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Abstract. We investigate the determinants of two different isomorphisms.
The first type arises from simplicial polytopes. In particular, the hard Lefschetz
theorem gives us an isomorphism between cohomology rings of a projective toric
variety that corresponds to the simplicial polytope and a result of Stanley tells
us that these cohomology groups are isomorphic to Stanley-Reisner rings mod-
ulo some linear relations. We can choose a basis for this isomorphism via a line
shelling and we look explicitly at these isomorphisms for specific instances of
simplicial polytopes. The second type of isomorphism is between vector spaces
spanned by ranks in the poset determined by the strong Bruhat order on Sn.
It is known that this poset has the strong Sperner property so such an isomor-
phism must exist. We investigate the determinant of an explicit example of such
an isomorphism.

1. Introduction

Our work is motivated, in part, by questions and conjectures posed in [5], in
which Stanley tries to prove that Wn, the poset structure of the weak Bruhat
order of Sn, has the strong Sperner property. He gives an order-raising operator
on Wn and conjectures its determinant up to sign. Part of this paper is dedi-
cated to considering an analogous operator for the strong order, also called Sn,
and investigating its determinant. However, this is not necessary to prove that Sn
has the strong Sperner property; in [6] Stanley proves existence of a viable order-
raising operator. This is because there is a connection between Sn and a complete
flag variety Fn identifying ranks of the former to cohomology rings of the latter.
Since the hard Lefschetz theorem on Fn implies an isomorphism between coho-
mology rings, it also implies the existence of an appropriate isomorphism on Sn [5].

This isomorphism between cohomology rings of varieties inspires the other part
of our paper. Considering a specific projective toric variety XP that corresponds
to a particular simplicial polytope, we form an isomorphism between the cohomol-
ogy rings of XP and the Stanley-Reisner ring of the underlying polytope modulo
some linear relations so the hard Lefschetz theorem implies an isomorphism in this
new ring. We can procedurally select bases for this isomorphism via a shelling of
the polytope but in general there is no canonical choice of basis or shelling. Fur-
thermore, the linear relations that we mod out of the Stanley-Reisner ring are
not only dependent on the combinatorial structure of the polytope, but also its
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location in Euclidean space, making the isomorphism and its determinant difficult
to analyze generally. We will look at some specific instances of polytopes and the
possible determinants the isomorphism can take on.

In section 2 we give some preliminary definitions and results. In section 3, we
examine the hard Lefschetz isomorphisms for some specific instances of simplicial
polytopes, including some n-simplices and regular cross-polytopes in n dimensions.
In section 4, we investigate the determinant for an order-raising operator in Sn as
well as list some explicit calculations in the appendix.

2. Preliminaries

2.1. Simplicial Polytope Preliminaries. Given an integral convex polytope P
embedded in Zd, we let XP be a projective toric variety defined as

XP = cl{xα1

y, ..., xα
n

y : x1, ..., xd, y ∈ C∗} ⊂ Pn−1
C ,

where the αi are the vertices of P and xαi
= x

αi
1

1 · · ·x
αi
d
d [4].

Definition 2.1. A polytope P is simplicial if each of its faces is a simplex [7].

Definition 2.2. Given ∆, the boundary complex of a simplicial polytope P with
vertices x1, ..., xn, define R[∆] = R[x1, ..., xn]/I∆, with

I∆ = {xi1xi2 · · · xir : i1 < i2 < · · · < ir, {xi1 , ..., xir} /∈ ∆}
[4]. That is R[∆] is the polynomial ring in n variables modulo the ideal of mono-
mials not in ∆. This ring is called the Stanley-Reisner ring (or face ring).

We now have our first couple theorems from [4]:

Theorem 2.3. ([4]) Let P be an integral simplicial d-polytope in Rd, let XP be its
corresponding toric variety, and let R[∆] be its Stanley-Reisner ring. Then there
is an isomorphism

ϕ : H∗(XP ;R)→ R[∆]/(θ1, ..., θd)

for some choice of linear relations θ1, ..., θd ∈ R[∆]. This isomorphism halves de-
gree so ϕ(H2i(XP)) = R[∆]i and ϕ(H2i+1(XP)) = 0.

