
UROP+ Final Paper, Summer 2017

Bernardo Antonio Hernandez Adame
Mentor: Jiewon Park

Supervisor: Professor Tobias Colding

August 31, 2017

Abstract

In this paper we explore the nature of self-similar solutions of the Curve Shortening Flow
and the Vortex Filament Equation, also known as the Binormal Flow. We explore some
of their fundamental conservation properties and describe the behavior of their self-similar
solutions. For Curve Shortening Flow we mainly expose the results of Huisken, Grayson, and
Halldorsson concerning the equation’s basic properties and self-similar solutions in the plane.
For the Vortex Filament Equation we present the results by Banica and Vega, Arms and
Hama, and Hasimoto. We also derive the evolution equations of the normal, binormal and
tangent vectors in the Frenet frame for the vortex filament as well as those of curvature and
torsion. We give a proof that circles are the only planar translating self-similar solutions and
also derive a system of ordinary differential equations that govern the behavior for rotating
self-similar solutions.
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1 Preliminaries

1.1 Sobolev Spaces

We begin with an understanding of Sobolev spaces which are the natural extension of smooth
functions that the solutions of PDEs will live in. These spaces serve will also become important
in the formulation of dilating self-similar solutions of the Vortex Filament Equation.

To explain Sobolev Spaces it is first necessary for us to introduce the notion of the weak
derivative of a function.

Let (Ω,Σ, µ) be a measurable space, f be a function on Ω. If f ∈ Lp(Ω) (1 ≤ p <∞) then

‖f‖p=(

∫
Ω
|f |pdµ)

1
p <∞

. If p =∞ then the norm is instead the essential supremum, defined as follows:

Definition 1.1.1 The essential supremum of a measurable function f : Ω → R with measure
µ is the smallest number α such that the set

{x
∣∣|f(x)| > α}

has measure zero. If no such α exists then it is taken to be infinity.

We shall denote this norm as ‖f‖∞ = ess supΩ|f |.
To say f is in C∞c (Ω) means that f is indefinitely differentiable and compactly supported.

Definition 1.1.2 (Weak Derivative) Let Ω ⊂ Rn be an open set. a function f ∈ L1
loc(Ω) is

said to be weakly differentiable to the ith variable if there exists gi ∈ L1
loc(Ω) such that∫

Ω
f∂iφdx = −

∫
Ω
giφdx

for all φ ∈ C∞c (Ω). We then call gi the weak ith partial derivative of f , denoted as usual ∂if .

It is clear from the definition that the weak derivative coincides with the common pointwise
derivative of a continuously differentiable function. However, a function that is not pointwise
differentiable almost everywhere can still have a weak derivative. For higher order derivatives
the following definition holds.

Definition 1.1.3 Let α = (α1, ..., αn) ∈ Nn be a multi-index and |α| = α1 + ... + αn = k. A
function f ∈ L1

loc(Ω) has a weak derivative of order k, denoted by Dαf , if∫
Ω

(Dαf)φdx = (−1)|α|
∫

Ω
f(Dαφ)dx

for all φ ∈ C∞c (Ω).

We now present some definitions and basic properties of Sobolev spaces without proof. We
direct the reader who seeks proofs of theorems as well as a more thorough understanding of
Sobolev spaces to chapter 5 of Evans’ work on PDEs ([1]) from where the notation and theorems
are taken.

Definition 1.1.4 (Sobolev Space) We denote with

W k,p(Ω)

as the space of all locally summable functions f : Ω→ R such that for each multi-index α with
|α| ≤ k, Dαf exists in the weak sense and belongs to Lp(Ω). If p = 2 it is common to use the
notation

Hk(Ω) = W k,2(Ω) (k = 0, 1, ...)
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Definition 1.1.5 (Norm of Sobolev Spaces) Let f ∈W k,p(Ω), we define the norm to be

‖f‖Wk,p :=

{
(Σ|α|≤k

∫
Ω|D

αf |pdx)1/p (1 ≤ p <∞)

Σ|α|≤kess supΩ|Dαf | (p =∞)

Definition 1.1.6 (Convergence in Sobolev Spaces) (i) Let f, {fm}∞m=1 ∈ W k,p(Ω). We
say that fm converges to f in W k,p(Ω), written

fm → f in W k,p(Ω),

given that
lim
m→∞

‖fm − f‖Wk,p(Ω)= 0.

(ii) We denote by

W k,p
0 (Ω)

as the closure of C∞c (Ω) in W k,p(Ω). That is to say that f ∈W k,p
0 (Ω) if there exists a sequence

fm ∈ C∞c (Ω) such that fm → f in W k,p(Ω).

The Fourier transform of a function is defined as follows:

Definition 1.1.7 Let f : Rn → C be a measurable function. Then the corresponding Fourier
transform is defined as

f̂(ζ) =

∫ ∞
−∞

f(x)e−2πix·ζdnx

.

Theorem 1.1.8 (Hk by Fourier Transform) Let f ∈ L2(Rn), then f ∈ Hk(Rn) if and only
if

(1 + |y|k)f̂ ∈ L2(Rn)

.
In addition there exists a positive constant C such that

1

C
‖f‖Hk(Rn) ≤ ‖(1 + |y|k)f̂‖L2(Rn) ≤ C‖f‖Hk(Rn)

for each f ∈ Hk(Rn).

Definition 1.1.9 (Non-integer Sobolev Spaces) Assume 0 < s < ∞ and f ∈ L2(Rn).
Then f ∈ Hs(Rn) if (1 + |y|s)f̂ ∈ L2(Rn). For non-integer s the norm becomes

‖f‖Hs(Rn) := ‖(1 + |y|s)f̂‖L2(Rn).

To finish this section we present a small discussion of negative order Sobolev spaces which
will be relevant when discussing dilating solutions of the Vortex Filament Equation.

Definition 1.1.10 Denote as H−1(Ω) as the dual to H1(Ω). The norm of this space will be
defined as follows

‖f‖H−1(Ω) = sup{〈f, u〉|u ∈ H1
0 (Ω), ‖u‖H1

0 (Ω) ≤ 1}.

Theorem 1.1.11 (Characterization of the Dual Space) Assume f ∈ H−1(U). Then there
exist functions f0, f1, ..., f1 in L2(Ω) such that

〈f, ν〉 =

∫
Ω
f0ν +

n∑
i=1

f iνxidx (ν ∈ H1
0 (Ω))

Furthermore,

‖f |H−1(Ω) = inf{(
∫

Ω

n∑
i=0

|f i|2dx)1/2| f satisfies (1) for f0, ..., fn ∈ L2(Ω)}
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For spaces H−k it coincides with the sense of the previous definition in that they will be
the dual of the Sobolev space Hk

0 . For the rest of this paper the reader may assume that all
derivatives are to be taken in the point-wise sense unless otherwise required in the ambient
space.

1.2 Self Similar Solutions and Geometric PDEs

In this section we shall discuss the nature of self-similar solutions as well as provide some
background on Geometric PDEs, which are the main focus of this paper.

The term self-similar is often used to describe solutions to partial differential equations that
demonstrate a particular invariance towards scaling, or in a sense ‘look the same’ at all times.
Their importance comes from the fact that they can be used to observe the behavior of a PDE
at a singularity by ‘blowing it up’. In a sense the scaling invariance allows one to create a blow
up sequence and rescale time in order to get a clearer picture of the behavior of that PDE at
the singularity.

This technique will become clearer in our discussion of Grayson’s Theorem when it is used
to see the behavior of a point that is ‘blown up’ backwards in time. Here we shall give a basic
example of a self-similar solution to the 2-dimensional heat equation, however, for Geometric
PDEs, self-similar solutions can be taken to not only be invariant in rescaling but also in
translations and rotations. These invariances then give dilating, translating, and rotating self-
similar solutions. It is important to note that one can have self-similar solutions that express
more than one of these properties.

Theorem 1.2.1 (Self-similar solution of the heat equation) Consider the heat equation
with the following initial value problem

ut − kuxx = 0

t > 0,−∞ < x <∞

Then

u(x, t) =
1√
4kt

e−x
2/(4kt)

is a self-similar solution of this equation, i.e. it satisfies uα(x, t) = αu(αx, α2t) for any α > 0.

