and −⊗M respectively. So if we
let PN and IM be projective and injective resolutions of N and M respectively, we could
describe these functors as:

LHom(M,N) ' Hom(M,PN ) Hom stands for Hom of chain complexes
∗LHom(M,N) ' Hom(IM , N)

M
R
⊗N ' IM ⊗N for tensor products of chain complexes

This description is explained in [2]. We will add that for the ith (co)homology group of
the derived functors we will use the notation:

LiHom(M,N) ' Hi(Hom(M,PN ))
∗LiHom(M,N) ' Hi(Hom(IM , N))

M
Ri

⊗N ' H i(IM ⊗N)

In the case that our category has enough projectives and injectives, all of these functors
are indeed well defined.

5 Preliminaries

In this section we give a small review about derived functors, mainly focusing on how to
construct them and some basic properties that they have. For a more extensive coverage
of the topic we refer to [2], [3].

To construct derived functors we need the notion of an injective or projective reso-
lution. For an object A in a category C an injective resolution I• consists of an exact
sequence

0→ A→ I0 → I1 → ...

where Ii ∈ C are injective objects. A projective resolution P• is the dual construction
made by taking projective objects. The resolutions IA and PA are the resolutions I• and
P• where we delete A, so for example

IA = 0→ I0 → I1...



Definition 5.1 (Derived Functor (Homology)). For any covariant functor F : C → D,
any object A ∈ C and a (projective) injective resolution (PA) IA, we define the (right)
left derived functor, (RF ) LF , as the (co)homology of FI so that:

RF (A) = H(F (PA))

LF (A) = H(F (IA)).

Similarly, we can define the derived functors for contravariant functors. In the defi-
nition it is not obvious that the functor RF is well defined, but we refer to [2, Theorem
6.16] for a proof of this fact.

Now, we give a categorical construction of derived functors using Kan Extensions.
We use the definition given in Riehl [4, Chapter 6].

Definition 5.2 (Kan Extension). Given functors F : C → E and K : C → D, we define
the the left Kan Extension as a functor LanKF : D → E together with a natural trans-
formation η : F ⇒ LanKF ◦K such that for any other pair (G : D → E ,γ : F → G ◦K),
γ factors uniquely through η. We can express this in the following diagrams:

C E C E C E

=

D D D

K

F

K

F F

K
η γ

LanKF G

LanKF

G
∃!

Let us write K(C) as the category of chain complexes of the category C. Then we
will have that homotopically equivalent chain complexes form a weak equivalence in the
category K(C). To define a derived functor we need to talk about homotopy categories.
For a category A together with a set of weak equivalences (or quasi-isomorphisms) we
define its homotopy category HoA as the initial object of categories B that have a ho-
motopy map A → B such that weak equivalences in A are isomorphisms in B. So if we
consider K(C) then the derived category D(C) is equivalent to the homotopy category
HoC. Now we can give a categorical definition of a derived functor.

Definition 5.3 (Derived Functor [4]). For a functor F : A → B of homotopical cate-
gories, the left derived functor, LF , is defined as the right Kan Extension of the following
diagram (if it exists):

A B

HoA HoB

F

LF

Similarly we can define the right derived functor as the right Kan Extension. And
for the case of chain complexes we would have that the derived functor is a functor from
D(C) to D(D).

Now, we look at an important result that tells us why we are mostly interested in
the left derived functor of a right exact functor (analogously, why we care for the right



derived functor of a left exact functor). This is can be found in [2, Theorem 6.29].

Theorem 5.1. For a right exact additive covariant functor F : C → D between abelian
categories, and if C has enough projectives, then F is naturally isomorphic to L0F .

This theorem is relevant to the setting we are working in the category of modules of
a commutative ring, which is an abelian category and has enough projectives. However,
Quillen adjunction tells us that for a pair of adjoint functors F a G their derived functors
are an adjoint pair as well.

Theorem 5.2. Let F a G be a pair of adjoint functors between homotopical categories,
assuming that LF and RG exist and are absolute Kan extensions, then LF a RG is an
adjoint pair of functors between homotopical categories.