Let the θi take the form θ =
∑
i

αixi for αi ∈ R and xi in the vertex set of P.

The θi must be chosen so that the following two conditions are met: for each facet
F ∈ P the restrictions of the θi, θi|F =

∑
xi∈F

αixi span a d-dimensional vector

space. Secondly, each θi must arise from a linear function on the underlying
Euclidean space, so θ =

∑
i

pi(xi)xi for some pi : Rd → R.

Note that in the previous definition each pi must be strictly linear (and not
affinely linear). This places the restriction that pi(0) = 0. This implies that the
rings R[∆]/(θ1, ..., θd) for polytopes that differ only in position in Euclidean space
may not (and in fact are likely not) isomorphic.

Theorem 2.4. ([4]) There exists an element ω ∈ H2(XP) (in the Stanley-Reisner
ring, this element is canonically ω = x1 + · · · + xd, the sum of the vertices) such
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that for all 0 ≤ i ≤ bd/2c, the map ωd−2i : H2i(XP) → H2d−2i(XP), which in the
Stanley-Reisner ring is given by multiplication by ωd−i, is an isomorphism.

We can see that this is the (or one of the) isomorphisms assured by the hard
Lefschetz theorem.

Definition 2.5. ([4]) Again, let ∆ be the boundary complex of a simplicial poly-
tope. We say that ∆ is shellable if there exists an ordering of the facets F1, F2, ..., Fs
such that for each subcomplex generated by the first i facets, i.e. 2F1∪2F2∪· · ·∪2Fi ,
where 2Fi denotes the facet Fi and all the faces of ∆ that it contains, there exists
a unique minimal face (with respect to dimension) among the faces which do not
belong to the subcomplex generated by the first i− 1 facets. In other words, if ∆i

denotes the subcomplex generated by the first i facets, then ∆i \∆i−1 contains a
unique minimal element, called r(Fi). This ordering of facets is called a shelling
order or shelling of ∆.

Now, we have a theorem from [4] regarding how to choose a basis for our iso-
morphism:

Theorem 2.6. ([4]) Let F1, F2, ..., Fs be the shelling order for ∆ and let θ1, ..., θd
be an appropriate set of linear relations as outlined in Theorem 2.3. Then,

B = {xr(Fi) : 1 ≤ i ≤ s},
with r(Fi) as defined in Definition 2.5 and xF is the face monomial xF =

∏
xi∈F

xi,

is a basis for R[∆]/(θ1, ..., θd).

Definition 2.7. ([7]) For the boundary complex ∆ of a d−dimensional simplicial
polytope, define its h-vector to be h(∆) = (h0, h1, ..., hd) with

hk =
k∑
i=0

(−1)k−i
(
d− i
d− k

)
fi−1

where fk is the number of k−dimensional faces contained in the polytope.

Proposition 2.8. ([4]) Let F1, ..., Fs be a shelling order of ∆ and let h(∆) =
(h0, h1, ..., hn) be its h-vector. Then, we have

hk = #{j : |r(Fj) = i}
where r(Fj) is as defined in Definition 2.5.

2.2. Strong Bruhat Order Preliminaries. We start with a review of poset
terminology, mainly from [5]. For a more detailed review of posets, see [3]. Let
P be a finite graded rank-symmetric poset of rank m, so we can write P =
P0 ∪ P1 ∪ · · · ∪ Pm with pk = pm−k if pk = |Pk|.

Definition 2.9. Let U be a linear operator on P , U : QP → QP , where QP
denotes the Q-vector space with basis P . We call U order-raising if for every
t ∈ P , we have U(t) ∈ QC+(t) where C+(t) is the set of elements that cover t.

