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Abstract

In this paper, we compute the p-Curvature map of SL2 opers on elliptic
and hyperelliptic curves. On elliptic curves, the map has a simplified form,
which can differentiate between ordinary and supersingular curves.



1 Introduction

Elliptic curves are widely and successfully used in cryptography. It is hence
no surprise that much effort has been made to study and classify these curves.
One such classification of elliptic curves is into “ordinary” and “supersingular”
curves, with supersingular curves being cryptographically weaker than their
ordinary counterparts. Lately, research has also been conducted into using hy-
perelliptic curves for cryptography, and the classification of ordinary and super-
singular elliptic curves has been successfully generalized to classify hyperelliptic
curves based on their Jacobian variety. Additionally, understanding opers may
help in understanding parts of the Geometric Langlands program. In this paper,
we compute the SL2 opers and p-curvature maps on elliptic and hyperelliptic
curves. On elliptic curves, we show that the map can be described in terms of the
Frobenius map. Unfortunately, we were unable to find a simplified description
of the map on hyperelliptic curves.

This paper is split into two logical sections. The first presents some back-
ground material on Algebraic Geometry and the classification of elliptic and
hyperelliptic curves (Sections 2 - 5), and the second presents the results of our
computations (Sections 6 - 8).

2 Basic Algebraic Geometry

This section is a summary of some basic objects in Algebraic Geometry that
will be useful in the rest of this paper. Detailed proofs of facts and theorems
will not be provided since one can look them up in any introductory textbook
on the subject ([Har79], [Sha97]). Indeed, many definitions and theorems in
this section were taken from these excellent references. In addition, we shall not
give theorems and definitions of objects in their full generality, but rather tailor
them for application to projective curves.

2.1 Varieties and Functions on Varieties

The basic object of study in algebraic geometry is a variety, the set of common
zeroes of a set of polynomials, in our case, in two variables. To make this precise,
let k be an algebraically closed field, and let k[X] denote the polynomial ring
k[x, y]. Then a variety is defined as follows:

Definition 1. An algebraic affine variety (or simply variety for brevity) is
the locus of common zeroes of a set S of polynomials in k[X] such that the ideal
generated by S is prime.
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It will be convenient to denote the set of common zeroes of an set of functions
S by Z(S), and the ideal of functions that vanish on all points of a set of points
T by V (T ). In the special case where S consists of only 1 polynomial, f , the
condition that the ideal of S is prime translates into the condition that f is
irreducible. If, in addition, n = 2 (the case we are interested in), then Z(f)
forms an affine curve in A2. If I(S) denotes the ideal generated by elements
of S, then we can consider the quotient ring k[X]/V (Z(S)) = A(S), which
is intuitively the set of polynomial functions on points of Z, by identifying 0
with any polynomial that vanishes on all points of the variety. Ideals in A(S)
correspond to ideals containing V (Z(S)) in the original ring, and also correspond
to subvarieties of Z(S). This fact is encapsulated nicely in the Zariski Topology:

Definition 2. In the Zariski Topology, closed sets (T ) are sets such that
there is an ideal I ∈ A(S) such that T = Z(I).

With a topology, we can study functions on the variety. An important and
fundamental class of functions are the regular functions, defined below:

Definition 3. A function on a variety Y is regular at a point P ∈ Y if there
is an open neighborhood U with P ∈ U , and polynomials g, h, with h 6= 0 on U ,
and f = g/h on U . We say that f is regular on Y if it is regular at every point
of Y .

One can check that the set of regular functions, along with the usual addition
and multiplication operations, form a ring, called the ring of regular functions
on Y , denoted by Oy. It can be proven that Oy

∼= A(Y ). We may also want
to consider the local ring Ox at a point x ∈ Y : the ring of functions that
are regular in some open neighborhood of x. If we denote by mx the ideal in
A(Y ) of functions vanishing on x, we see intuitively (and it can be proven) that
Ox
∼= A(Y )mx

. Finally, the functions regular on some open set a variety Y are
called rational functions and form a ring denoted K(Y ). This is made formal
and precise as follows:

Definition 4. Define the function field, K(Y ), of a variety Y as follows:
an element of K(Y ) is an equivalence class of pairs < U, f > where U is a
nonempty open subset of Y , f is regular on U , and where two pairs < U, f >
and < V, g > are equivalent if f = g on U ∩V . The elements of K(Y ) are called
rational functions on Y .

Similarly, it can be shown that K(Y ) ∼= A((Y )), the fraction field of A(Y ).
Note that this makes sense only because we required that the ideal generated
be prime (see Definition 1).

Often, we will find it easier to work in projective spaces (Pn) instead of affine
spaces. To do this, we take the polynomial equations we are interested in,
homogenize them by adding suitable powers of xn+1 to each monomial, and
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consider the homogenous variety in k[x1, . . . , xn+1]. The definitions given in
Definition 1 carry over, except that we require the ideal to be homogenous.
Projective curves and regular functions on a projective variety are defined
similarly, with the same condition that ideals and polynomials should be ho-
mogenous. An important property of projective varieties is that there are no
non-constant functions that are regular on the entire variety. This fact is listed
in the Proposition below so it can be referenced easily later.