6 Describing the Wrong Derived Functors

In this section we prove formulas that relate LHom and
R
⊗ with Tor and Ext, respectively.

For this we will need some finite presentation assumptions on the modules we use. Fi-

nally, we prove that LHom and
R
⊗ form an adjoint pair of functors from R-mod to R-mod.

We begin by proving a lemma that will show that Hom(M,N) is isomorphic to
M∨ ⊗N in some special cases. This will be useful when considering the homology cal-
culated for our derived functor LHom.

Lemma 6.1. For modules M and N over a ring R we have that the map

M∨ ⊗N ψ−→Hom(M,N).

(f(−)⊗n)7→(nf(−))

is a natural map of bifunctors.

Moreover, ψ is an isomorphism if M is finitely presented and N is a flat module.

Proof. If we consider maps ϕ : M →M ′ and φ : N → N ′ we can see that the naturality
of ψ follows of a simple diagram chase in the following diagrams:

M∨ ⊗N
(f◦ϕ)⊗n)

Hom(M,N)
(n(f◦ϕ))

M∨ ⊗N
(f⊗n)

Hom(M,N)
(nf)

(M ′)∨ ⊗N
(f⊗n)

Hom(M ′, N)
(nf)

M∨ ⊗N ′
(f⊗φ(n))

Hom(M,N ′)
(φ(nf))

Now we prove that ψ is an isomorphism when M is finitely presented and N is a flat
module.



Since M is finitely presented, we can get the following exact sequences:

R⊕n → R⊕m → M → 0 for integers n and m.

0→ Hom(M,R)→ Hom(R⊕m, R)→ Hom(R⊕n, R) As Hom is left exact.

0→ M∨ ⊗N → R⊕m ⊗N → R⊕n ⊗N As N is flat.

Similarly we get:

R⊕n → R⊕m → M → 0 for integers n and m.

0→ Hom(M,N)→ Hom(R⊕m, N)→ Hom(R⊕n, N) As Hom is left exact.

We can combine these results to get the following commutative diagram:

0 M∨ ⊗N N⊕m N⊕n

0 Hom(M,N) N⊕m N⊕n

∼ ∼

Then we can prove that M∨ ⊗N ' Hom(M,N), with a diagram chase.

Theorem 6.1. For a finitely presented module M and any module N , we have the
following isomorphism in the derived category:

LHom(M,N) 'M∨
L
⊗N.

Proof. Let PN be a projective resolution PN = · · · → P2 → P1 → P0 of N . Then

LiHom(M,N) ' Hi(Hom(M,PN )) definition of Left Derived Functor.

' Hi(M
∨ ⊗ PN ) By Lemma 6.1.

' Tori(M
∨, N) PN is projective resolution of N.

So we know that the homology groups agree and as we have the natural map ψ of Lemma

6.1 we can see that LHom(M,N) is homotopically equivalent to M∨
L
⊗N and so we have

the following equivalence in the derived category

LHom(M,N) 'M∨
L
⊗N.

We now present the following lemma found in Cartan-Eilenberg ”Homological Alge-
bra”.

Proposition 6.1 ([3], Propositions 5.2 and 5.3). For modules A, B, C the natural map
σ : Hom(B,C)⊗A→ Hom(Hom(A,B), C) is an isomorphism if any of the two following
conditions is satisfied.

(a) A is a finitely generated projective module.
(b) The ring R is noetherian, A is finitely generated and C is an injective module.



Lemma 6.2. For modules A, B, C, the natural map σ : Hom(B,C)⊗A→ Hom(Hom(A,B), C)
is an isomorphism if A is finitely presented and C is an injective module.

Proof. We first prove that the functors Hom(B,C) ⊗ − and Hom(Hom(−, B), C) are
right exact. To see this we notice that for the first functor we see this property comes
from the right exactness of tensor product. For the other functor we notice that if we
apply Hom(−, B) to an exact sequence

X → Y → Z → 0

we get the sequence

0→ Hom(Z,B)→ Hom(Y,B)→ Hom(X,B)

right exact and applying Hom(−, C) which is exact, as C is injective, we get

0→ Hom(Hom(X,B), C)→ Hom(Hom(Y,B), C)→ Hom(Hom(Z,B), C)

and so it is a right exact functor as desired.