Definition 2.10. ([5]) A poset P is strong Sperner if for all r ≥ 1, the largest
subset S of P that does not contain an (r+1) element chain has the same number
of elements as the largest union of r levels in P .
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Theorem 2.11. ([6],[5]) Suppose there exists an order-raising operator U : QP →
QP such that if 0 ≤ k < m/2 then the linear transformation Um−2k : QPk →
QPm−k is a bijection. Then P is strongly Sperner.

Definition 2.12. The weak order Wn of Sn is a poset so that a permutation w
has rank k in Wn if w has k inversions. Furthermore, v covers u in Wn if and only
if v = usi for some i, where si is the transposition (i, i+ 1), and if `(v) = `(u) + 1,
where `(w) is the length, or number of inversions, of w.

In [5], Stanley tries to find such an order-raising operator to prove that Wn has
the strong Sperner property. He considers the operator

U(u) =
∑

i:`(usi)=1+`(u)

i · usi.

He is able to deduce that

U j(u) =

((
n

2

)
− 2k

)
!
∑
v

νvu−1v

where v ranges over permutations satisfying `(v) = `(u) + j and v > u in weak
order, and where νw is defined as νw = Sw(1, 1, ..., 1); that is the corresponding
Schubert polynomial evaluated at (1, 1, ..., 1). Following the conventions set in
[5], we let D(n, k) be the matrix of the linear transformation U(n

2)−2k : Q(Wn)k →
Q(Wn)(n

2)−k
with bases (Wn)k and (Wn)(n

2)−k
in some order. Then the determinant

of D(n, k) is, up to sign, given by

detD(n, k) =

((
n

2

)
− 2k

)
!#(Wn)k det D̃(n, k)

where D̃(n, k)uv is given by νvu−1 if u ≤ v in Wn and 0 otherwise. Stanley was
able to state the following conjecture and prove it for k = 1:

Conjecture 2.13. ([5]) We have

det D̃(n, k) = ±
k−1∏
i=0

((
n
2

)
− (k + i)

k − i

)#(Wn)i

.

A natural extension would be to consider a similar operator for the strong order
Sn. Stanley suggests in [5] to consider the operator

V (u) =
∑

1≤i<j≤n
`(utij)=1+`(u)

(j − i) · utij

where tij is the transposition between i and j. This choice of operator gives us
some nice properties, including the fact due to [2] that V (n

2)(id) =
(
n
2

)
!w0 where

id is the identity permutation and w0 = n, n− 1, ..., 1 is the identity permutation
reversed. We now define a type of polynomial as introduced in [2] that is closely
related to Sn.

Definition 2.14. For Sn, the degree polynomial Du,w ∈ Q[y1, ..., yn] is defined as

Du,w =
1

(`(w)− `(u))!

∑
C

mC(y)
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where the summation runs over all saturated chains from u to w and mC(y) is the
weight of the chain, which is the product of the weights of each individual edge
in the chain. The weight of the edge v < vsij is defined to be yi − yj. We let
Did,w = Dw.

From [2], we also have an alternate way of calculating these degree polynomials
iteratively, which is as follows:

Dw0 =
1

1!2! · · · (n− 1)!

∏
1≤i<j≤n

(yi − yj)

Du,w = Su(∂/∂y1, ..., ∂/∂yn)Sw0w(∂/∂y1, ..., ∂/∂yn)Dw0 ,

where we again have that Su is the Schubert polynomial corresponding to the
permutation u.

3. Hard Lefschetz Determinants

Here, we will examine some specific instances of simplicial polytopes and calcu-
late the possible determinant of the bijection given by multiplication by ωk where
ω = x1 + x2 + · · ·+ xn ∈ R[∆]/(θ1, ..., θd).

3.1. n-Simplices Centered at Origin. Let P be any n-simplex whose centroid
is the origin. It is well-known that the centroid of an n-simplex divides the medians
in the ratio 1 : n (see [1] for instance). With this we can see that we can make the
following choice of θi:

θ1 = x1 + x2 + · · ·+ xn − nxn+1

θ2 = x1 + x2 + · · ·+ xn−1 + xn+1 − nxn
...