Proposition 1. Let Y be a projective variety. Then O(Y ) ∼= k.

3 Derivations, Differentials and Divisors

Divisors are an extremely powerful book-keeping tool, and can be used to prove
or disprove the eistence of functions satisfying certain properties. Closely related
are Derivations, which provide a way to take “derivatives” algebraically, and
Differentials, which are an algebraic analog of their namesakes from Analysis.

To define these objects, we begin with the notion of the tangent space at
a point. Consider a variety Y = Z(I) where I is an ideal in k[X]. By the
Hilbert Basis Theorem, k[X] is noetherian and hence I is finitely generated:
I = (f1, . . . , fk). We wish to define the tangent space at a point x ∈ Y to be the
set of lines through x tangent to X, in accordance with our geometric intuition.
By a change of coordinates, it suffices to define tangency at the point 0 ∈ An.
Fix some nonzero point a ∈ An. Then all lines through 0 are of the form ta
where t ∈ k. We arrive at the following definition:

Definition 5. Define the intersection multiplicity of a line ta with a variety
Y at 0 to be the highest power of t that divides all the fi(ta). A line is then
tangent at 0 if its intersection multiplicity is greater than 1. The locus of points
on lines tangent to Y at some point x ∈ Y is called the tangent space to Y at
x, and is denoted Tx(Y ).

An alternative (but equivalent) definition of the tangent space at a point p =
(a1, . . . , an) in a variety with ideal generated by f1, . . . , fk is as follows:

Definition 6. Let Hi be the hyperplane defined by
∑

k
∂fi
∂xi

(p)(xi − ai). Then
we define the tangent space to be ∩n1Li.

Now, we shall introduce the concept of derivations and explain its relation
with the tangent space at a point.

Definition 7. Let R be a ring and M be an R-module. A derivation of R
into M is a map

d : A→M
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satisfying the Leibniz rule:

d(ab) = adb+ bda

If R and M are vector spaces over a field k, then we also require that da = 0
for a ∈ k. We can make the set of derivations into an R-module with the map
d 7→ rd for r ∈ R. This R-module is denoted Derk(A,R)

If we let R = A(Y ) and view k as the residue field at a point x ∈ Y (which is an
R-module by the rule f ·α = f(x) ·α), then we can prove that Derk(A(Y ), k) ∼=
Tx(Y ). In other words, the tangent space can be thought of as the set of
derivations from Ox to k.

Now that we have defined derivations, we can discuss differentials. Let f(X)
be a polynomial, and x be a point in An. Then f has a Taylor series expansion
f(X) = f(x) + f (1)(x) + . . . .

Definition 8. The linear form f (1) is the differential of f at x, and is denoted
df .

Note that taking the differential of a function is a derivation.

Now, if we view some regular function g on Y as the restriction of a polynomial
G ∈ k[X], then the rule dg = dG is not well defined because we can add df for
f ∈ I(Y ) arbritrarily; however, if we restrict to the tangent space at x, we see
that df = 0 for f ∈ I(Y ), and hence this restriction is well defined. In other
words,

dg = dG|Tx(Y )

defines a homomorphism d : A(Y ) → Ωx where Ωx is the space of differential
forms on Tx(Y ). Since A(Y ) is spanned by the monomials x1, . . . , xn, it is then
not hard to see that due to the Leibniz rule, Ωx is spanned by the differentials
dxi.

Note that the space of differentials is dual to the space of derivations: given a
differential df and a derivation D, we send (df,D) 7→ D(f). Therefore the space
of differentials can be identified with the cotangent space of the variety.

Finally, we are ready to discuss divisors. In the rest of this paper, let “curve”
refer to a smooth, projective curve. Since a polynomial function is determined
(up to a constant factor) by its roots, a rational function is determined (up
to a constant factor) by the positions of its zeroes and poles. We capture this
information in divisors as follows:

Definition 9. Let Y be an irreducible curve (n = 2). A divisor on Y is a finite
formal sum of the form ∑

niPi,

with ni ∈ Z and Pi points on the curve.
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The set of points Pi for which ni 6= 0 is called the support of D, and a divisor
is called effective if ni ≥ 0 for all i. The degree of D is defined as the sum of
the coefficients of Pi:

degD =
∑

ni.

Now, consider a rational function, f ∈ K(Y ) on a smooth projective curve.
At each point pi, we consider the local ring Opi

, which can be shown to be a
discrete valuation ring, and set ni = vpi

(f). Divisors of this form are called
principal divisors, and are denoted (f). Intuitively, the valuation tells us the
“rate” of vanishing or “blowing up” of a rational function at a point. Indeed, if
ni > 0 then we say that f has a zero of order ni at Pi, and we say that f has
a pole of order −ni at Pi if ni < 0. (Of course, to be completely rigorous, one
needs to check that there are only a finite number of points where f can have
poles or zeroes, but proofs of this fact can be found in any of the references
listed at the beginning of this section.) Finally, one can show that deg(f) = 0
for any rational function on a curve.