Now, if A is finitely presented module we have an exact sequence F1 → F0 → A→ 0
and applying the two functors described in the paragraph above, combined with part (a)
of proposition 6.1 we get the following commutative diagram:

Hom(B,C)⊗ F1 Hom(B,C)⊗ F0 Hom(B,C)⊗A 0

Hom(Hom(F1, B), C) Hom(Hom(F0, B), C) Hom(Hom(A,B), C) 0

∼ ∼

And from a diagram chase we can conclude that ψ : Hom(B,C)⊗A→ Hom(Hom(A,B), C)
is a natural isomorphism.

Corollary 6.1. For modules M and N over a ring R the map

M ⊗N ψ−→ Hom(M∨, N)

is a natural map of bifunctors.
Furthermore, ψ is an isomorphism if M is finitely presented and N is an injective module.

Proof. The result follows from the naturality shown in 6.1 and using Lemma 6.2 with
A = M , B = R and C = N for the isomorphism.

Theorem 6.2. For a finitely presented module N and any module M , we have the
following isomorphism in the derived category:

M
R
⊗N ' RHom(N∨,M).



Proof. Let IM be an injective resolution IM = 0→ I0 → I1 → I2 → · · · of M . Then

M
Ri

⊗N ' H i(IM ⊗N) Right Derived Functor.

' H i(Hom(N∨, IM )) By Corollary 6.1.

' Ext(N∨,M) IM is a resolution of M.

So we know that the homology groups coincide and as we have the natural map ψ of

Corollary 6.1 we can see that M
R
⊗N is homotopically equivalent to RHom(N∨,M) and

so we have the following equivalence in the derived category

M
R
⊗N ' RHom(N∨,M).

Finally, using theorem 6.1 and theorem 6.2, we can prove that for a finitely presented

module M the functors LHom and
R
⊗ are a pair of adjoint functors in the derived cate-

gory of R.

Corollary 6.2. For a finitely presented module M in R-mod, the functors LHom(M,−)

and −
R
⊗M satisfy

Hom(LHom(M,A), B) ' Hom(A,B
R
⊗M)

Proof. We have from theorems 6.1 and 6.2 that LHom(M,A) ' Tor(M∨, A) ' Tor(A,M∨)

and B
R
⊗M ' Ext(M∨, B) so that

Hom(LHom(M,A), B) ' Hom(A,B
R
⊗M)

Hom(Tor(A,M∨), B) ' Hom(A,Ext(M∨, B))

and the result follows from the fact that Tor(−,M) and Ext(M,−) are an adjoint pair.

7 Spectral Sequences

We will now describe spectral sequences that converge to Ext and Tor but that in one

of their E2 pages we have LHom, ∗LHom or
R
⊗. We will describe in detail how to get the

spectral sequence for LHom and in the other case only give the E2 pages, but the proofs
follow the same idea as that for LHom.

Proposition 7.1. Let M,N be two R modules. Then the spectral sequence that comes
from a sign change of the double complex Hom(PM , QN ) where PM := · · ·P2 → P1 →
P0 → 0 and QN := · · ·Q2 → Q1 → Q0 → 0 are projective resolutions of M and N
respectively, converges to E∞p,0 = Extp(M,N) under one of the filtrations, and under the
other filtration, we get the following E2 page:



L0Hom(M,N) L0Ext1(M,N) L0Ext2(M,N) · · ·

L1Hom(M,N) L1Ext1(M,N) L1Ext2(M,N) · · ·

L2Hom(M,N) L2Ext1(M,N) L2Ext2(M,N) · · ·

...
...

...
. . .

Furthermore, if M is finitely generated and R is noetherian we can use that Hom(M,N) '
M∨ ⊗N and get the E2 page:

Tor0(Ext0(M,R), N) Tor0(Ext1(M,R), N) Tor0(Ext2(M,R), N) . . .

Tor1(Ext0(M,R), N) Tor1(Ext1(M,R), N) Tor1(Ext2(M,R), N) . . .