θn = x1 + x3 + x4 · · ·+ xn+1 − nx2.

We can easily check to see that these θi satisfy both conditions established in
Theorem 2.3. Using these θi, we are now able to calculate all possible determinants
for ωk.

Proposition 3.1. For any n-simplex whose centroid is located at the origin, we
have detωk = (n+ 1)k.

Proof. From θ1 we can see x1 = nxn+1−x2−x3−· · ·−xn in the ring R[∆]/(θ1, ..., θn).
Substituting this into the rest of the θi, we can see x1 = x2 = · · · = xn+1. From
this, we can see that R[∆]/(θ1, ..., θn) ∼= R[x] so in particular, all monomials of the
same degree and coefficient are equivalent in this ring.

Since an n-simplex has
(
n+1
k+1

)
k-faces, we can use Stanley’s trick to calculate

that the h-vector of an n-simplex is (1, 1, ..., 1) [7]. This is because the difference
table is a rotated version of Pascal’s triangle and the bottom row from which
the h-vector is read off is just a diagonal containing all 1’s in Pascal’s triangle.
From Proposition 2.8, we can see any basis for R[∆]/(θ1, ..., θn) contains exactly
one element of degree i for 0 ≤ i ≤ n. Since the elements of this basis are face
monomials, and we have already seen that all monomials of the same degree are
equivalent in R[∆]/(θ1, ..., θn), we conclude that this basis is dependent only on n.

5



In particular, the basis is independent of shelling order. This also implies that the
determinant for multiplication by ωk is unique. Without loss of generality, let the
basis be B = {1, x1, x

2
1, ..., x

n
1}. Since x1 = x2 = · · · = xn+1, we have ω = (n+1)x1

so ωk takes xi−k1 to (n+ 1)kxi1 so detωk = (n+ 1)k. �

3.2. Cross-Polytope. Let P be the standard n-dimensional cross-polytope with
2n vertices at (±1, 0, 0, ..., 0) and its permutations. Label its vertices such that
x2i and x2i−1 are opposite of each other for 1 ≤ i ≤ n. Therefore, we can make
the following choice of θi:

θ1 = x1 − x2

θ2 = x3 − x4

...
θn = x2n−1 − x2n

and we can see that they satisfy the necessary conditions. We first consider the
determinant for ωn (note that the exponent is n and not k).

Proposition 3.2. For a standard n-dimensional cross-polytope, we have detωn =
2nn!.

Proof. Since x2i−1x2i is killed when modding out I∆ when forming the Stanley-
Reisner ring, we can see that x2

1, x
2
2, ..., x

2
2n are all equivalent to 0 in the ring

R[∆]/(θ1, ..., θn) since x2i = x2i−1 ⇒ x2
2i = x2ix2i−1 = 0. Let us consider ωn. In

its expansion, we can consider only the squarefree terms since all squares are 0.
Since x2i−1x2i is killed, all nonzero terms in the expansion of ωn must contain
exactly one factor from each of the pairs (x2i−1, x2i). There are 2n such terms.
Since these terms can be in any order, we have a total of 2nn! nonzero terms in
the expansion of ωn. Also note that each of these terms are equal since x2i−1 = x2i

in R[∆]/(θ1, ..., θn) so we have detωn = 2nn! independent of basis. �

Now we consider the more general case of looking at the determinant for ωk.

Proposition 3.3. For a standard d-dimensional cross-polytope, if k = d− 2i we
have detωk = (2kk!)(

d
i) detD, where D is a certain 0/1 matrix, which is unique

up to reordering the rows/columns.

Proof. As in the previous case, we have that all squares are 0 in R[∆]/(θ1, ..., θd).
Also recall that the h-vector for the cross-simplex is the nth row of Pascal’s triangle
so hj =

(
d
j

)
. Therefore, by Proposition 2.8, the basis must have

(
d
i

)
degree i

and degree d− i terms. Therefore, the matrix for the linear transformation ωk is(
d
i

)
×
(
d
i

)
. Now let us examine how multiplication by ωk affects degree i monomials.