To better work with principal divisors, it is convenient to recall the following
facts, all of which follow from the definition of a discrete valuation:

1. (fg) = (f) + (g).

2. (f/g) = (f)− (g).

3. vPi
(f + g) ≥ min(vPi

(f), vPi
(g)), with equality if vPi

(f) 6= vPi
(g).

Now, one can check that the set of all divisors on a curve form an abelian group
(under the operation of addition), and that the set of principal divisors form an
abelian subgroup of the group of divisors. These groups are named Div Y and
PrincY respectively. The quotient group Div Y/PrincY is denoted ClY , the
class group of Y . Two divisors D, D′ are said to be equivalent if they are equal
in ClY . If this is the case, we write D ∼ D′.

Now, one can define the divisor of a differential form in a similar manner.

Definition 10. If ω is a differential form on Y , then for any Pi ∈ Y , choose a
local coordinate t and write ω = fdt. Then ni = vPi

(f).

The divisor of a globally defined differential form (so that its divisor is effective)
is called a canonical divisor.

The Riemann-Roch Theorem, given in the next section, allows one to use divi-
sors to reason about the existence (or non-existence) of certain functions on the
curve.
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3.1 The Riemann-Roch and Riemann-Hurwitz Theorems

We begin with the discussion of the Riemann-Roch Theorem. Before giving the
statement of the theorem, we must first give some basic definitions.

Let D be a divisor on an irreducible variety Y . Then the Riemann-Roch space,
denoted L(D), is defined as follows:

Definition 11. L(D) = {f |f ∈ K(Y ), (f) +D ≥ 0}.

The dimension of this space (as a k-vector space) is denoted l(D). We now give
the Riemann-Roch theorem:

Theorem 2 (Riemann-Roch). Let Y be a variety of genus g with canonical
divisor K. Then

l(D)− l(K −D) = deg(D)−g + 1.

On a curve, it can be shown that any canonical divisor has degree 2g − 2, and
that all canonical divisors are linearly equivalent.

Next, we give the statement of the Riemann-Hurwitz theorem. It will be useful
in determining the equation of a hyperelliptic curve.

Theorem 3 (Riemann-Hurwitz). Let S′ be a ramified N cover of a surface S.
If the cover has n preimages at almost every point, with 1 preimage at finitely
many points (denoted eP ), then denoting the genera of S′ and S g(S′) and g(S)
respectively, we have the formula:

2g(S′)− 2 = N(2g(S)− 2) +
∑
P∈S′

(eP − 1).

These theorems will be useful in the analysis of elliptic and hyperelliptic curves
in the next two sections.

4 Classification of Elliptic Curves

An elliptic curve is a smooth, projective, algebraic curve of genus 1. Over a
field of characteristic not 2 or 3, it can be defined by an equation of the form
y2 = x3+ax+b = f(x), with f not having any repeated roots. An elliptic curve
can be thought of as consisting of the points on the affine variety y2 = x3+ax+b,
together with a point O - the point at “infinity”. In this section, let the variety
given by this elliptic curve be X.

The elliptic curve is the most famous example of a group variety. The Riemann-
Roch theorem provides us with a neat way to understand this structure:
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Proposition 4. Let P0 be the point at infinity. Let D be a divisor of degree 0.
Then there is a unique point P on X such that D ∼ P − P0.

Proof. We apply Riemann-Roch with D + P0. We get:

l(D + P0)− l(K −D − P0) = 1.

We also have that l(K −D − P0) = 0 since deg(K −D − P0) = −1. Therefore
l(D + P0) = 1. This means that there is a unique effective divisor linearly
equivalent to D + P0. Moreover, since its degree is 1, it must be a single point.
This proves the proposition.

Proposition 4 therefore tells us that the map P 7→ (P − P0) gives a bijective
correspondence between points on the curve and and the subgroup of ClX
consisting of degree 0 divisors. This gives a group structure on the points of X.

With this group structure, it then makes sense to speak of “adding” points on
elliptic curves. In particular, define E[p] to be the subgroup of p−torsion points
on X: the points that, when added to itself p times, gives the identity. It can
be shown that the only two possibilities are |E[p]| = 1 or |E[p]| = p. The curve
is called ordinary if |E[p]| = p, and supersingular otherwise.

5 Classification of Hyperelliptic Curves

A hyperelliptic curve is a smooth, projective, algebraic curve of genus g > 1.
Over a field of characteristic not 2 or 3, it can be defined by an equation of the
form y2 = f(x), with f not having any repeated roots. The projective variety
given directly by this equation will have a singularity at the point at infinity,
P∞; however, this point can be removed by normalization of the curve, and the
resulting curve can be described as being covered by 2 affine charts: one given
by

y2 = f(x),

and the other given by
w2 = v2g+2f(1/v),

with the transition function being (x, y) 7→ (1/x, y/xg+1). When the degree
of f is odd, the curve is called an imaginary hyperelliptic curve, and has a
ramification point at P∞; and when the degree of f is even, the curve is termed
a real hyperelliptic curve, and has two “points at infinity”. In this paper, we
work exclusively with imaginary hyperelliptic curves. Since we can transform
any real hyperelliptic curve (given by deg f = 2g + 2) into a corresponding
imaginary one, we are not losing any generality by doing this. We can use the
Riemann-Hurwitz theorem to easily calculate the degree of f in terms of the
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genus of the curve. Since the curve is a ramified double covering of P1, with
ramification points at the roots of f and at P∞, we get:

2− 2g = 4− (deg f + 1),

and therefore that deg f = 2g + 1.