Tor2(Ext0(M,R), N) Tor2(Ext1(M,R), N) Tor2(Ext2(M,R), N) . . .

...
...

...
. . .

Proof. We first include a diagram of the spectral sequence:

Hom(P0, Q0) Hom(P1, Q0) Hom(P2, Q0) · · ·

Hom(P0, Q1) Hom(P1, Q1) Hom(P2, Q1) · · ·

Hom(P0, Q2) Hom(P1, Q2) Hom(P2, Q2) · · ·

...
...

...
. . .

If we first consider the filtration going through the vertical direction we will get that
as Hom(Pi,−) is an exact functor, that the sequence collapses to the x-axis as the line

Hom(P0, N)→ Hom(P1, N)→ Hom(P2, N)→ · · ·

which then is straight forward to see gives us the E2 page:



Ext0(M,N) Ext1(M,N) Ext2(M,N) · · ·
If we considered the other filtration then it is straightforward to see that we get the

following E1 page:

Hom(M,Q0) Ext1(M,Q0) Ext2(M,Q0) · · ·

Hom(M,Q1) Ext1(M,Q1) Ext2(M,Q1) · · ·

Hom(M,Q2) Ext1(M,Q2) Ext2(M,Q2) · · ·

...
...

...
. . .

From this page we can calculate the E2 page which would get us the following:

LHom0(M,N) L0Ext1(M,N) L0Ext2(M,N) · · ·

LHom1(M,N) L1Ext1(M,N) L1Ext2(M,N) · · ·

LHom2(M,N) L2Ext1(M,N) L2Ext2(M,N) · · ·

...
...

...
. . .

To prove the second part of the theorem we notice that as M is finitely generated
and R is noetherian then all the Pi are finitely generated projective modules. Then by
Lemma 6.1 we can rewrite the E0 page as:



P∨0 ⊗Q0 P∨1 ⊗Q0 P∨2 ⊗Q0 · · ·

P∨0 ⊗Q1 P∨1 ⊗Q1 P∨2 ⊗Q1 · · ·

P∨0 ⊗Q2 P∨1 ⊗Q2 P∨2 ⊗Q2 · · ·

...
...

...
. . .

Then, we notice that −⊗Qj is exact for all j and so

H i(Hom(PM , R)⊗Qj) ' H i(Hom(PM , R))⊗Qj
' Exti(M,R)⊗Qj

we get the E1 page:

Ext0(M,R)⊗Q0 Ext1(M,R)⊗Q0 Ext2(M,R)⊗Q0 · · ·

Ext0(M,R)⊗Q1 Ext1(M,R)⊗Q1 Ext2(M,R)⊗Q1 · · ·

Ext0(M,R)⊗Q2 Ext1(M,R)⊗Q2 Ext2(M,R)⊗Q2 · · ·

...
...

...
. . .

Then it is straightforward to get the E2 page:

Tor0(Ext0(M,R), N) Tor0(Ext1(M,R), N) Tor0(Ext2(M,R), N) . . .

Tor1(Ext0(M,R), N) Tor1(Ext1(M,R), N) Tor1(Ext2(M,R), N) . . .

Tor2(Ext0(M,R), N) Tor2(Ext1(M,R), N) Tor2(Ext2(M,R), N) . . .

...
...

...
. . .



The second remark can actually be completed as a way to prove theorem 6.1 in the
Noetherian case. This suggests that this spectral sequence is a good way to approximate
and get information about the functor LHom.

Similarly we can get the following results:

Proposition 7.2. Let M,N be two R modules. Then the spectral sequence that comes
from a sign change of the double complex IM⊗PN where IM := 0→ I0 → I1 → I2 → · · ·
and PN := · · ·P2 → P1 → P0 → 0 are injective resolution of M and projective of N
respectively, converges to E∞p,0 = Torq(M,N) under one of the filtrations and under the
other filtration we get the following E2 page:

M
R
⊗N R0Tor1(M,N) R0Tor2(M,N) · · ·

M
R1

⊗N R1Tor1(M,N) R1Tor2(M,N) · · ·

M
R2

⊗N R2Tor1(M,N) R2Tor2(M,N) · · ·

...
...