We know that any degree i monomial must exactly one factor from i of the pairs
(x2i−1, x2i). Therefore, if this term is multiplied by any term in any of these pairs,
it will be killed. Therefore, k of the remaining d− i pairs must be chosen to select
exactly one factor from. By the same logic as the previous example, there are 2kk!
ways to do this for each unique term and there are

(
d−i
d−2i

)
=
(
d−i
k

)
unique degree

d − i terms that appear when a single degree i term is multiplied by ωk. This
means that the matrix for this linear transformation has entries that are all either
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2kk! or 0. Since this is a
(
d
i

)
×
(
d
i

)
matrix, we have detωk = (2kk!)(

d
i) detD, where

D is the 0/1 matrix that is the result when we factor out (2kk!). �

Let us say a little more about D. We can think of D as follows: label the rows
of D with the size i subsets of [n] and label the rows of D with the size d − i
subsets of [n]. An entry in D is 1 if and only if the row is a subset of the column.

3.3. Off-Centered Simplices. To demonstrate that the determinant is not al-
ways unique and that the combinatorial structure alone is not enough to classify
the determinant of ωk, we will consider the case when P is the n-simplex with
vertices (1, 1, ..., 1) and permutations of (2, 1, 1, ..., 1). This is just the standard
simplex shifted by the vector (1, 1, ..., 1). Label the vertex at (1, 1, ..., 1) x1 and
the rest x2, x3, ..., xn+1. We can choose for our θi

θ1 = x1 + 2x2 + x3 + · · ·+ xn+1

θ2 = x1 + x2 + 2x3 + · · ·+ xn+1

...
θn = x1 + x2 + x3 + · · ·+ 2xn+1

where each variable has the coefficient 2 in exactly one equation except for x1. We
can again verify that these θi satisfy our conditions.

Proposition 3.4. For this off-centered n-simplex, detωk is not independent of
the basis. More precisely, detωk can take the values (−1)k and (−1)k−1

n+1
.

Proof. Note that by θ1, we have x1 = −2x2−x3−· · ·−xn+1 in R[∆]/(θ1, ..., θd). By
substituting for x1 in each of the other θi, we can see that x2 = x3 = · · · = xn+1 and
x1 = −(n+ 1)x2. By summing all of the θi, we can also see that (n+ 1)ω−x1 = 0
so ω = 1

n+1
x1 = −x2 = −x3 = ... = −xn+1. Let us consider ωk which takes the

space of d− 2k degree polynomials to the space of d− k degree polynomials. Let
the basis element monomial for the former be A and the basis element monomial
for the latter be B. If neither A nor B contain x1, or if they both contain x1, we
can see that ωA = (−1)kB so detωk = (−1)k. If A does not contain x1 but B
does, then we can see that ωA = (−1)k−1

n+1
B so detωk = (−1)k−1

n+1
and it is clear that

the determinant is not independent of the basis. �

This example shows why trying to find these determinants is in general difficult;
simple translations are enough to change the determinant and force a dependence
on the basis, and therefore the shelling behind it.

4. Strong Bruhat Order Determinants

In the strong order Sn, let us consider the operator V : QSn → QSn defined as

V (u) =
∑

1≤i<j≤n
`(utij)=1+`(u)

(j − i) · utij.

As in [5], let E(n, k) be the matrix of V n−2k : Q(Sn)k → Q(Sn)(n
2)−k

with bases
some ordering of(Sn)k and (Sn)(n

2)−k
. We also let e(n, k) denote the determinant
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of E(n, k), which is unique up to sign. With the aid of some computer computa-
tions, we have found e(n, k) for several values of n and k (these calculations can
be found in the appendix). We can see that the largest prime factors of e(n, k)
grow very quickly even for relatively small choices for n and k.