Proof Before beginning we must set the following condition on the solution:

I(t) :=

∫ ∞
−∞

u(x, t)dx <∞, (1)

lim
x→±∞

ux(x, t) = 0 (2)

To find a self-similar solution we first begin by finding a solution uα(x, t) of the form
uα(x, t) = αu(αx, α2t), such that u(x, t) = uα(x, t) for all α, t > 0, x. The previous condi-
tion satisfies the invariance of a self-similar solution, and this method of rescaling variables is
called parabolic rescaling.

If we then take α = t−1/2 to get rid of the time variable, we have that

u(x, t) =
1√
t
u(

x√
t
, 1) =

1√
t
φ(

x√
t
)

.
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Then we get the following equations by taking the derivatives:

ut = −1

2
t−3/2[φ(

x√
t
) +

x√
t
φ′(

x√
t
)] (3)

ux =
1

t
φ′(

x√
t
) (4)

uxx = t−3/2φ′′(
x√
t
) (5)

We then make the substitution ζ = x√
t

and plug into our heat equation to obtain the

following ODE:

−1

2
[φ(ζ) + ζφ′(ζ)]− kφ′′(ζ) = 0

.
Finally, solving this ODE gives

φ(ζ) = Ce−
ζ2

4k

so that u(x, t) = 1√
4πkt

e−
ζ2

4k where C = 1√
4kπ

in order to normalize I(t).

The method used in the previous proof of parabolically rescaling the variable is used when
attempting to find dilating solutions of the vortex filament equation.

In the description of geometric properties of manifolds there are often situations that arise
which are modeled with a system of PDEs, this then allows us to use the tools of PDE theory
to be able to investigate the geometric, analytic, and topological properties of the objects these
equations describe. Geometric PDEs have a wide range of applications, from aiding in the
solution of previously open problems such as the Poincaré conjecture and the differentiable
sphere theorem, to applications in image and sound processing.

In this paper we mainly concern ourselves with Geometric Flows. These are systems of
equations that describe the deformation of metrics on Riemannian manifolds driven by the
geometric quantities such as curvature, volumes, etc. In this paper we present a discussion on
two quasi-parabolic geometric flows: Curve Shortening Flow and the Vortex Filament Equation.

2 Curve Shortening Flow

Curve Shortening Flow (CSF) is a geometric quasi-parabolic equation for curves that serves
as an analogous flow to the Vortex Filament Equation. This geometric flow equation has
been extensively studied and we have derived many of its more important properties such
as monotonicity formulas, and maximum principle estimates that combine with the blowup
analysis we mentioned earlier while discussing self-similar solutions to give Huisken’s ([3]) proof
of Grayson’s Theorem.

Definition 2.0.1 (Curve Shortening Flow) A family of embedded curves {Γt ⊂ R2}t∈I
moves by curve shortening flow if the normal velocity at each point is given by the curvature
vector:

∂tp = ~κ(p) (6)

for all p ∈ Γt and all t ∈ I. Here, I is an interval, ∂tp is the normal velocity at p, and ~κ(p) is
the curvature vector at p.

We now provide an important example of an explicit solution which also happens to be the
only self-similar translating solution of curves evolving under CSF:

5



Grim Reaper Curve Take y(x, t) = t− log cos(x) then under CSF this curve moves upwards
without changing its shape. Any curve similar, by either scaling translation or rotation, to the
grim reaper is also translated in the direction of the axis of symmetry without changing shape
or orientation, satisfying what is to be expected of a self-similar solution. Interestingly it is the
only curve with this property ([13]).

2.1 Properties of Curve Shortening Flow

We will focus on the evolution of closed embedded curves. For this section we mainly present
the theorems of Haslhofer’s notes on CSF ([2]) and his discussion on blow-up methods for
singularities. The main part of this section will be the presentation by Haslhofer of Huisken’s
proof of Grayson’s Theorem ([6]) from his lecture notes ([2]), for which we shall present all
the necessary machinery without proof. Although there are various other proofs of Grayson’s
Theorem, some more geometric than others and requiring less machinery, the purpose of this
one is to demonstrate the utility of self-similar solutions and why we seek to discover them.

CSF can also be rewritten by taking

γ = γ(·, t) : S1 × I → R2 (7)

with Γt = γ(S1, t). Setting p = γ(x, t), the equation transforms into

∂tγ(x, t) = κ(x, t)N(x, t). (8)

Remark The evolution can also be written in the form

∂tγ = ∂2
sγ, (9)

where s denotes arc length if one were to transform from the Frenet frame of reference to the
Cartesian plane.

First we present some facts of CSF and derive some of its basic properties such as evolution
for the length functional.

Theorem 2.1.1 (Evolution of Arclength) Define L(t) :=
∫
ds to be the arclength func-

tional. A curve γ evolving under CSF has decreasing arclength which obeys the following evo-
lution equation:

∂tL = −
∫
κ2ds. (10)

Proof From calculus we have that L(t) =
∫
ds =

∫
S1〈γx, γx〉1/2dx where x ∈ S1.

We take the derivative with respect to time and proceed to differentiate under the integral
to obtain

∂tL =

∫
S1

〈∂xtγ, T 〉du (11)

=

∫
S1

〈∂txγ, T 〉du (12)

=

∫
S1

〈∂x(κN), T 〉dx (13)

were T and N are the tangent and normal vectors, respectively. From the Frenet equations
we have that ∂xT = s′(x)κN and ∂xN = −s′(x)κT . So substituting this gives that the only
component not zero by orthogonality is −κ2, turning (13) into

∂tL = −
∫
S1

κ2s′(x)dx = −
∫
κ2ds

as desired.
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Remark This could also be easily derived from the first variation formula of arc-length, which
says that if a curve moves with normal velocity v the length of the curve changes by −

∫
κv.

This theorem also shows why it is considered that curves under CSF decrease their length most
efficiently.

Proposition 2.1.2 (Evolution of Curvature) Suppose that γ is a curve that satisfies CSF,
then its curvature satisfies the evolution equation

κt = κss + κ3. (14)

Proof We work here with a parametrization such that |∂xγ| = 1 and 〈∂2
xγ,N〉 = 0 at the point

(x, t). By definition κ = |∂xγ|−2〈∂2
xγ,N〉 compute

κt = ∂t〈∂xxγ,N〉 − 2〈T, ∂xtγ,N〉 = 〈∂txγ,N〉 − 2κ〈T, ∂txγ〉 (15)

since Nt moves in the tangent direction and ∂xxγ = κN . Using the orthogonality relations
between tangent and normal vectors and plugging in (8) we obtain

∂tκ = ∂xxκ+ κ〈∂xxN,N〉 − 2κ2〈T, ∂xN〉 (16)

= ∂xxκ− κ〈∂xN, ∂xN〉+ 2κ3 (17)

= κss + κ3 (18)

where we used that ∂xN = −κT .

We now present the following corollary without proof:

Corollary 2.1.3 (Conservation of Convexity) Convexity is preserved under curve short-
ening flow, i.e. if κ > 0 at t = 0 then κ > 0 for all t ∈ [0,∞).

We now present an important formula without proof derived by Huisken ([4]) that is useful
when trying to look at blow-up analysis on singularities of CSF as described in Section 1.2 since
this equation is invariant under parabolic scaling.

Definition 2.1.4 (Heat Kernel) Let X0 = (x0, t0) and denote by ρX0(x, t) the backwards
Heat Kernel. We then define it as

ρX0(x, t) = (4π(t0 − t))−1/2e
− |x−x0|

2

4(t0−t) (19)

for t < t0.

Theorem 2.1.5 (Huisken’s Monotonicity Formula) Let {Γt} be a family of curves that
move by CSF, then

d

dt

∫
Γt

ρX0ds = −
∫

Γt

∣∣∣κ+
〈γ,N〉

2(t0 − t)

∣∣∣2ρX0ds (t < t0‘) (20)

Although the goal of the following theorem is to prove existence and uniqueness for solutions
of CSF its importance is in the maximal existence time curvature.