We wish to extend the above classification to hyperelliptic curves. However, the
main problem is that there is no way to define a group structure on the points of
the hyperelliptic curve. Therefore we need to consider the Jacobian variety of the
curve instead. First, we fix a prime characteristic p of the ground field k greater
than 3. Then on the Jacobian variety, we can define the p-rank: the integer
s such that the kernel of multiplication by p has ps points. On the Jacobian
variety, the p-torsion points are in bijective correspondence with the order p
elements of the class group, which are in turn in bijective corresponence with
the logarithmic differential forms (which can be defined to be the differential
forms that are fixed by the Cartier-Manin operator, defined below).

One may therefore compute the rank of the Hasse-Witt matrix (a matrix that
represents the operation of the Cartier-Manin operator) to obtain an upper
bound on the p-rank; however, it is in general hard to compute the p-rank
exactly. We now explain how to compute the Hasse-Witt matrix.

To do this, it will be convenient to use a different, but equivalent definition
of the hyperelliptic curve: we define it to be the unique smooth, projective
algebraic curve with the function field K(y2 − f(x)). Then we can define the
Cartier-Manin operator as follows:

Definition 12. The Cartier-Manin operator (or simply Cartier operator, for
brevity) is defined as the endomorphism of the space of differentials Ω (C : Ω 7→
Ω) with the following properties: for all ω, ω1, ω2 ∈ Ω and all z ∈ K(y2− f(x)):

1. C(ω1 + ω2) = C(ω1) + C(ω2).

2. C(zpω) = zC(ω).

3. C(dz) = 0.

4. C(dz/z) = dz/z.

The Hasse-Witt matrix represents the action of the Cartier operator restricted to
the space of holomorphic differentials (those with effective associated divisors).
It can be shown that this space (as a vector space over k) has dimension g, with
basis {ωi = xi−1dx/y}. By 1/p-linearity of C, it suffices to check the action of
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C on elements of this basis. We hence compute:

C(ωi) = C(
xi

y
dx/x)

= (
xi

y
)1/p

dx

y

y

x

= (xi−pf
p−1
2 )1/p

dx

y
.

Therefore the entries of the matrix representing the action of the Cartier oper-
ator on the basis can be computed by calcuating the corresponding coefficients

of the powers of x in f
p−1
2 . This allows one to compute an upper bound of the

p-rank of a hyperelliptic curve, as discussed above.

6 The p-Curvature Map

In this paper, we examine the p-curvature map of opers. First, we recall a few
basic definitions.

Definition 13. An SLn oper with marking on a curve C can be described in
terms of vector bundles as follows: it consists of the data (E,Eii=1,...,n,∇, φ)
where E is a rank n vector bundle on C, E1 ⊂ E2 ⊂ · · · ⊂ En = E is a complete
flag, ∇ is a connection on E, and φ : E1 ' ω(n−1)/2 is an isomorphism, such
that

1. ∇(Ei) ⊂ Ei+1 ⊗ ω.

2. For each i, the induced morphism gri(E)
gri(∇)−−−−→ gri+1(E) ⊗ ω is an iso-

morphism.

3. The connection ∇ is given by traceless matrices on its local trivializations.

Definition 14. Given a connection ∇, the p-curvature of ∇ is given by

v 7→ ∇(v)p −∇(vp).

In this paper, we study SL2 opers, and the p-curvature map of the space of such
opers. For an SL2 oper, the definition says that we should have a vector bundle
E = E2 ⊃ E1 where E2 is a rank 2 vector bundle, E1 is a rank 1 vector bundle,
E1 ∼= ω1/2, and ω1/2 ∼= E1 ∼= E/E1 ⊗ ω. This gives us the short exact sequence:

0→ ω1/2 → E → ω−1/2 → 0. (1)

Since E is an extension of ω1/2 with ω−1/2, there is only one class of nontrivial
(not the same as ω1/2 ⊕ ω−1/2) bundle E up to equivalence.

Hence we shall adopt the following strategy to compute the p-curvature map:
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1. Identify a suitable vector bundle that is an extension of (1).

2. Compute the set of “allowed” opers on the bundle.

3. Classify the set of “allowed” opers up to equivalence by examining auto-
morphisms of the bundle.

4. Find representatives for each equivalence class that simplify computation
of the p-curvature map.

5. Compute the p-curvature map.

7 Computations for Elliptic Curves

By the short exact sequence (1), we are looking for an extension of the trivial
bundle on elliptic curves. As will be shown below, opers exist on the trivial
bundle. Since it can be shown that the opers cannot exist on both the trivial
and nontrivial extensions, it suffices to give the opers on the trivial bundle.