Note that by the definition of Du,v, we have

E(n, k)u,v = (`(v)− `(u))!Du,v(y) =

((
n

2

)
− 2k

)
!Du,v(y),

where y = (−1,−2, ...,−n) is the vector that gives us the weights that correspond
to the operator V . This equality holds since the operator V sums all weights of
edges between an element and the elements in the next rank so V n−2k applied to
all the elements in (Sn)k sums the weights of saturated chains between rank k and
rank

(
n
2

)
− k, which is very similar to the definition of Du,v. Also, since u ∈ (Sn)k

and v ∈ (Sn)(n
2)−k

, we always have (`(v) − `(u))! = (
(
n
2

)
− 2k)!. This means we

can factor out (
(
n
2

)
− 2k)! from each element in the matrix E(n, k) to obtain the

matrix Ẽ(n, k) so we can write the determinant as

e(n, k) =

((
n

2

)
− 2k

)
!#(Wn)k det Ẽ(n, k),

where #(Wn)k = #(Sn)k is the rank size. Note we have

Ẽ(n, k)u,v = Du,v(−1,−2, ...,−n).

This formula is quite similar to a formula Stanley gives in [5] for the weak order
analog; his states

d(n, k) =

((
n

2

)
− 2k

)
!#(Wn)k det D̃(n, k),

where d(n, k) is the determinant of the matrix D(n, k) from [5] and D̃(n, k) is
the matrix that results from dividing each entry in D(n, k) by (

(
n
2

)
− 2k)! and, as

mentioned in [5], has explicit form

D̃(n, k)u,v = Suv−1(1, 1, ..., 1).

This gives us two analogous formulas for the weak and strong order; furthermore,
Schubert polynomials and degree polynomials are dual as described in [2] so the
matrices D̃(n, k) and Ẽ(n, k) are also related despite the fact that D̃(n, k) is an
integer matrix while Ẽ(n, k) is only guaranteed to have rational entries.

Now, we examine the k = 1 case more closely. Recall from our definitions that

Dw0 =
1

1!2! · · · (n− 1)!

∏
1≤i<j≤n

(yi − yj)

Du,w = Su(∂/∂y1, ..., ∂/∂yn)Sw0w(∂/∂y1, ..., ∂/∂yn)Dw0 ,

and when k = 1, we have `(u) = 1, `(w) =
(
n
2

)
− 1, and `(w0w) = 1. Therefore,

we can say that u = si and w0w = sj for some i, j where si is the adjacent
transposition (i, i + 1). It is known that Ssi = x1 + x2 + ... + xi [5], so Du,w is
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the result of two degree one differential operators applied to Dw0 . Furthermore,
we can index the entries of Ẽ(n, 1) so that

Ẽ(n, 1)i,j = (∂/∂y1 + · · ·+ ∂/∂yi)(∂/∂y1 + · · ·+ ∂/∂yj)Dw0(−1,−2, ...,−n).

We wish to evaluate Ẽ(n, 1)i,j explicitly, so let us calculate all second order partial
derivatives ofDw0 . First, let us evaluate partial derivatives of the form ∂2/∂y2

aDw0 .
We have

∂2

∂y2
a

Dw0 =
1

1! · · · (n− 1)!

∏
1≤i<j≤n
i,j 6=a

(yi − yj) ·
∂2

∂y2
a

(−1)a−1

n∏
i=1
i 6=a

(ya − yi)

=
(−1)a−1

1! · · · (n− 1)!

∏
1≤i<j≤n
i,j 6=a

(yi − yj) ·
∂

∂ya

 n∑
k=1
k 6=a

n∏
m=1
m6=k

(ya − ym)



=
(−1)a−1

1! · · · (n− 1)!

∏
1≤i<j≤n
i,j 6=a

(yi − yj) · 2

 ∑
1≤j<k≤n
j,k 6=a

n∏
m=1
m6=j,k

(ya − ym)

 .

Plugging in yi = −i yields

∂2

∂y2
a

Dw0(y) =
2

1! · · · (n− 1)!
· 1! · · · (n− 1)!