Theorem 2.1.6 (Existence and Uniqueness) Let γ0 : S1 → R2 be an embedded curve.
Then there exists a unique smooth solution γ : S1 × [0, T ) → R2 of curve shortening flow
defined on a maximal interval [0, T ). The maximal existence time is characterized by

sup
S1×[0,T )

|κ| =∞ (21)
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Theorem 2.1.7 (Local Regularity Theorem ([7],[8])) Let X = (x, t) be a point in space-
time and Pr(X) = Br(x) × (t − r2, t] for the parabolic ball with center X and radius r. There
exist universal constants ε > 0 and C <∞ with the following property. If {Γt ⊂ R2}t∈(t0−2r2,t]

is a curve shortening flow with

sup
X̄0∈Pr(X0)

Θ
(
{Γt}, X̄0, r

)
:=

∫
Γt0−r2

ρ(x0,t0)ds < 1 + ε, (22)

then

sup
Pr/2(X0)

|κ| ≤ C

r
(23)

The importance of Theorem 2.1.7 shall be when we create blowup sequences that are close
to a circle as we approach the singularity, and won’t allow for it to be a straight line. This
is a fact we shall use to show that the curve must become a circle in the proof of Grayson’s
Theorem.

Theorem 2.1.8 (Hamilton’s Harnack Inequality([9])) If {Γt ⊂ R2}t∈[0,T ) is a convex so-

lution of CSF then κt
κ −

κ2
s
κ2 + 1

2t ≥ 0

We now present Huisken’s distance comparison principle between the extrinsic and intrinsic
distances ([5]). It shows that embededness is preserved by CSF.

Theorem 2.1.9 (Huisken’s Distance Comparison Principle ([5])) If a family of closed
embedded curves X in the plane evolves by CSF, then the following equation

R(t) := sup
x 6=y

L(t)

πd(x, y, t)
sin

πl(x, y, t)

L(t)
, (24)

where L(t) is the total length of the curve, l(x, y, t) is the intrinsic distance between X(x, t) and
X(y, t), and d(x, y, t) = |X(x, t)−X(y, t)|, is non-increasing in time.

The important part to take away from this theorem is that the intrinsic and extrinsic distance
equation is bounded by R(0) < ∞. Particularly this implies that the grim reaper solutions
cannot arise as a blow-ip limit of CSF closed embedded curves.

We finish this section with Huisken’s proof of Grayson’s Theorem ([6]) via the method of
singularity blow-up which we present in full to demonstrate the utility of self-similar solutions.
First we make the following definition of a blow-up point for CSF.

Definition 2.1.10 (Blow-up Point) We say that x0 ∈ R2 is a blowup point if there are
sequences ti → T , pi ∈ Γt such that |κ|(pi) → ∞ and pi → x0, i.e it achieves the curvature of
the maximal existence point as defined in Theorem 2.1.6.

Theorem 2.1.11 (Grayson’s Theorem ([6])) If Γ ⊂ R2 is a closed embedded curve, then
the curve shortening flow {Γt}t∈[0,T ) with Γ0 = Γ exists until T = AΓ

2π and converges for t→ T
to a round point, i.e. there exists a unique point x0 ∈ R2 such that the rescaled flows

Γλt := λ ·
(
ΓT+λ−2t − x0

)
(25)

converge for λ→∞ to the round shrinking circle {∂B√−2t}t∈(−∞,0)

To prove this theorem the following lemma is needed

Lemma 2.1.12 Along CSF we have that

d

dt

∫
Γt

|κ|ds = −2
∑

x:κ(x,t)=0

|κs|(x, t) (26)
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Proof Since solutions of CSF are analytic there are only a finite number of inflection points,
giving

d

dt

(∫
{κ≥0}

κds−
∫
{κ≤0}

κds
)

=

∫
{κ≥0}

κssds−
∫
{κ≤0}

κssds

and integrating by parts gives the results.

Proof (Proof of Theorem 2.1.11) Let T < ∞ be the maximal existence time of CSF starting
at Γ. Suppose towards a contradiction

lim sup
t→T

(
(T − t) max

Γt
κ2
)

=∞ (27)

i.e. we have a type II blow-up. For any integer k ≥ 1/T we let tk ∈ [0, T − 1
k ], xk ∈ S1 be such

that
κ2(xk, tk)(T − 1/k − tk) = max

t≤T−1/k,x∈S1
κ2(x, t)(T − 1/k − t). (28)

We also set

λk = κ(xk, tk), t
(0)
k = −λ2

ktk, t
(1)
k = λ2

k(T − 1/k − tk).

We can then say, thanks to (27), that for any M ≤ ∞ there exist t̄ < T and x̄ ∈ S1 such
that κ2(x̄, t̄)(T − t̄) > 2M . For k large enough we have

t̄ < T − 1/k, κ2(x̄, t̄)(T − t̄− 1/k) > M. (29)

Then it follows that

t
(1)
k = κ2(xk, tk)(T − 1/k − tk) ≥ κ2(x̄, t̄)(T − 1/k − t̄) > M. (30)

So then since t
(1)
k is increasing andM is arbitrary, this implies t

(1)
k →∞, so then λk →∞, tk → T

and t
(0)
k → −∞.

Then consider the sequence of the rescaled flow

Γkt = λk ·
(

Γtk+λ−2
k t − xk

)
, t ∈ [t

(0)
k , t

(1)
k ). (31)

and we find that by construction, Γkt has κk = 1 at t = 0 at the origin. Then by our choice
(xk, tk) implies

κ2
k(x, t) ≤

T − 1/k − tk
T − 1/k − tk − λ2

kt
=

t
(1)
k

t
(1)
k − t

, t ∈ [t
(0)
k , t

(1)
k ). (32)

Then we have that after passing to a subsequence, we get the smooth limit {Γ∞t }t ∈ (−∞,∞).
Then we have by our previous formulation that the limit κ = 1 at the time 0 at the origin, and
κ2 ≤ 1 at every point for all time. Then by the previous Lemma the limit satisfies∫ ∞

−∞

∑
x:κ(x,t)=0

|κs|(x, t)dt = 0 (33)

i.e. if κ = 0 then κs = 0 as well. Then, using the evolution equations and analyticity this
implies that {Γ∞t }t∈(−∞,∞) is a straight line, a contradiction.

This then gives that κ > 0, and by equality in the case of Hamilton’s Harnack Inequality,
and the fact that a translating soliton for CSF must be a grim reaper curve, this contradicts
the bound for the ratio between intrinsic and extrinsic distance.

So then we have shown the a type I blow-up rate

lim sup
t→T

(
(T − t) max

Γt
κ2
)
<∞ (34)

To finish the discussion we simply need to prove the following claim:
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Claim 2.1.13 Define the parabolic scaling of a family of curves that satisfy CSF {Γλt }t∈[−λ2T,0)

where Γλt := λ · (ΓT+λ−2t − x0). Then, for the limit as λ → ∞, these converge smoothly to a
family of round shrinking circles {∂B√−2t(0)}t∈(−∞,0).

To finish the proof we rescale the blowup rate and try to show that the limit intersects families
of round shrinking circles.

max
Γλt

|κ| ≤ C√
−t
, t ∈ [−λ2T, 0). (35)

We have in our previous argument found a subsequence of λk such that {Γλkit } converges
smoothly to a limit. By construction, the limit is an ancient solution of CSF. Then we can
use the definition of blow-up points and comparing with round shrinking circles we can see
that Γλ−1 ∩ B2(x0) 6= ∅ for λ large enough. So then the limit is not empty. Then by Huisken’s
Monotonicity Formula for all t1 < t2 < 0 it gives that∫ t2

t1

∫
Γλt

∣∣∣κ+
〈γ,N〉

2(t0 − t)

∣∣∣2ρdsdt = −
[ ∫

Γλt

ρX0ds
]T−t2/λ2

T−t1/λ2
→ 0 (36)

as λ→ 0. So then the limit is self-similarly shrinking and completely determined by its slice at
t = −1 satisfying

κ+
〈γ,N〉

2
= 0. (37)

Then by the local regularity theorem it cannot be a straight line, so then Γ−1 must be a circle
of radius

√
2 which completes the theorem.

2.2 Self-Similar Solutions of Curve Shortening Flow

In this section we summarize the work of Halldorsson ([10]) who gave the classification of all
self-similar embedded curves that evolve under CSF in the plane. We also direct the reader to
the work of Altschuler et al ([11]) who classified the solitons of CSF in Rn through the creation
of a group acting on curves evolving under CSF that produced self-similar solutions that turned
the PDE into an ordinary differential equation.