In the case of the trivial bundle, we can specify the connection on the entire
curve, in which case the matrix will consist of global sections on the entire
projective curve, i.e. constants. For an SL2 oper, we also have the additional
condition that the matrix have trace 0. Thus the connections in the SL2 case
are conjugate to those given by matrices of the form:[

λ 0
0 −λ

]
and

[
0 0
1 0

]
,

by a standard result from linear algebra. The case for GL2 can be handled
similarly (without the condition that the matrix is traceless).

Now that we have a concrete description of the opers on elliptic curves, we
wish to compute the p-curvature map. Fix a prime characteristic p > 3 for the
ground field k. The p-curvature map is defined by

v 7→ ∇(v)p −∇(vp),

for some derivation v in the tangent space of the curve. The first term, ∇(v)p,
is computed in the proposition below.

Proposition 5. Let ∇ be a connection given by ∇ = d+M dx
2y . Then

∇(v)p = vp +Mp

(
dx

2y

)p

+Mvp
(
dx

2y

)
.
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Proof. Note that ∇(v)p can be written as a sum of terms of the form

M jv(k)
(
dx

2y

)l(k)

vi

with (k) being a multi-index: (k) = (k1, k2, . . . ) with each index ki representing
the result of applying v i times to dx

2y . Let the coefficient of such a term be

represented by ajki. On each application of ∇(v), each term is either multiplied

by M v(x)
2y , of has v applied to it. Using the Leibniz rule, we can choose one of

the factors of each term to apply v to, counting with appropriate multiplicity
(lki) when we apply v to the term vki(dx

2y )lki .

First, notice that
(
p
i

)
| ajki: to form such a term, we can choose i out of p

applications of ∇(v) to contribute to the vi factor. Since p |
(
p
i

)
if i 6= 0 and

i 6= p, we only need to consider the terms where i = p and i = 0. In the case
where i = p, all applications of ∇(v) were applications of v, so j = k = 0. Note
also that there is only 1 way to do this. This gives the vp term in the sum.

When i = 0, all applications of ∇(v) were multiplication by M v(x)
2y , or appli-

cation of v to one of the vki (x)
2y terms (note that in this case, M is a matrix

of constants, and so v(M) = 0). To analyze this case, fix some term ajki and

consider the largest i such that ki is nonzero. To obtain one such vki (x)
2y term

in the product, we must have multiplied by M v(x)
2y once, and then applied v

to the v(x)
2y term ki − 1 times. This gives a string of ki operations that can

be interspersed in the total of p operations we are allowed on the term. Note

that we could have chosen this vki (x)
2y in lki different ways. Therefore we get

the result that 1
lki

(
p
ki

)
| ajki. (Note that this extends inductively to a formula

to calculate the coefficient explicitly, but we do not need that here.) Therefore
ajki is divisible by p unless ki = 1 or ki = p. Note that again, there is only one
way to form each of these terms. The proposition follows.

Since the tangent space is a line bundle, it suffices to determine the determinant
of the p-curvature map for a convenient choice of v. We shall take v = 2y∂x +
f ′(x)∂y. Since the curve is elliptic, vp = cv where v is the Hasse invariant of
the curve. Applying it to the map, we obtain:

∇(v)p −∇(vp) =

[
(λ)p − cλ 0

0 (−λ)p − cλ

]
.

In particular, c is 0 if and only if the curve is supersingular, and therefore the
p-Curvature map corresponds to the Frobenius p-power map if and only if the
curve is supersingular.
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8 Computations for Hyperelliptic Curves

Let the defining equation of the hyperelliptic curve be y2 = f(x), with f(x)
being a monic polynomial of degree 2g + 1 without multiple roots. We will
for simplicity consider only the imaginary hyperelliptic curves since they only
have one “point at infinity”; since we can transform any real hyperelliptic curve
(given by deg f = 2g+ 2) into a corresponding imaginary one, we are not losing
any generality by doing this. Then the curve is covered by two affine charts,
one defined by the given equation, and the other given by w2 = v2g+2f(1/v).
The glueing map on the intersection is given by (v, w) 7→ (1/v, w/vg+1).

We wish to find a function that vanishes with order 1 at P∞. To do this, we
compute some convenient divisors:

Proposition 6. The function x has a pole of order 2 at P∞, and y has a pole
of order 2g + 1 at P∞.

Proof. First we show that on the affine portion, when y = 0, y is a local pa-
rameter, and that elsewhere, x is a local parameter. Recall that the defining
equation of the affine portion is y2 = f(x). Taking differentials on both sides,
we obtain:

2ydy = f ′(x)dx.

Since dx and dy span the space of differentials, they can’t both be 0. When
y = 0, we must have f(x) = 0 and therefore f ′(x) 6= 0 since f has no roots
of multiplicity greater than 1. Therefore we obtain dx = 0 and hence dy must
be nonzero. This means that y is a local parameter at this point. Similarly, if
y 6= 0, dx = 0 would imply that dy = 0. Therefore dx 6= 0 and x is a local
parameter, as claimed.