...
. . .

Furthermore, if N is finitely generated and R is noetherian we can use that M⊗N '
Hom(N∨,M) and get the E2 page:

Ext0(Ext0(N,R),M) Ext0(Ext1(N,R),M) Ext0(Ext2(N,R),M) · · ·

Ext1(Ext0(N,R),M) Ext1(Ext1(N,R),M) Ext1(Ext2(N,R),M) · · ·

Ext2(Ext0(N,R),M) Ext2(Ext1(N,R),M) Ext2(Ext2(N,R),M) · · ·

...
...

...
. . .

Proposition 7.3. Let M,N be two R modules. Then the spectral sequence that comes
from a sign change of the double complex Hom(IM , JN ) where IM := 0 → I0 → I1 →
I2 → · · · and QN := 0 → J0 → J1 → J2 → · · · are injective resolutions of M and N
respectively, converges to E∞0,q = Extq(M,N) under one of the filtrations and under the
other filtration we get the following E2 page:



∗LHom0(M,N) ∗LHom1(M,N) LHom2(M,N) · · ·

L0Ext1(M,N) L1Ext1(M,N) L2Ext1(M,N) · · ·

L0Ext2(M,N) L1Ext2(M,N) L2Ext2(M,N) · · ·

...
...

...
. . .

To end this section we would like to say that even though we found similarities be-
tween the wrong derived functors studied in this paper and the classical ones, there is
an important difference to note. Although we can resolve any of the two inputs in the
classical derived functors, in these wrong derived functors resolving a different input
gives a totally different functor. As an example it is a straightforward calculation that
LHom(Z,Z) ' Z, but ∗LHom(Z,Z) ' 0.

8 Injective Cogenerator

In this section we will give some information about the functor ∗LHom which we will
relate with an injective cogenerator E and with its endomorphism ring S = End(E).
We will have some important conditions that this module E must satisfy, it must be a
noetherian ring or be a Morita duality (contravariant equivalence) module as described
in [5], that means a balanced injective cogenerator for R and S. To begin the discussion
of this section we introduce the concept of an injective cogenerator–the dual of a projec-
tive generator.

Definition 8.1 (Injective Cogenerator). An Injective Cogenerator E of a category C is
an injective object that satisfies the following condition: for every object A in C can be
embedded into a product of E i.e. There is an exact sequence 0→ A→

∏
I E for some

set I.

An equivalent definition of an injective cogenerator is that for every nonzero object
A in C there is a nonzero map f : A→ E.

An important property of an injective cogenerator is that the functor Hom(−, E)
is a faithfully exact functor. We won’t prove this property as we won’t use it on this
paper, however it motivates many of the ideas used. An injective cogenerator as R+,
the character module of R, could be a good module E to consider. However, there can
be other choices that could be used, as the minimal injective cogenerator which is the
injective hull of the direct sum of all simple modules in R-mod.



Proposition 8.1. If E is a Morita duality module or S is noetherian, we have that for
an injective R module I the S module I+ is a flat module.

Proof. If E us a Morita duality module then the module I+ would be a prjective module
and thus it is flat. Otherwise if S is noetherian we see that. For E an injective cogenerator
there is an embedding
0 → I →

∏
E for some (possibly infinite) product. But we know that if an injective

module is a submodule of another module then it is a direct summand. So that we can
write

∏
E ' I ⊕ J for some module J . If we then apply the functor Hom(−, E) we

see that
∏
S ' I+ ⊕ J+. As S is noetherian any product of copies of the ring S is a

flat module and so then I+ that is a direct summand of a flat module is itself flat, as
desired.

Lemma 8.1. For any modules M and N over a ring R. We have a natural map

M+ ⊗
End(E)

N e ψ−→ Hom(M,N)

Furthermore if E is a Morita duality module or S is noetherian, ψ is an isomorphism
when N is finitely copresented by E and M is an injective module.