We return now to the work of Halldorsson and follow his steps to derive the family of ODE’s
that provide self-similar solutions and state his theorems in full. In [10] self-similar solutions
were classified under the following classifications:

• Translating Curves: Only the Grim Reaper curve

• Expanding Curves: A one dimensional family of curves. Each is properly embedded and
asymptotic to the boundary of a cone.

• Shrinking Curves: A one-dimensional family of curves. Each is contained in an annulus
and consists of identical excursions between both boundaries.

• Rotating Curves: A one-dimensional family of curves. Each is properly embedded and
spirals out to infinity.

• Rotating and Expanding: A two dimensional family of curves, properly embedded that
spiral out to infinity.

• Rotating and Shrinking Curves: A two-dimensional family of curves, with an end asymp-
totic to a circle and the other either similarly asymptotic or spiraling out to infinity.
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Consider instead of CSF acting on curves mapping R to R2 that they were mapped instead
to the C, the change of space allows one to simplify the action of rotations on the curve. Now,
following the steps of Halldorsson let X : R× I → C be a curve evolving under CSF, and being
a self-similar solution it is of the form

X̂(x, t) = g(t)eif(t)X(x) +H(t) (38)

where I is an interval 0, and f, g,H are all differentiable functions such that f(0) = 0, g(0) = 1
and H(0) = 0 so that X̂(x, 0) = X(x).

In C we define the normal vector N(x, t) = iT (x, t). Then plugging in (38) into the definition
of CSF gives

g2(t)f ′(t)〈X(x), T (x)〉+ g(t)g′(t)〈X,N〉+ g(t)〈e−if(t)H ′(t), N〉 = κ(x). (39)

Since this equation must hold for all (x, t) ∈ R × I. For t = 0 the curve must then satisfy
the following ODE:

A〈X,T 〉+B〈X,N〉+ 〈C,N〉 = κ(x) (40)

where A = f ′(0), B = g′(0), and C = H ′(0).
Looking at solutions where the dilation term vanishes gives

A〈X,T 〉+B〈X,N〉 = κ. (41)

We now look to prove the following theorem:

Theorem 2.2.1 (Existence of Embedded Self-Similar Curves [10]) For each value of A
and B there exists an immersed curve X satisfying (41).

To ensure that (40) exists for all time choose g2f ′ = A and g(t)g′(t) = B for all t ∈ I. We
choose f and g to be

f(t) =

{
A
2B log(2Bt+ 1) if B 6= 0,

At if B = 0

and
g(t) =

√
2Bt+ 1. (42)

Thanks to these equations we see that X rotates around the origin, with exception of if A = 0
of course, and dilates outwards for B > 0 and inwards if B < 0. Including the rotation term C
only causes the curve to screw-dilate around the point −C

B+iA . For curves that only translate we
have that it can only give a Grim Reaper Curve as was shown in [13].

Now consider a parametrization by arclength and use the Frenet equations to obtain the
following relations

d

ds
〈X,T 〉 = 1 + κ〈X,N〉, (43)

d

ds
〈X,N〉 = −κ〈X,N〉. (44)

Then define the equations

x = A〈X,T 〉+B〈X,N〉 (45)

y = −N〈X,T 〉+A〈X,N〉 (46)

x+ iy = (A− iB)(〈X,T 〉+ i〈X,N〉), (47)

that satisfy

x′ = κy +A, (48)

y′ = −κx−B. (49)
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and from these equations we can rewrite X to be

X = eiθ(s)
x+ iy

A− iB
(50)

where θ(s) =
∫ s

0 κ(z)dz + θ0 and T (0) = eiθ0 . Since we now look for curves that satisfy x = κ,
we substitute this into (48) and (49), as well as the definition of θ to obtain

x′ = xy +A (51)

y′ = −x2 −B (52)

with initial conditions x0 and y0.
We then see that by these equations

X ′ = eiθ,

so that then T = eiθ and X is parametrized by arclength, so then κ = θ′ = x. To finish the
proof we simply run through the following calculation

A〈X,T 〉+B〈X,N〉 = 〈X, (A+ iB)Y 〉 (53)

= Re(X(A− iB)e−iθ) (54)

= x (55)

= κ (56)

finishing the theorem.
All the possible values of A,B create then a 2 parameter family of ODEs that govern the

creation of self-similar curves for CSF, and are classified as in the beginning of this section. The
differing possible values for A and B are what splits CSF into the following 4 cases:

• A 6= 0 and B ≥ 0 gives rotating expanding curves.

• A 6= 0 and B < 0 gives rotating shrinking curves.

• A = 0 and B < 0 gives only shrinking curves.

• A = 0 and B > 0 gives only expanding curves.

Halldorson then goes on a case by case basis of solving the ODEs and finding their significant
properties and deriving the following theorems which we present without proof and direct the
reader to [10] in order to not only see their proof but also the accompanying graphics.

Theorem 2.2.2 (A 6= 0 and B ≥ 0) The curves are properly embedded, have one point closest
to the origin and consist of two arms coming out from this point which strictly go away from
the origin to infinity. Each arm has infinite total curvature and spirals infinitely many circles
around the origin. The curvature goes to 0 along each arm, and their limiting growing direction
is B + iA times the location.

The curves form a one-dimensional family parametrized by their distance to the origin, which
can take on any value in [0,∞).

If B = 0, then under the CSF the curves rotate forever with constant angula speed A.
If B > 0, then under the CSF the curves rotate and expand forever with angular function

A
2B log(2Bt+ 1) and scaling function

√
2Bt+ 1.

Theorem 2.2.3 (A 6= 0 and B < 0) In this case there are two types of curves. 1) Curves such
that the limiting behavior when going along the curve in each direction is wrapping around the
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circle of radius 1√
−B , clockwise if A < 0 and counterclockwise if A > 0. These curves form a

one-dimensional family.
2) Curves such that the curvature never changes sign and the two ends behave very differ-

ently. One end wraps around the circle with radius 1√
−B in its limiting behavior, clockwise if

A < 0 and counterclockwise if A > 0. The other end spirals infinitely many circles around the
origin out to infinity and has infinite total curvature. The curvature goes to 0 along it, and its
limiting growing direction is −B − iA times the location. There is at least one curve of this
type, and we call it the comet spiral.

These curves rotate and shrink with angular function A
2B log(2Bt + 1) and scaling function√

2Bt+ 1 under the CSF. A singularity forms at time t = − 1
2B . The curves of type 1 are

bounded, so they disappear into the origin.

Theorem 2.2.4 (A = 0 and B < 0) Each of the curves is contained in an annulus around the
origin and consists of a series of identical excursions between the two boundaries of the annulus.
The curvature is an increasing function of the radius and never changes sign. The inner and
outer radii of the annulus, rmin and rmax, satisfy rmin exp(Br2

min/2) = rmax exp(Br2
max/2) and

take on every value in (0, 1√
−B ] and [ 1√

−B ,∞), respectively.

The curves form a one-dimensional family parametrized by rmin and are divided into two
sets:

1) Closed curves, i.e., immersed S1 (Abresch-Langer curves ([12])). In addition to the circle,
there is a curve with rotation number p which touches each boundary of the annulus q times for
each pair of mutually prime positive integers p, q such that 1

2 <
p
q .

2) Curves whose image is dense in the annulus.
Under the CSF these curves shrink with scaling function g(t) =

√
2Bt+ 1 until they disap-

pear into the origin at time t = − 1
2B .

Theorem 2.2.5 (A = 0 and B ≥ 0) Each of the curves is convex, properly embedded and asymp-
totic to the boundary of a cone with vertex at the origin. It is the graph of an even function.

The curves form a one-dimensional family parametrized by their distance to the origin, which
can take on any value in [0,∞).

Under the CSF these curves expand forever as governed by the scaling function g(t) =√
2Bt+ 1.

3 The Vortex Filament Equation

The Vortex Filament Equation (VFE)

∂tγ = ∂sγ × ∂ssγ,

where s is the arc-length, arises in the consideration of vortices with infinitesimal thickness of
size and whose effects at infinity can be ignored. It has applications in the description on the
shape of vortices and the interaction of vortex lines and has applications in aerodynamics as
well as high energy quantum fluids. Here we present a derivation of the equation by the Local
Induction Principle as given by Arms and Hama ([14]).