(a− 1)!(n− a)!
·

n−a∑
i=−a+1
i 6=0

n−a∑
j=i+1
j 6=0

(a− 1)!(n− a)!

ij

= 2
n−a∑

i=−a+1
i 6=0

n−a∑
j=i+1
j 6=0

1

ij

= 2

(
n−a∑
i=1

n−a∑
j=i+1

1

ij
+

−1∑
i=−a+1

n−a∑
j=1

1

ij
+

−1∑
i=−a+1

−1∑
j=i+1

1

ij

)
= H2

n−a −Hn−a,2 − 2Ha−1Hn−a +H2
a−1 −Ha−1,2,

where Hn is the nth harmonic number and Hn,2 is the nth generalized harmonic
number of order 2; that is Hn =

∑n
i=1 1/i and Hn,2 =

∑n
i=1 1/i2. Now let us

consider the mixed partial derivatives. Let us evaluate ∂2/∂yb∂yaDw0 and without
loss of generality, let a < b. We can do this since ∂2/∂yb∂yaDw0 = ∂2/∂ya∂ybDw0
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because Dw0 is a polynomial. We have

∂2

∂yb∂ya
Dw0 =

(−1)a−1

1! · · · (n− 1)!
· ∂
∂yb

∏
1≤i<j≤n
i,j 6=a

(yi − yj)

 n∑
k=1
k 6=a

n∏
m=1
m6=k

(ya − ym)



=
(−1)a−b−3

1! · · · (n− 1)!

∏
1≤i<j≤n
i,j 6=a,b

(yi − yj) ·
∂

∂yb

n∏
i=1
i 6=a,b

(yb − yi)

 n∑
k=1
k 6=a

n∏
m=1
m6=k

(ya − ym)



=
(−1)a−b−3

1! · · · (n− 1)!

∏
1≤i<j≤n
i,j 6=a,b

(yi − yj)

 n∏
i=1
i 6=a,b

(yb − yi) · (−1)

 n∑
k=1
k 6=a,b

n∏
m=1
m6=k

(ya − ym)



+

 n∑
k=1
k 6=a

n∏
m=1
m6=k

(ya − ym)


 n∑

k=1
k 6=a,b

n∏
m=1
m6=k

(yb − ym)


 .

Plugging in yi = −i yields

∂2

∂yb∂ya
Dw0(y) =

(b− a)(−1)a−b−3

(a− 1)!(n− a)!(b− 1)!(n− b)!

(−1)b−1(b− 1)!(n− b)!
b− a

·

 n∑
k=1
k 6=a,b

n∏
m=1
m 6=k

(ya − ym)

+
n−a∑

i=−a+1
i 6=0

(−1)a−1(a− 1)!(n− a)!

i
·

n∑
k=1
k 6=a,b

n∏
m=1
m 6=k

(yb − ym)


=

−1

(a− 1)!(n− a)!

n−a∑
i=−a+1
i 6=0,b−a

(a− 1)!(n− a)!

(b− a)i

+
b− a

(b− 1)!(n− b)!

n−a∑
i=−a+1
i 6=0

1

i

n−b∑
i=−b+1
i 6=0,b−a

(b− 1)!(n− b)!
(b− a)i

= −
n−a∑

i=−a+1
i 6=0,b−a

1

(b− a)i
+

n−a∑
i=−a+1
i 6=0

1

i

n−b∑
i=−b+1
i 6=0,b−a

1

i

= (Hn−a −Ha−1)(Hn−b −Hb−1 +
1

b− a
)− 1

b− a
(Hn−a −Ha−1 −

1

b− a
).

From this, we are able to construct any entry of Ẽ(n, 1); we have

Ẽ(n, 1)i,j =
i∑

a=1

j∑
b=1

dab

where

dab = (Hn−a −Ha−1)(Hn−b −Hb−1 +
1

b− a
)− 1

b− a
(Hn−a −Ha−1 −

1

b− a
)
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if a 6= b and
daa = H2

n−a −Hn−a,2 − 2Ha−1Hn−a +H2
a−1 −Ha−1,2.