Proof. We consider the maps ϕ : M → M ′ and φ : N → N ′ and to prove naturality we
do a diagram chase in the following diagrams:

M+ ⊗N e

(f◦ϕ)⊗n)
Hom(M,N)

(g(f(ϕ)))

M+ ⊗N e

(f⊗g)
Hom(M,N)

(g◦f)

(M ′)+ ⊗N e

(f⊗g)
Hom(M ′, N)

(g◦f)
M+ ⊗ (N ′)e

(f⊗φ(g))
Hom(M,N ′)

(φ(g(f)))

To prove that ψ is an isomorphism when N is finitely copresented by E and M is
injective we see the following diagrams:

0→ N → E⊕m → E⊕n for integers n and m.

0→ Hom(E,N)→ Hom(E,E⊕m)→ Hom(E,E⊕n) As Hom is left exact.

0→ M+ ⊗
End(E)

N e → M+ ⊗
End(E)

End(E)⊕m → M+ ⊗
End(E)

End(E)⊕n As M+ is flat.

Similarly,

0→ N → E⊕m → E⊕n for integers n and m.

0→ Hom(M,N)→ Hom(M,E⊕m)→ Hom(M,E⊕n) As Hom is left exact.

These two results yield the following commutative diagram:

0 M+ ⊗
End(E)

N e (M+)⊕m (M+)⊕n

0 Hom(M,N) (M+)⊕m (M+)⊕n

∼ ∼



Where all the down arrows are the natural isomorphisms and so we concludeM+ ⊗
End(E)

N e → Hom(M,N) is a natural isomorphism as desired.

Theorem 8.1. For any module M and N finitely copresented by E, the injective cogen-
erator, we have the following isomorphism:

∗LHom(M,N) 'M+
L
⊗
S
N e.

Proof. Let Q be a projective resolution P0 → P1 → P2 → · · · that is a resolution of M .
Then we have that

∗LHom(M,N) ' H(Hom(Q,N)) Left Derived Functor.

' H(Q+ ⊗
S
N e) By Lemma 8.1.

' TorS(M+, N e) Q+ Flat Resolution of M+.

So we know that the homology groups coincide and as we have the natural map ψ of

Lemma 8.1 we can see that ∗LHom(M,N) is homotopically equivalent to M+
L
⊗
S
N e and

so we have the following equivalence in the derived category

∗LHom(M,N) 'M+
L
⊗
S
N e.

In the next sections we will use the three theorems that we have proved to understand
the properties of the derived functors that we defined in this paper.

9 Rings of Dimension 2

In this section we will show a vanishing theorem for these rings. We will see that LiHom

∗LiHom and
Ri

⊗ are zero whenever i ≥ 1. To see this, we first show the following two
results.

Lemma 9.1. In a ring of Projective Dimension less than or equal to 2 we have that for
any module M the module M∨ is projective.

Proof. For M we have a presentation

F1 → F0 →M → 0,

where the F1, F0 are finitely generated free modules. By taking duals we get an exact
sequence 0→M∨ → P0 → P1 where Pi are projective modules, this happens as the dual
module of a projective module is projective. Then taking the cokernel C of the map
between P0 and P1 we have the exact sequence

0→M∨ → P0 → P1 → C → 0.



Then by a dimension shift argument we have that

Exti(M∨, N) ' Exti+2(C,N)

for i ≥ 1. As the projective dimension of the ring is 2 and i+ 2 > 2 then

Exti+2(C,N) ' 0

for all modules N . From this we get that Ext1(M∨, N) ' 0 for all modules N ; and we
conclude that M∨ is projective.

We can see that if R is a ring of injective dimension less than or equal to 2 and E is
a Morita duality module, then End(E) is a ring with projective dimension less than or
equal to 2. We will use this fact to prove the following lemma.

Lemma 9.2. In a ring of injective dimension less than or equal to 2 we have that any
finitely copresented by a Morita duality module E module M we have that the module
M e is projective.

Proof. For M we have a finite copresentation using the injective generator E,

0→M → E0 → E1

where the Ei are finite direct sums of E and C is the cokernel. Then, by applying the
left exact functor Hom(E,−) in Mod-End(E) we get an exact sequence

0→M e → F0 → F1 → C → 0

where F0, F1 are finitely generated free S modules and C is the cokernel of the map
between them. Then we have that M e is a projective S module by a dimension shifting
we argument as in the previous lemma.