Hama and Arms first consider the Biot-Savart law:

dqij = − k

4π
r−3
ij

∂rij
∂si
× rijdsj . (57)

Here k is a scalar and is the strength of the vortex, dqij is the induced velocity at the point ri
by the vortex segment dsj at the point ri, and rij is the vector distance between the points ri
and rj .
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Begin by expanding through a Taylor Series the vector

rij(ζ, t) = ri(si, t)− rj(si + ζ, t).

Assuming that ζ is small then the expression becomes:

rij(ζ) = a1ζ + a2ζ
2 + ... (58)

where the substitutions
a1 = ∂ζrij , a2 = ∂2

ζ rij , ... at ζ = 0 (59)

are made.
This gives that ∂rij/∂si = ∂rij/∂ζ = a1 + 2a2ζ + ... and

−∂rij/∂si × rij = (a1ζ + a2ζ
2 + ...)× (a1 + 2a2ζ + ...) (60)

= (a1 × a2)ζ2 +O(ζ3) (61)

= (a1 × a2)|ζ|2. (62)

Similarly to find the value of the distance vector,

|rij |2 = |(a1ζ + a2ζ
2 + ...)2| (63)

= |a1|2|ζ|2 + 2a1 · a2ζ
3 + ... (64)

rij = |a1||ζ|
(

1 + 2
a1 · a2

|a1|2
ζ + ...

)
(65)

so that we can then take the exponent and expand the binomial to obtain

r−3
ij = |a1|−3|ζ|−3

(
1− 3

a1 · a2

|a1|2
ζ + ...

)
.

Finally, this gives the expression

qij =
k

4π

∫ [a1 × a2

|a1|3
1

|ζ|
+O(1)

]
dζ. (66)

Arms and Hama then consider integration over the limit ε ≤ |ζ| < 1, one obtains that

qij =
k

2π

a1 × a2

|a1|3
1

|ε|
+O(1)

]
and by re-substituting an = 1

n!∂
nrij/∂ζ

n they obtain:

4π

k
qij =

(∂r/∂s)i × (∂2r/∂s2)i
|(∂r/∂s)i|3

log(
1

ε
) +O(1) (67)

Then considering the infinitesimal limit for ε << 1 and ignoring the terms O(1), whch is
equivalent to ignoring long distance effects, we may write the previous expression as

∂r

∂t
=

(∂r/∂s)× (∂2r/∂s2)

|(∂r/∂s)|3
(68)

The high nonlinearity of this equation makes for explicit solutions to be hard to find. We
then look for self-similar solutions to understand the behavior of vortices under this equation.
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3.1 Properties of Vortex Filament Equation

We present in this section some of the basic properties of VFE and conclude it with a proof
that the only self-similar translating solutions that lie in a plane for all time are circles moving
in the binormal direction.

Lemma 3.1.1 (Arc-Length Commutator) Let γ be a curve evolving by the Vortex Filament
Equation. Then it satisfies the following commutator relation, where x is arclength:[ ∂

∂t
,
∂

∂s

]
:=

∂2

∂t∂s
− ∂2

∂s∂t
= 0. (69)

In other words,

γts = γst (70)

Proof Using ∂
∂s = |∂γ∂u |

−1 ∂
∂u , where u is an arbitrary parameter, we compute

γst = (|γu|−1γu)t (71)

= −|γu|−3〈γtu, γu〉γu + |γu|−1γtu (72)

= −|γu|−3〈κBu, γu〉γu + γts (73)

= κ〈Bs, T 〉γs + γts (74)

= γts, (75)

because Bs = −τN .

Corollary 3.1.2 (Evolution of the Normal Vector, Curvature and Torsion) Let γ be a
curve evolving under Binormal Flow, N be its corresponding normal vector and F (s, t) =
τ2 − κss

κ . Then the evolution of the normal vector satisfies ∂tN = τκT − F (s, t)B, the evo-
lution for curvature satisfies κt = −(2κsτ +τsκ), and the evolution equation for torsion satisfies
∂tτ = −κκs + Fs(s, t).

Proof We have that ‖N‖2 = 1 so then ∂t(‖N‖2) = 2〈Nt, N〉 = 0. We can therefore separate
∂tN into tangential and binormal components. We now define F (x, t) = 〈N,Bt〉 and calculate

d

dt
〈N,T 〉 = 〈Nt, T 〉+ 〈N,Tt〉 = 0 (76)

〈Nt, T 〉 = −〈N,Tt〉 = τκ (77)

〈Nt, B〉 = −〈N,Bt〉 = −F (s, t). (78)

Since by the definition of VFE, Tt = ∂s(κB) = κsB − τκN . Using that 〈N,T 〉 = 〈N,B〉 = 0,
we compute

Nt =
[∂ssγ
κ

]
t

(79)

= −κt
κ2
γss +

1

κ
γsst. (80)
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We now calculate γsst as follows:

∂sγ =
1

|γx|
γx (81)

∂ssγ =
1

|γx|
∂x(|γx|−1γx) (82)

=
γxx
|γx|2

(83)

∂sstγ = ∂t(
γxx
|γx|2

) (84)

= −2|γx|−3〈γxt, γx〉γxx +
γxxt
|γx|2

(85)

=
γtxx
|γx|2

= (κB)ss = κssB + 2κsBs + κBss (86)

= κssB − 2κsτN + κ(−τsN + κτT − τ2B). (87)

Combining our results we get that

Nt = −κt
κ
N +

κss
κ
B − 2

κsτ

κ
N − τsN + κτT − τ2B. (88)

= −
(κt
κ

+ 2
κsτ

κ
+ τs

)
N + τκT +

(κss
κ
− τ2

)
B. (89)

From this we can conclude that κt = −(2κsτ+τsκ) since 〈Nt, N〉 = 0, and that F (s, t) = τ2−κss
κ .

Our final expression for the evolution of the normal vector is then

Nt = τκT +
(κss
κ
− τ2

)
B. (90)

To compute the evolution equation for torsion we first compute the evolution for the Binor-
mal Vector:

B = T ×N (91)

Bt = Tt ×N + T ×Nt (92)

= −κsT + F (s, t)N = −κsT +
(
τ2 − κss

κ

)
N. (93)

Continuing, we calculate

∂t(τN) = ∂t(∂sB) (94)

= ∂s(∂tB) (95)

= ∂s

[
− κsT + F (s, t)N

]
(96)

= −κssT − κsκN + Fs(s, t)N − κF (s, t)T + τF (s, t)B (97)

=
[
− κss − κF (s, t)

]
T −

[
κsκ+ Fs(s, t)

]
N + τF (s, t)B. (98)

Thus since ∂t(τN) = ∂tτN + τNt we have that

∂tτ = −κκs + 2ττs −
κsss
κ

+
κssκs
κ2

.

Lemma 3.1.3 (Planar Translating Self-similar Solutions) The only solutions of VFE that
lie in a translating plane are the line and the circle, with the latter traveling in the binormal
direction.
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Proof Take γ = (f(s, t), g(s, t), h(s, t)) to be a space curve in R3 parametrized by arclength
and having torsion 0.

Then ∂tγ = (∂tf(s, t), ∂tg(s, t), ∂th(s, t)), ∂sγ = (∂sf(s, t), ∂sg(s, t), ∂sh(s, t)), and ∂ssγ =
(∂ssf(s, t), ∂ssg(s, t), ∂ssh(s, t)).

Using the definition of VFE equation we calculate that

∂tγ = κB (99)

= ∂sγ × ∂ssγ (100)

= (gshss − gsshs, fsshs − fshss, fsgss − fssgs) (101)

Since curvature is invariant under rotation and the solutions of the curve are invariant under
translations, it suffices to solve for equations lying in the x-y plane of our chosen coordinate
system.

Also the Frenet Equations under the initial conditions become

∂sT = κN (102)

∂sN = −κT (103)

∂sB = 0 (104)

From (104) we can conclude that B(s, t) = B(0, t). Similarly κ(x, t) = (fsgss− gssfs)(s, t) since
the curve lies on the x-y plane, and by Corollary 3.1.2 we have that κt = 0. Hence

κ(s, t) = κ(s, 0) = (fsgss − gssfs)(s, 0).

Then, since for all t we have that

∂th(s, t) = (fsgss − gsfss)(s, t) = κ(s, t),

the previous argument gives that ∂th(s, t) = κ(s, 0). Integrating this last expression gives us
that

h(s, t) = κ(s, 0)t.