Now, since x and y generate principal divisors, their degrees as divisors must be
0. First consider the case f(0) 6= 0. Then x vanishes at 2 points on the affine
part, corresponding to the solutions y2 = f(0). At each of these points, x is a
local parameter. Therefore,

(x) = P1 + P2 − 2P∞.

In the case where f(0) = 0, we must have y2 = xg(x). Then when x vanishes,
y = 0 and y is a local parameter, so x vanishes with order 2 since g(x) doesn’t
vanish. We hence obtain

(x) = 2P1 − 2P∞.

Similarly, y vanishes at 2g + 1 points on the affine part, corresponding to the
roots of f : f(Pi) = 0. At these points, y is a local parameter. Therefore,

(y) =

2g+1∑
1

Pi − (2g + 1)P∞,
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as claimed.

Therefore xg

y will vanish with order 1 at P∞. Indeed,(
xg

y

)
= g(x)− (y)

= gP ′1 + gP ′2 + P∞ −
2g+1∑

1

Pi.

Next, we proceed in a fashion similar to the hyperelliptic curve case to determine
the vector bundle E we are interested in. By definition, we must have E1 ↪→ E ,
E1 ∼= ω1/2, and ω1/2 ∼= E1 ∼= E/E1 ⊗ ω. This gives us the short exact sequence:

0→ ω1/2 → E → ω−1/2 → 0.

Since E is an extension of ω1/2 with ω−1/2, there is only one class of nontrivial
(not the same as ω1/2 ⊕ ω−1/2) bundle E up to equivalence.

To find it, consider a vector bundle that trivializes on 2 opens (U1, U2) of the
curve: the first given by the affine given by y2 = f(x), and the second given by
the affine given by w2 = v2g+2f(1/v), with the points P ′1, P ′2, and Pi removed,

so that
(

xg

y

) ∣∣∣
U2

= P∞. Then setting r = (xg

y )g−1, the transition matrix C on

U1 ∩ U2 can be written in the form:[
r s
0 r−1

]
,

with s a regular function on U1∩U2. Now, suppose there are invertible matrices

A and B on U1 and U2 respectively such that BCA−1 =

[
r 0
0 r−1

]
, i.e.

[
b11 b12
b21 b22

] [
r s
0 r−1

]
=

[
rb11 sb11 + r−1b12
rb21 sb21 + r−1b22

]
=

[
r 0
0 r−1

] [
a11 a12
a21 a22

]
=

[
ra11 ra12
r−1a21 r−1a22

]
.

The following proposition places restrictions on some entries of A and B:

Proposition 7. Suppose that E is isomorphic to ω1/2 ⊕ ω−1/2. Then a11 and
a22 are nonzero constants and a21 is 0.

Proof. Since a11 is regular on U1, it can only have zeroes but no poles on that
cover. Therefore, we must have v∞(a11) ≤ 0. However, since b11 is regular
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on U2, it can only have zeroes but no poles on U2. Therefore, we must have
v∞(b11) ≥ 0. Therefore, we have

v∞(ra11) ≤ g − 1

v∞(rb11) ≥ g − 1,

and therefore that v∞(ra11) = g − 1 which implies that a11 is a constant.
Similarly, suppose that a21 6= 0. Then v∞(r−1a21) ≤ −g + 1. However, we also
have v∞(rb21) ≥ g − 1, which gives a contradiction. Therefore a21 = 0. Next,
note that since A is invertible, a12 and a11 cannot both be 0. Lastly, setting
a21 = 0, one uses the same argument to show that a22 is a nonzero constant.
This proves the proposition.

This allows us to find a bundle that is not isomorphic to ω1/2 ⊕ ω−1/2.

Proposition 8. Setting s =
(

y
xg

)g
gives a bundle that is not isomorphic to

ω1/2 ⊕ ω−1/2.

Proof. By Proposition 7, we have[
rk sk + r−1b12
0 r−1k′

]
=

[
rk ra12
0 r−1k′

]
,

with k a nonzero constant. We have v∞(s) = −g, and v∞(r−1b12) ≥ −(g − 1).
Therefore we must have v∞(ra12) = −g, and v∞(a12) = −2g + 1, that is:
a ∈ L((2g − 1)P∞). By the Riemann-Roch theorem, this space has dimension
2g − 1 − g + 1 = g, and so 1, x, . . . , xg−1 form a basis for this space. However,
each of the basis elements has a pole of even order at P∞, and so there is no
element with a pole of odd order in this space, and a12 cannot exist. This proves
the proposition.

Next, we determine the connections allowed on this bundle. As is the case for
elliptic curves, the ismorphism E1 ∼= E/E1⊗ω forces the bottom left entry of our
matrix to be a constant. However, the computations for hyperelliptic curves are
more complicated because we have 2 case, depending on whether p | g − 1. We
first handle the case where p - g − 1.