Corollary 9.1. For any module M and N that satisfy the properties of Theorems 6.1,

6.2 or 8.1 respectively, will have that LiHom(M,N), ∗LiHom(M,N) or M
Ri

⊗N are iso-
morphic to 0 for i ≥ 1.

Using Corollary 9.1 we can see that in many common rings as are Z, any Dedekind
domain or even polynomial rings of 1 or 2 variables, the functors LiHom, ∗LiHom and
Ri

⊗ vanish for all values of i except possibly for i = 0.

10 Nonvanishing Examples: Regular Local Rings

In this section we will provide some example of non-vanishing LHom and
R
⊗ to showcase

that these functors are not identically 0 and that they may offer useful information for
some modules. To show these we will do it over regular local rings, proving this result
for this type of rings suggests that it is common over rings of higher dimensions that
these functors do not vanish.



A local ring is a ring that has a unique maximal ideal, a way of generating these rings
is by localizing any ring R over a maximal ideal m. There is a special kind of local rings
with some nice properties which we describe right now. We use the definition given in
[6].

Definition 10.1 (Regular Local Ring). A regular local ring is a noetherian local ring
R of dimension d with maximal ideal m and residue field k = R/m that satisfies any of
the following conditions:
(i) dimk(m/m

2) = d
(ii) m can be generated by d elements.

Condition (ii) is related to the following important property of regular local rings.

Definition 10.2 (Regular Sequence). A regular sequence in a regular local ring R is
made of elements f1, f2, ..., fd such that fi is not a zero divisor in R/(f1, f2, ..., fi−1) for
all i.

It is known that for all regular local rings there are regular sequences; however, we
won’t prove this result.

Lemma 10.1. If f1, f2, ..., fd is a regular sequence and M = R/(f1, ..., fn) then

Exti(M,R) '

{
0 if i 6= n

M if i = n

Proof. We will show by induction that there is a free resolution

0→ R⊕(nn) → ...→ R⊕(n0) → R/(f1, ..., fn)→ 0.

For n = 1 we have
0→ R

×f1−−→ R→ R/(f1)→ 0.

For the inductive step we take the free resolution of R/(f1, ..., fn)

0→ R⊕(nn) → ...→ R⊕(n0) → 0

and take the tensor product with the resolution of R/(fn+1)

0→ R
×f1−−→ R→ 0

doing this we get a double complex



R⊕(n0) R⊕(n0)

R⊕(n1) R⊕(n1)

...
...

R⊕(nn) R⊕(nn)

×fd

×fd

×fd

We would like to calculate the homology of the total complex

R⊕(nn) → R⊕((
n

n−1)+(nn)) → ...→ R⊕((
n
1)+(n0)) → R(n0) → 0

which is equivalent to

R⊕(n+1
n+1) → R⊕(n+1

n ) → ...→ R⊕(n+1
1 ) → R(n+1

0 ) → 0

which we would like to prove that is a free resolution of R/(f1, f2, ..., fn+1).

To prove this we will make the commutative diagram above into a double complex by
multiplying the maps on the right column by −1. Then we can calculate the homology
of the total complex by looking at the spectral sequence.

For the first page we look at the cohomology in the columns, which we know gives
us R/(f1, ..., fn) as they are resolutions. Then the page E1 looks like

R/(f1, ..., fn)
×fn+1−−−−→ R/(f1, ..., fn)

and as fn+1 is not a zero divisor then we get that the page E2 is

0 R/(f1, ..., fn+1).

This means that the cohomology of the total complex is R/(f1, ..., fn) at 0 and so indeed

R⊕(n+1
n+1) → R⊕(n+1

n ) → ...→ R⊕(n+1
1 ) → R(n+1

0 ) → R/(f1, ..., fn+1)→ 0

is a free resolution of R/(f1, ..., fn+1).