So then since ‖B(t)‖ = 1 we have that ‖∂tγ(s, t)‖ = |κ2|, and this can be rewritten as
f2
t + g2

t + h2
t = f2

t + g2
t + κ2 = κ2 and this gives that f2

t = g2
t = 0.

This implies that f(s, t) = w(s) and g(s, t) = z(s) completely determine the solutions to the
binormal flow equation with τ = 0 so long as w(x) and z(s) satisfy

w′(s)2 + z′(s)2 + κ2
st

2 = 1 (105)

for all s and t, where κ = w′z′′ − z′w′′, due to the parametrization by arc length. Since this
must hold for all t ∈ [0,∞) it forces κs = 0

Putting this all together we have that the equations w(s) and z(s) determine a solution to
the binormal equation with τ = 0 so long as they solve the system of differential equations:

w′(s)2 + z′(s)2 = 1 (106)

w′z′′ − z′w′′ = C (107)

where C is a constant.
The only solutions of these equations depend on the value assigned to C. If C is 0, then it

follows that w(s) = as and z(s) =
√

1− a2s, and if C 6= 0 then the solutions are circles with a
radius of 1/C since τ = 0 and curvature is constant.
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3.2 The Hasimoto Transform and Hasimoto’s Explicit Solution

We now present the results obtained by Hasimoto on his paper on VFE and his explicit solution
for a traveling wave soliton ([15]). The most striking part of his paper is the Hasimoto Trans-
form which manages to turn VFE into a form that satisfies a Nonlinear Cubic Schroedinger
Partial Differential Equation (NLCSE). This then allows one to find solutions to VFE by find-
ing solutions to the fully integrable NLCSE. It was through this process that Hasimoto found
one of the first explicit soliton solutions to VFE. We now present the results from his paper.

Theorem 3.2.1 (Hasimoto Transform [15]) Let Γ : R3 × R→ R3 be a differentiable curve
parametrized by arclength of curvature κ and torsion τ that satisfies the Vortex Filament Equa-

tion. If we take the transformation ψ = κ exp
(
i
∫ s

0 τds
)

then ψ will satisfy the following

NLCSE:
1

i
∂tψ = ∂ssψ +

1

2
(|ψ|2 +A)ψ.

Proof The Frenet system of coordinates gives the following equations

Γs = T (108)

Ts = κN (109)

Ns = τB − κT (110)

Bs = −τN. (111)

Combining the last two equations in the following form gives

(N + iB)s = −iτ(N + iB)− κT (112)

which leads to the introduction of the new variables N and ψ defined as

N = (N + iB) exp
(
i

∫ s

0
τds
)

(113)

ψ = κ exp
(
i

∫ s

0
τds
)
. (114)

From the Frenet equations we obtain the following expressions, where the last one follows
from the defintion of VFE and use of (66) and (67):

Ns = −ψT (115)

Ts = Re
[
ψN
]

=
1

2

(
ψ̄N + ψN̄

)
(116)

Tt = Re
[
iψ′N̄

]
=

1

2
i
(
ψ′N̄− ψ̄′N

)
. (117)

The following relations shows that this creates an orthogonal system of equations

T · T = 1, N · N̄ = 2, N ·N = 0, N · T = 0, etc.

Now we derive the evolution equation for N by expressing it in this new orthogonal system
as

Nt = αN + βN̄ + γT. (118)

We now determine the values of the coefficients as follows

α+ ᾱ =
1

2

(
N̄t ·N + N · N̄t

)
=

1

2
∂t(N̄ ·N) = 0, α = iR (119)

β =
1

2
N · N̄ =

1

4
∂t
(
N ·N

)
= 0 (120)

γ = −N · Tt = −iψ (121)
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where R is a real function. This then simplifies to

Nt = i
(
RN− ψT

)
. (122)

We now take the time derivative of (68) and the arclength derivative of (75) obtaining

Nst = −ψT − ψTt = −ψT − 1

2
iψ
(
ψsN̄− ψ̄sN

)
(123)

Nts = i
[
RsN−RψT − ψssT −

1

2
ψs
(
ψ̄N + ψN̄

)]
. (124)

We can now equate the coefficients of T and iN giving us

−ψ = −i
(
ψss +Rψ

)
(125)

1

2
|ψ|2 = Rs −

1

2
ψsψ̄. (126)

Solving this last equation for R gives that R = 1
2

(
|ψ|2 + A

)
which reduces the first equation

down to
1

i
∂tψ = ∂ssψ +

1

2
(|ψ|2 +A)ψ. (127)

Theorem 3.2.2 (Hasimoto’s Traveling Wave [15]) Consider a soliton solution to NLCSE
defined by Theorem 3.2.1 such that κ = 0 as s → ∞. This then gives as a solution a traveling
wave with a kink that becomes a line at infinity.

Proof First we introduce the new variable ζ = s − ct where c can be taken to be the ’speed’
of the translation. This variable is introduced in order to be able to work with a soliton of the
Schroedinger equation derived in the previous theorem. Using this variable then gives

ψ = κ(ζ) exp
[
i

∫ s

0
τ(ζ)ds

]
. (128)

We plug this variable into the Schroedinger equation yielding the following real and imagi-
nary parts, respectively,

cκ[τ(ζ)(−ct)] = κ′′ − κτ2 +
1

2
(κ2 +A)κ (129)

cκ′ = 2κ′τ + κτ ′ (130)

and integrating the last equation gives

(c− 2τ)κ3 = 0 (131)

where we have used our curvature limit to determine the constant of integration. By (129) we
then have

τ = τ0 =
1

2
c = constant

assuming that curvature is not identically zero. Using this we can integrate (130)

κ = 2ν sech(νζ)

so long as A is a constant determined by A = 2(τ2
0 −ν2). Now that the torsion and curvature are

determined we can get the actual shape of the filament by substituting these into our original
Frenet frame of reference and solving the following equation for the binormal vector:

τ0(T ′ − κN) =
[
(1/κ)

(
B′′ + τ2

0B
)]′

+ κB′ = 0 (132)

d3

dη3
B + tanh(η)

d2

dη2
B +

(
S2 + sech2(η)

) d
dη
B + S2 tanh(η)B = 0 (133)
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where we have made the substitutions η = νζ and S = τ0
ν .

A solution to this equation can then be obtained if we note that

C =
dB

dη
+ tanh(η)B

is a solution of the equation

d2C/dη2 +
(
S2 + 2 sech2(η)

)
C = 0

which has as solutions
(1− S2 ∓ 2iS tanh(η))e±iSη. (134)

This finally gives us the binormal vector

B = sech(η), (1− S2 ∓ 2iS tanh(η))e±iSη. (135)

which we can then substitute into our equations of the Frenet Frame and using the assumption,
without loss of generality, that the filament is parallel to the x-axis at infinity:

Tx → 1 as η →∞ (136)

Ny + iNz = −i
(
By + iBz

)
= ei(τ0ζ+σ(t)) (137)

Here σ(t) is a real function of t and the subscripts denote the component of the vector in the
x, y, or z axis.

Finally straightforward calculation gives the final expressions
Γ : x = s− 2µ

ν tanh(η), y + iz = reiΘ,

T : Tx = 1− 2µ sech2(η), Ty + iTz = −νr(tanh(η)− iS)eiΘ

N : Nx = 2µ sech2(η) sinh(η), Ny + iNz = −[1− 2µ(tanh(η)− iS) tanh(η)]eiΘ

B : Bx = 2µS sech(η), By + iBz = iµ(1− S2 − 2iS tanh(η))eiΘ

(138)

where

µ =
1

1 + T 2
=

ν2

ν2 + τ2
0

, r =
2µ

ν
sech(η) (139)

η = νζ = ν(s− 2τ0t), Θ = Sη + ν2(1 + S2)t = τ0s+ (ν2 − τ2
0 )t. (140)

This then provides the traveling wave soliton solution that was first described by Hasimoto.

Remark Another way one can arrive to the Hasimoto Transform and solution is by assuming
the y and z components to be dependent on the x component. Using Taylor expansions of the
norm of the curve where second order terms are thrown out to simplify the system of equations
obtained, one can then substitute Ψ ≡ −(y + iz) to find that this Ψ satisfies the NLCSE. If
one then looks for a soliton solution of this equation that is slowly varying one finds Hasimoto’s
traveling wave solution.