Proposition 9. Let the connection on U1 be given by

∇1 = d+

[
a b
c d

]
dx

2y
,

with a, b, d regular on U1, and c a nonzero constant. Further suppose that p -
g − 1. Let K be the divisor of dx

2y . Then we must have a, d ∈ L(K) and we

can write b = kx2g−1 + k′yxg−2 + b′ with k, k′ determined and b′ ∈ L(2K).
Additionally, c takes on a unique value.
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Proof. We compute:

∇2 = C∇1C
−1

= d+ C(C−1)′ + CM1C
−1

= d+

[
−r−1dr −rds+ sdr

0 r−1dr

]
+

[
a+ r−1sc r2b+ rsd− rsa− s2c
r−2c d− r−1sc

]
r2
(
r−2

dx

2y

)
.

To continue, we have to compute dr:

dr = d

((
xg

y

)g−1
)

=

(
d

(
xg

y

))
(g − 1)

(
xg

y

)g−2

=
xg

y

(
gdx

x
− dy

y

)
(g − 1)

(
xg

y

)g−2

= (g − 1)r3
(

2gy

x
− f ′(x)

y

)(
dx

2y
r−2
)

= (g − 1)r3
(

2gf(x)− xf ′(x)

xy

)(
dx

2y
r−2
)
.

Similarly, we have:

ds = g
( y
xg

)g−1(dy
xg
− gydx

xg+1

)
= rg

(
xf ′(x)− 2gf(x)

xg+1

)(
dx

2y
r−2
)
,

and therefore

sdr − rds = (g − 1)r2
(
xf ′(x)− 2gf(x)

xg+1

)(
dx

2y
r−2
)

+ r2g

(
xf ′(x)− 2gf(x)

xg+1

)(
dx

2y
r−2
)

= (2g − 1)r2
(
xf ′(x)− 2gf(x)

xg+1

)(
dx

2y
r−2
)
.

We compute v∞(r3
(

2gf(x)−xf ′(x)
xy

)
). Note that 2gf(x)−xf ′(x) has degree 2g+1

and hence a pole of order 4g+2 at P∞. Thus v∞(r3
(

2gf(x)−xf ′(x)
xy

)
) = 3g−3+

2g+ 3− 4g− 2 = g− 2. Therefore r−1dr = F (x, y)(r−2 dx
2y ) with v∞(F (x, y)) =

−1. Similarly, we have v∞(r2
(

xf ′(x)−2gf(x)
xg+1

)
) = 2g−2+2g+2−2(2g+1) = −2,

and sdr − rds = G(x)(r−2 dx
2y ) with v∞(G(x)) = −2.

We now examine the restrictions on a, b, c, d. First, r2a+ rsc−F (x, y) must be
regular on U2. We only have to check behavior at P∞. F (x, y) has a pole of
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order 1 at P∞, and so does rsc (recall that c is a nonzero constant). Therefore
v∞(r2a) ≥ −1 and v∞(a) ≥ 1− 2g. As reasoned in the proof of Proposition 8,
a can’t have a pole of order 2g− 1 at P∞ and thus we have a ∈ L(K). Since we
are working with SL2 opers, we require that the matrix of the connection be
traceless; i.e. a = −d. This gives the same restriction for d. Lastly, note that
the pole from rsc must cancel the pole from F (x, y). This gives us a unique
value for c.

Next, r4b+ r3sd− r3sa− r2s2c+G(x) must be regular on U2. Again, it suffices
to check regularity at P∞. Note that since a, d ∈ L(K), r3sd− r3sa has a pole
of order at most 1 at P∞. Now, c was chosen so that rsc− F (x, y) has no pole
at P∞. Multiplying throughout by rs = y

xg , we find that r2s2c − g−1
2g−1G(x)

has no pole at P∞, so −r2s2c + G(x) has a pole of order 2 at P∞. Therefore
v∞(r4b) = −2 and v∞(b) = 2−4g, and b ∈ L((4g−2)P∞). Again, by Riemann-
Roch, l((4g − 2)P∞) = 3g − 1. Therefore 1, x, . . . , x2g−1, y, yx, . . . , yxg−2 is a
basis for this space. Hence by choosing the coefficient of x2g−1 appropriately,
we can cancel the pole at P∞. Furthermore, since G(x) is a rational function in
x, it will not have a pole of odd order. This means that after the cancellation,
G(x) − kx2g−1 will not have a pole at P∞. Finally, to cancel the pole of order
1 contributed by r3sd − r3sa, we will need a yxg−2 term. Hence we can write
b = kx2g−1 + k′yxg−2 + b′ where b′ ∈ L(2K). This proves the proposition.

Finally, we determine c and k. We compute:

F (x, y) + krs =
(g − 1)xg(2g−2)+g−1(2gf(x)− xf ′(x)) + ky2g

xgy2g−1
.

It suffices to cancel the highest power term in the numerator, x(2g+1)g. Using the
relation y2 = f(x), and the assumption that f is monic, we get that c = (g−1).
Similarly, to find k, we compute:

G(x, y)− (g − 1)(y/xg)2 + kr4x2g−1

=
−(g − 1)y2+4(g−1) − (2g − 1)x2g(g−1)+g−1y2(g−1)(xf ′(x)− 2gf(x)) + kx4g(g−1)+2g−1+2g

y4(g−1)x2g
.