By performing determinant-preserving row and column operations on Ẽ(n, 1),
we can transform it into a matrix whose entry at (i, j) is dij. Therefore, we have

det Ẽ(n, 1) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

di,σ(i)

)
and

e(n, 1) =

((
n

2

)
− 2

)n−1 ∑
σ∈Sn

(
sgn(σ)

n∏
i=1

di,σ(i)

)
.

Performing similar calculations on higher values of k seems less tractable as not
only are the differential operators of a higher degree, their form, the the form of
Schubert polynomials, are less regular and harder to work with. Furthermore,
there would be several more types of mixed partial derivatives that would have to
be calculated as well.
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Appendix

Here, we list the results of calculating e(n, k), many of which are not found in
[5].

e(4, 1) = ±27 · 3 · 52 · 19

e(4, 2) = ±26 · 3 · 29

e(5, 1) = ±222 · 36 · 55 · 74 · 59 · 89

e(5, 2) = ±223 · 311 · 512 · 74 · 3361 · 15817

e(5, 3) = ±225 · 310 · 517 · 7 · 127 · 100151

e(5, 4) = ±215 · 36 · 57 · 72 · 23 · 592

e(6, 1) = ±241 · 320 · 58 · 77 · 115 · 135 · 89 · 173 · 593

e(6, 2) = ±283 · 345 · 523 · 717 · 1114 · 13 · 41 · 2333 · 12959 · 37061 · 92921 · 390421

e(6, 3) = ±2136 · 383 · 527 · 730 · 115 · 1657 · 416579 · 385403867 · 66133454765140163

· 9179675075366915549723593

e(6, 4) = ±2168 · 372 · 522 · 753 · 11 · 24509 · 23337320600867020241820440881019186187791

· 88110979971347066098397942133104127560769587

e(6, 5) = ±2170 · 364 · 534 · 735 · 17 · 103 · 1091 · 4229 · 8513 · 107071 · 209789 · 602689

· 1198429681 · 43379003403667 · 5777805032770261 · 119840876574655575019921

e(6, 6) = ±2130 · 355 · 514 · 720 · 19 · 503 · 541 · 1153 · 4409 · 8059 · 15937 · 26839 · 31799

· 45530819 · 457896551011 · 251966969583627163

e(6, 7) = ±245 · 317 · 53 · 76 · 132 · 43 · 67 · 20058992573 · 24392276537

e(7, 1) = ±288 · 342 · 515 · 713 · 116 · 136 · 176 · 196 · 29 · 2333 · 21341

e(7, 2) = ±2257 · 3100 · 540 · 746 · 1120 · 1321 · 1720 · 19 · 23 · 1291 · 309157 · 312283

· 13377977218381 · 12726512910740791

e(7, 3) = ±2475 · 3205 · 589 · 7100 · 1150 · 1350 · 176 · 7841 · 13641238333

· 416008126418773345958608944763 · 1098305273474733510354837760337

· 1979672222486962619695759802953408923586803701392851675605421670297009

e(8, 1) = ±2149 · 367 · 536 · 721 · 1114 · 1314 · 177 · 197 · 237 · 353 · 701 · 1777 · 4987

e(8, 2) = ±2520 · 3228 · 586 · 773 · 1154 · 1328 · 1728 · 1927 · 2328 · 127 · 48406488656797·
155343364730691858887 · 5461285400373043044959 · 7300731099843726024517487

e(9, 1) = ±2239 · 3116 · 551 · 729 · 1124 · 1316 · 1717 · 198 · 238 · 298 · 318 · 43

· 577 · 279269 · 352523

e(10, 1) = 2325 · 3159 · 572 · 748 · 1129 · 1327 · 1718 · 1918 · 239 · 299 · 319 · 379 · 419 · 439 · 97 · 181

· 34361 · 956929 · 1214929640347.
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