3.3 Self Similar Dilating Solutions of the Vortex Filament Equation

In this section we present a summary the results of Banica and Vega on the discovery of self-
similar dilating solutions of curves with a corner ([16],). They developed a set of solutions that
only just fail to exist in H3/2 and develop a corner in finite time. We present their general
results as well as present a rough sketch of their proof, but we suggest further reading the works
of Banica and Vega to illustrate the depth of the problem in finding such solutions and some of
the applications of VFE to scattering theory for Schroedinger equations.
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First it is necessary to find a way to translate back from the tangent and normal vectors a
filament that satisfies VFE where curvature is allowed to become 0. Banica and Vega overcome
this difficulty by creating another frame of reference (T, e1, e2) governed byTe1

e2


x

=

 0 α β
−α 0 0
−β 0 0

Te1

e2

 .
This is in turn a reformulation of the Hasimoto Transform since from this coordinate frame
change we can define

ψ(t, x) = α(x, t) + iβ(x, t)

and find that this solves the NLCSE with A(t) = α2(t, 0) + β2(t, 0). Then we can define
N = e1 + ie2 and find that this is in turn equivalent to the N from section 3.2, showing that
the Hasimoto transform is one way that one could obtain this new frame of reference.

These vectors can then be combined to yield the evolution equations

Tx = Re(ψ̄N), Nx = −ψT, Tt = Im(ψ̄N), Nt = −iψxT + i(|ψ|2 −A(t))N

which can then be used to construct these vectors with the aid of imposing (T,N) = (e0, e1+ie2).
Banica and Vega then define

γ(t, x) := P +

∫ t0

t
(T ∧ Txx)(τ, x0)dτ +

∫ x0

x
T (t, s)ds (141)

and find that this solves the VFE.
The focus is first on self-similar dilating solutions of VFE

γ(t, x) =
√
tG
( x√

t

)
.

[21] showed that the family of self-similar solutions {γa}a∈R+ is characterized by explicit curva-
ture and torsion ca = a√

t
, τa = x

2t . These self-similar solutions with a corner have been shown

to be analogous with the ’delta-wing’ vortex and serves as a good analogy of its behavior.
Using this we then look at perturbation solutions using Hasimoto’s transform using the

previous explicit torsion and curvature, giving the family of filament functions

ψa(t, x) =
a√
t
eix

2/4t (142)

which solve the NLCSE

iψt + ψxx +
1

2

(
|ψ|2 − a2

t

)
ψ = 0.

The corner of the soliton corresponds to the initial condition ψa(0, x) = aδx=0, where δx=0 is
the delta distribution centered at x = 0.

Here we shall present verbatim the theorems Vega and Banica derived and afterwards we
present their discussion on the results ([16]), but first we must give some definitions to provide
sufficient background.

Definition 3.3.1 (Filament Function) We shall define as a filament function the function
ψ that is obtained when carrying a solution of VFE through a transform, such as the Hasimoto
transform, to create an equation that solves the NLCSE, i.e if it has curvature c and torsion τ
then the corresponding vortex filament function is

ψ = c(x, t)e−
∫ x
0 τds
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Definition 3.3.2 (Weighted Space) We define the weighted space Xα,

Xα := {f ∈ L2|ζαf̂(ζ) ∈ L∞(|ζ| ≤ 1)}

Theorem 3.3.3 (Continuation of Vortex after singularity [16]) Let γ(1) be a perturba-
tion of a self-similar solution γa at time t = 1 in the sense that the filament function of γ(1) is
(a+u(1, x))eix

2/4, with ∂kxu(1) small in Xα with respect to a for all 0 ≤ k ≤ 4, for some α < 1
2 .

One can construct a solution γ ∈ C([−1, 1], Lip) ∩ C([−1, 1]\{0}, C4) for VFE on t ∈
[−1, 1]\{0} with a weak solution on the entire interval [-1,1]. The solution γ is unique on
the subset of C([−1, 1], Lip) ∩ C([−1, 1]\{0}, C4) such that the associated filament functions at
times ±1 can be written as (a+ u(±1, x))eix

2/4 with ∂kxu(±1) small in Xα with respect to a for
all 0 ≤ k ≤ 4.

This solution enjoys the following properties:

• there exists a limit of γ(t, x) and of its tangent vector T (x, t) at time zero, and

sup
s
|γ(t, x)− γ(0, x)| ≤ C

√
|t|, sup

|x|≥ε>0
|T (x, t)− T (0, x)| ≤ Cε|t|

1
6

−
(143)

• ∀t1, t2 ∈ [−1, 1]\{0} the following asymptotic properties hold

γ(t1, x)− γ(t2, x) = O(
1

x
), T (t1, x)− T (t2, x) = O(

1

x
) (144)

• ∃T∞ ∈ S2, N∞ ∈ C3 such that uniformly in −1 ≤ t ≤ 1

T (t, x)− T∞ = O
( 1√

x

)
, (N + iB)(t, x)−N∞eia2 log

√
t
x
−ix2/4t = O(

1√
x

), (145)

• modulo rotation and a translation, we recover at the singularity point (0,0) the same
structure as for γa:

lim
x→0±

T (0, x) = A±a , lim
x→0±

lim
t→0

(N + iB)(t, x)e−ia
2log

√
t
x
−ix2/4t = B±a . (146)

Where u in the previous proof is the solution to the following PDE

iut + uxx +
1

2t
(|u+ a|2 − a2)(u+ a) = 0

which arises by taking perturbations of the filament function ψα and proceeding to analyze the
long term behavior of u.

Theorem 3.3.4 (VFE with values with a corner [16]) Let γ0 be a smooth C4 curve, ex-
cept at γ0(0) = 0 where a corner is located, i.e. that there exist A+ and A− two distinct
non-colinear unitary vectors in R3 such that

γ′0(0+) = A+, γ′0(0−) = A−. (147)

We set a to be the real number given by the unique self-similar solution of VFE with the same
corner as γ0 at time t = 0. We suppose that the curvature of γ0(x) (for x 6= 0) satisfies
(1 + |x4|)c(x) ∈ L2 and |x|ζc(x) ∈ L∞(|x|≤1), small with respect to a.

Then there exists γ(t, x) ∈ C([−1, 1], Lip) ∩C([−1, 1]\{0}, C4), regular solution of the VFE
for t ∈ [−1, 1]\{0}, having γ0 as value at time t = 0, and enjoying all properties from the
previous theorem.
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Remark The first theorem constructs a solution for VFE that although presenting a disconti-
nuity at time t = 0 and show some convergence in large values in space and for small values in
time, and shows that this discontinuity is in fact a corner singularity at the point (0, 0). The
second theorem applies these results to the evolution of curves with this corner singularity, and
the proof of this theorem occurs naturally in the proof of 3.3.4.

Since we do not present explicit proofs of these results in these sections we direct the reader
to Vega and Banica’s papers [17], [18], [19], [20], and [21] which provide a rich exposition of the
underlying structure of the equation as well as the spaces in which solutions to VFE exist.

3.4 Self-Similar Rotating Solutions of Vortex Filament Equation

In this section we derive expressions of rotating self-similar solutions of VFE in 3 dimensional
space as well as those that rotate around a singular plane. We begin first by deriving those
rotating in 3-space, and those in a singular plane follow as a corollary.

Theorem 3.4.1 A derivation for the ODEs governing the motion of self-similar rotating so-
lutions of the Vortex Filament Equation. We find, without loss of generality, that considering
a self-similar curve in R3 of the form Γ(x) = (x, y(x), z(x)) that is rotating in space. Let
Γx,Γy,Γz denote the components in the x, y, and z axes so as to not confuse them with the
notation for partial derivatives. We obtain that rotating self-similar solutions around a single
axis can be split into the following 2 cases:

(1) Rotation around the z or y axis: This is the case for rotation around the y-axis, for
rotation around the z-axis simply switch the values for Γz and Γy. In this case we find the
following system of equations describing the vector Γ:

Γx = x (148)

Γy = C1x (149)

Γz = z(x) (150)

where z(x) must be a solution of the nonlinear ODE

− z′(x)√
1 + C2

1 + z′(x)2
=

1

2
(1 + C2

1 )(x2 + 2C2). (151)

This gives a two parameter family of solutions for rotations of this type.
(2) Rotation around the x-axis: For this case the components of the curve in this situation

are as follows

Γx = x (152)

Γy = λz(x) (153)

Γz = z(x) (154)

where λ ∈ R and z(x) solves the following ODE

z′(x) = ±

√
4− (1 + λ2)2(z2 + 2C1)2

(1 + λ2)3(z2 + 2C1)2
(155)

and with this equation we have a 3 parameter family of solutions for rotation around the x-axis.