Therefore we can set k = g.

Remark 10. Note that since r−1dr has a pole of order 1 at P∞, one can show
that oper-like connections do not exist on ω1/2 ⊕ ω−1/2.

Now, in the case where p | g − 1, we have dr = 0. This means that the pole
contributed by rsc can’t be cancelled by r−1dr; hence opers cannot exist on the
nontrivial extension. The only possibility then is for opers to exist on the trivial
extension. The next proposition handles this case.
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Proposition 11. Let the connection on U1 be given by

∇1 = d+

[
a b
c d

]
dx

2y
,

with a, b, d regular on U1, and c a nonzero constant. Further suppose that p |
g − 1. Let K be the divisor of dx

2y . Then we must have a, d ∈ L(K) and

b ∈ L(2K), and c a nonzero constant.

Proof. We compute:

∇2 = C∇1C
−1

= d+ C(C−1)′ + CM1C
−1

= d+

[
−r−1dr 0

0 r−1dr

]
+

[
a r2b

r−2c d

]
r2
(
r−2

dx

2y

)
.

As discussed above, since p | g − 1, dr = 0 and therefore the only restrictions
are r2a, r2d and r4b are regular at P∞. The proposition follows.

Next, we determine the automorphisms of E that preserve the transition matrix
to determine the isomorphic connections. First, notice that if A is an automor-
phism of the vector bundle on U1, then the automorphism B on U2 is completely
determined: B = CAC−1. The following proposition makes use of this fact to
determine the set of such automorphism:

Proposition 12. Let

[
a11 a12
a21 a22

]
be an automorphism of the bundle on U1 such

that the transition matrix is preserved. Then a21 = 0, a11 = k1 and a22 = k2
(where k1 and k2 are nonzero constants), and a12 ∈ L(K). Further suppose that
p - g − 1. Then we must also have k1=k2.

Proof. We compute:

B =

[
b11 b12
b21 b22

]
=

[
r s
0 r−1

] [
a11 a12
a21 a22

] [
r−1 −s
0 r

]
=

[
a11 + r−1sa21 r2a12 + rsa22 − rsa11 − s2a21

r−2a21 −sr−1a21 + a22

]
.

First consider the case of the nontrivial extension. Since b21 must be regular
on U2, it can’t have a pole at P∞. Therefore we must have a21 = 0. Then
this means that a11 and a22 are both regular on U2 too, and hence are nonzero
constants (as A must be an invertible matrix). Finally, r2a12+rs(a22−a11) must
be regular on U2. However, rs will have a pole of order 1 at P∞. Additionally,
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as reasoned in the proof of Proposition 8, a can’t have a pole of order 2g− 1 at
P∞ and hence we must have a22 = a11. This then implies that a12 ∈ L(K), as
asserted.

Next, if the extension is trivial, s = 0. Then the only restrictions are that a11,
a22 are regular on the entire variety and hence constants, and that r2a12 has
no pole at P∞. The proposition follows.

Next, we conjugate the connection with the automorphisms. Let A =

[
k t
0 k

]
.

Then we obtain:

∇′1 = A∇1A
−1

= d+A(A−1)′ +A

[
a b
c −a

]
A−1

= d+

[
0 −kdt
0 0

]
+

[
a+ tc

k b+ td
k − t

2c− kta
c −a− tc

k

]
.

Notice that by setting t = −ka
c , we obtain a connection given by a matrix with

both top left and bottom right entries 0. Additionally, if we originally had
a = 0, then conjugation by an automorphism cannot give a different matrix
with a still equal 0. Finally, in the notation used in Proposition 9, notice that
k′ was chosen to cancel the pole contributed by r3sd − r3sa. However, when
we have a = d = 0, we will have k′ = 0. In addition, if p | g − 1, then we
can choose the top left entry and bottom left entry to be different. By setting
a11 =

√
c and a22 = 1/

√
c, we can set the bottom left entry of the matrix of the

connection to 1. Hence we have obtained a description of all connections up to
isomorphism. This discussion is summed up in the proposition below.

Proposition 13. The connections, up to isomorphism, can be given by matrices
of the form [

0 kx2g−1 + b
c 0

]
,

with c and k nonzero constants uniquely determined, and b ∈ L(2K). If, in
addition, p | g − 1, then we have c = 1 and k = 0. Otherwise, k = g and
c = g − 1.

To calculate the p-curvature map, we can reuse the method used in the proof
of Proposition 5, the only difference being that we can differentiate the matrix
in this case. The following proposition naturally follows.

Proposition 14. Let ∇ be a connection given by ∇ = d+M dx
2y . Then

∇(v)p = vp +Mp

(
v(x)

2y

)p

+Mvp
(
dx

2y

)
+ vp−1(M)

v(x)

2y
.
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Unfortunately, we have not been able to find a good choice of v that makes
computation of the vp−1M easy.
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