With this result we can now see that Ext(R/(f1, ..., fn), R) is the cohomology of

(R∨)⊕(n+1
n+1) ← (R∨)⊕(n+1

n ) ← ...← (R∨)⊕(n+1
1 ) ← (R∨)(

n+1
0 ) ← 0

, we can see that this complex agrees with the resolution of R/(f1, ..., fn) and so the only
non vanishing Ext is Extn(R/(f1, ..., fn), R) ' R/(f1, ..., fn). (We need to see that the
maps are actually the same, but this can be seen by induction as we have linear maps.
We just need to see their transposes and this is straightforward to do.)



We will now apply the spectral sequence found in Björk [7, pg. 58-61] in the setting
of a regular local ring and a module M = R/(f1, f2, ..., fn) where for n ≤ d, f1, f2, ..., fd
is a regular sequence.

Theorem 10.1. Let R be a regular local ring of dimension d ≥ 3 and maximal ideal
m, let k := R/m be its residue field. Then for any integer 1 ≤ ` ≤ d − 2 there exists a
module N such that:

N
R
⊗R ' k[−`]

in the derived category.

Proposition 10.1. [7, Proposition 4.15] For every module M , there is a spectral se-
quence that converges to M in its (0, n) position, where we consider the position (0, 0)
to be the bottom left corner. And for which one of the E2 pages of its filtration are the
following:

Extn(Extn(M,R), R) Extn(Extn−1(M,R)) · · · Extn(Ext0(M,R))

Extn−1(Extn(M,R), R) Extn−1(Extn−1(M,R), R) · · · Extn−1(Ext0(M,R), R)

...
...

...
...

Ext0(Extn(M,R), R) Ext0(Extn−1(M,R), R) · · · Ext0(Ext0(M,R), R)

Page E2 of the spectral sequence

We give a better picture of the spectral sequences, showing the differentials, by using
the shorthand notation δa,b = Exta(Extb(M,R), R). We then can picture the E2 page
as following:

. . .
...

...
...

...

· · · δ3,3 δ3,2 δ3,1 δ3,0

· · · δ2,3 δ2,2 δ2,1 δ2,0

· · · δ1,3 δ1,2 δ1,1 δ1,0

· · · δ0,3 δ0,2 δ0,1 δ0,0

Proof of Theorem 10.1. We use Proposition 10.1 with M = R/(f1, f2, ..., fn) = k the
residue field of our regular local ring. It is straightforward to see from 10.1 that only



Extn(Extn(M,R), R) ' k is a non-zero module in the E2 page. Having this in mind we
would like to make a dimension shifting argument to have this k away from the diagonal
of δi,i, and the way to do so is to consider the module K such that

K → F` → ...→ F1 →M

with ` > 2. With this K we have that that Exti(K,N) ' Ext`+i(k,N) for i ≥ 1.

Now if we look at this spectral sequence with M = K, the page E2 we can see
that only Hom(Hom(K,R), R) can be non-empty in the diagonal and as this diagonal
gives a filtration of K. We can also see that the only modules that cannot be 0 are
Extn(Extn−`(K,R), R), and those that are Exti(Hom(K,R), R).

Then by looking at the differentials going from Ext0(Ext0(K,R), R) through all pages
it will go to the positions where we had Extv(Extv−1(K,R), R) ' 0 and so as ` > 2, we
can conclude that K∨∨ ' K.

Finally, considering the module N = K∨ we have

Extn−`(Hom(N,R), R) 'M.

These are precisely the modules we were looking for.

Keeping with the discussion of the proof, looking at the module N we found that
Ext(N,R) 6' 0. In particular as N is finitely presented, then by Lemma 6.1

R
R
⊗N ' Exti(N∨, R) 'M

for i = n − `. As M is finitely presented we also have that N is flat iff it is projective
and so it is not flat and we would also find some A for which

LiHom(A,N) ' Tori(N∨, A) 6' 0.

So, even though for LiHom we did not give a concrete example, we know that for N we
should be able to find a nonzero LiHom.

One of the reasons why it is useful to prove the non-vanishing for local rings is how
they naturally arise in many contexts; and they are also helpful in describing other
rings, because after localizing at a prime ideal we get a local ring; furthermore, if Ext
is non-vanishing in the localization then it must also be non-vanishing in the original ring.
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