Proof Consider a solution of VFE of the form Γ(x, t) = etMΓ0(x), where Γ0 is a curve in R3

and M is the following skew-symmetric matrix: M =


0 −ωy ωz
ωy 0 −ωx
−ωz ωx 0

. Here the entries

are scalars representing the angular velocities of each axis’ rotation.
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Applying the equations of VFE:

Γt = Γs × Γss (156)

MetMΓ0 = etM (Γ′0 × Γ′′0) (157)

MΓ0 = Γ′0 × Γ′′0 (158)

Suppose Γ0 = 〈x, y(x), z(x)〉. Taking the derivate with respect to arc-length of this curve
gives dΓ0

ds = 1√
1+y2

x+z2
x

dΓ0
dx .

So then we give expressions for the first and second order derivatives with respect to ar-
clength:

dΓ0

ds
= [1 + y2

x + z2
x]−1/2〈1, y′(x), z′(x)〉 (159)

d2Γ0

ds2
= [1 + y2

x + z2
x]−1/2(

d

dx
)(
dΓ0

ds
) (160)

d2Γ0

ds2
= [1 + y2

x + z2
x]−2{−(y′′y′ + z′′z′)〈1, y′, z′〉+ [1 + y2

x + z2
x]〈0, y′′, z′′〉} (161)

Plugging our results into (161) and using equations (162)-(164), as well as the definition of M
we have the following system of ODE’s describing the behavior of solutions:

ωzz − ωyy = (y′(x)z′′(x)− z′(x)y′′(x))[1 + y2
x + z2

x]−3/2 (162)

ωyx− ωxz = −z′′(x)[1 + y2
x + z2

x]−3/2 (163)

ωxy − ωzx = y′′(x)[1 + y2
x + z2

x]−3/2 (164)

Rotation around the y-axis: In this situation the constants ωx = ωz = 0 and ωy = 1,
where the latter is taken for simplicity. Then the equations (insert numbers here) become:

−y = (y′(x)z′′(x)− z′(x)y′′(x))[1 + y2
x + z2

x]−3/2 (165)

x = −z′′(x)[[1 + y2
x + z2

x]−3/2 (166)

0 = y′′(x)[1 + y2
x + z2

x]−3/2 (167)

so that by the last equation we have that y(x) = C1x. This then transforms (165) and (166)
into the second order nonlinear differential equation:

x = −zxx[1 + C2
1 + z2

x]−3/2. (168)

This equation can be explicitly solved and reduced to a first order differential equation by
making the substitutions a2 = 1 + C2

1 and z′(x) = a tan(θ), we then proceed as follows:

1

2
x2 + C2 = −

∫
a sec2(θ)

a3(1 + tan2(θ))3/2
dθ (169)

= −
∫

1

a2
cos(θ)dθ (170)

= − 1

a2
sin(θ) (171)

a2

2
(x2 + 2C2) = − z′(x)√

a2 + z′(x)2
(172)

1

2
(1 + C2

1 )(x2 + 2C2) = − z′(x)√
1 + C2

1 + z′(x)2
(173)
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and this is the ODE whose 2 parameter families of solutions provide rotating self-similar solu-
tions around either the z or y-axis.

Rotation around the x-axis: For rotation around the x-axis we obtain the following
system of equations:

0 = (y′(x)z′′(x)− z′(x)y′′(x))[1 + y2
x + z2

x]−3/2 (174)

z = z′′(x)[1 + y2
x + z2

x]−3/2 (175)

y = y′′(x)[1 + y2
x + z2

x]−3/2. (176)

The first equation it gives us that y′(x) = λz′(x). This transforms the other equations into
the second order non-linear differential equation:

z = z′′[1 + (λ2 + 1)z2
x]−3/2.

We now solve this equation and turn it into a first order nonlinear equation:

z′z =
z′z′′

(1 + (1 + λ2)(z′)2)3/2
(177)

1

2
z2 + C1 =

∫
z′z′′

(1 + (1 + λ2)(z′)2)3/2
dx. (178)

. (179)

As in the previous problem we substitute u = (1 + λ2)(z′)2(x), (1 + λ2)−1du = 2z′z′′dx, contin-
uing with the integration:

(1 + λ2)(z2 + 2C1) =

∫
(1 + u)−3/2du. (180)

(1 + λ2)(z2 + 2C1) = −2(1 + (1 + λ2)(z′)2)−1/2 (181)

(z′)2 =
4

(1 + λ2)3(z2 + 2C1)2
− 1

(1 + λ2)
(182)

z′(x) = ±

√
4− (1 + λ2)2(z2 + 2C1)2

(1 + λ2)3(z2 + 2C1)2
(183)

Finally, using this we can derive the expression for y′(x) using that y′(x) = λz′(x), we have
that y(x) = λz(x) + C2. Plugging this into our previous expression gives:

y′(x) = λ

√
4− (1 + λ2)2(( yλ + C2)2 + 2C1)2

(1 + λ2)3(( yλ + C2)2 + 2C1)2
(184)

Putting all results together gives a final expression for how the curves will behave if we
assume the vortex filament ot be rotating around a particular axis.

Corollary 3.4.2 We find that if a vortex filament rotates inside of a singular plane it must
obey the following second order non-linear differential equation

f(x) +
f ′′(x)

(1 + f ′(x))3/2
= 0 (185)

Proof The general form for a curve rotating in a plane is of the form

Γ(x, t) = (x, cos(t)f(x),− sin(t)f(x)) (186)
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We now take the appropriate time and space derivatives

∂tΓ = (0,− sin(t)f(x),− cos(t)f(x)) (187)

∂xΓ = (1, cos(t)f ′(x),− sin(t)f ′(x)) (188)

∂xxΓ = (0, cos(t)f ′′(x),− sin(t)f ′′(x)) (189)

We can now plug these equations into our previous system of ODEs (insert equation numbers
here) for rotating solutions in 3 dimensions by setting the left hand side as the components of
∂tΓ(x, t) as well as taking y(x, t) = cos(t)f(x) and z(x, t) = − sin(t)f(x) and changing the right
hand derivatives to partial derivatives with respect to x gives us:

0 = 0 (190)

∂ty(x, t) = sin(t)f ′′(x)[1 + f ′(x)2]−3/2 (191)

∂tz(x, t) = cos(t)f ′′(x)[1 + f ′(x)2]−3/2 (192)

Substituting the values for yt(x, t) and zt(x, t) gives the nonlinear differential equation:

f(x) +
f ′′(x)

(1 + f ′(x))3/2
= 0 (193)

We can further simplify this equation to turn it into a first degree ODE:

ff ′ =
−f ′f ′′

(1 + f ′(x)2)3/2
(194)

f(x)2 + 2C1 = −2(1 + f ′(x)2)−1/2 (195)

f ′(x) =

√
4

(f(x)2 + 2C1)2
− 1 (196)

This then gives the 2 parameter family of solutions of rotating solutions in the plane.

Remark It is of interest to note that the previous result could have been achieved from theorem
3.4.1 by saying that it was a solution rotating around the x-axis with λ = 0. This then gives
the same ODE governing the family of solutions for planar rotating vortex filaments. We also
provide the following argument that demonstrates the solvability of equations (186), (187) and
(199):

Using the differentiability of z(x) we can create an inverse function such that now x is a
function of z. Then from basic analysis we would have that the derivative with respect to z of
the inverse function would then be

dx

dz
=

√
(1 + λ2)3(z2 + 2C1)2

4− (1 + λ2)2(z2 + 2C1)2
(197)

so that then x exists as a smooth increasing function on the range

− 2

(1 + λ2)
− 2C1 < z2 <

2

(1 + λ2)
− 2C1

so then we have z(x) to be a smooth, increasing and bounded function of x.
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