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ABSTRACT. In this paper, I investigate when an algebraic number can be expressed
in terms of algebraic numbers of smaller degree. First, I describe an algorithm to
decide, given an irreducible polynomial P in Q[z], whether one of its roots « can
be expressed as § + v , where § and v are roots of polynomials in Q[z] of degree
strictly less than the degree of a. Then, I turn to generalizations such as when «
can be expressed as 7, when « can be expressed as P;(8) + Pa(y) where P; and
P, are two given polynomials in Q[z] and similar with more variables.
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2 C. ALTAMIRANO

1. INTRODUCTION

The following notation will be used throughout this paper.
For an algebraic number z, let the degree of z, deg(z), be the degree of the minimal
polynomial of z. This is the same as the degree of the extension Q(z) over Q.
For a number field K, I(K) will denote the set of all the fractional ideals in K.

In the second section I will describe when can « be written as a sum of j;.
In the third section I will describe when can a can be written as G~.
For these two sections I will first show that all the variables can be taken to be
contained in the Galois closure of Q(«).
In the fourth section I will show that that the same method will not work for the
sum of polynomials case.
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2. SUMS OF ALGEBRAIC NUMBERS

Given an algebraic number «, we describe an algorithm to decide whether or not
a can be expressed as [+ where 5 and ~ are algebraic numbers such that deg(3) <
deg(a) and deg(y) < deg(w).
To approach this problem, we will first show that if an algebraic number « has such
property, then there exists a fixed field F' (that only depends on «) such that there
exist § and v that satisfy a = § + 7, deg() < deg(«) and deg(y) < deg(«). Then,
we will use linear algebra to describe a.

Theorem 2.1. Let a, (3, v be algebraic numbers such that o = S+, deg(f) < deg(«)
and deg(vy) < deg(a). Let K be the Galois closure of Q(cv). Then, there exist 5 and
v such that o = ' 4+, deg(f’) < deg(a), deg(v’) < deg(a) and p', v € K.

Lemma 2.2. Let K be a Galois extension of Q and B be any algebraic number,
then the minimal polynomaial of B over K is the same as its minimal polynomial over

KNQ(p)

Proof. Let P € K NQ(fH)[z] and P’ € KJz] be the minimal polynomials of 5 over
K NQ(pP) and K respectively. Since P(8) =0 and P € K N Q(S)[z|, which implies
that P € K|[z], then P is divisible by P’ where both are monic and have the same
degree because [K () : K] = [Q(B) : K N Q(B)]. Thus, P = P'. O
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Proof. Let Kg = KN Q(B) and K, = K N Q(7), now we will show that there exist
p' € Kz and 7' € K, that satisfy the property in the theorem.

Now, K and Qg are extensions of Q. Let L = KQ(8) = K(5), K(8) = K(7v)
because a € K and + v = a. Applying Lemma 2.2 to K and (3

[L: K] = [KQ(P) : K] =[Q(B) : KNQ(B)] = [Ks(B) : K]

Let t = [L: K|, B = Trk(B)/t and v/ = Trk(vy)/t where Trk is the trace with
respect to the extension L/K. Let P(x) = z' + a;_12'"! + ... + ag be the minimal
polynomial of 3 in K|z], then Trk(8) = —a;_; and B’ = Trk(8)/t = —a;_,/t. From
Lemma 2.2, P is the minimal polynomial of 5 in Kg. Therefore, P € Kp[z|, then
ar—1 € Kg and ' € K. Analogously, 7' € K,. Also, since @ € K and 8+ v = a,
Tr(B) + Trk(y) = Trk(a), then t3' + ty' = ta, thus ' ++' = a.

Now, ' € Kg C Q(B), therefore, deg(f’') < deg(f) < deg(cr) and deg(’) < deg(a).
Analogously, deg(v') < deg(«a).
Hence, we have such ' and +' that satisfy the theorem statement.

L

O

Now, the next step for this algorithm will be included in the following general case.

We now prove an analogous result for sums of n items.
Given an algebraic number «, we describe an algorithm to decide whether or not a
can be expressed as 51 + (B2 + ... + 3, where the (3; are algebraic numbers such that
deg(8;) < deg(«) for all i.

Theorem 2.3. Let «, 31, Bo, ..., B, be algebraic numbers such that o = 1+ ... + B
and deg(B;) < deg(a) for all i. Then, there exist B}, 5, ..., Bl such that o =
By 4 ...+ B, deg(B!) < deg(a) and By, B, ..., B, € K for alli from 1 to n where K
is the Galois closure of Q(«)

Proof. Let «, By, Ba, ..., B, and K be as in the theorem. Let L be the extension of
K containing (1, Ba, ..., fn. Let t = [L : K] and for each 5; let K; = K NQ(f;).
Let 8/ = Trk(p;)/t. From Lemma 2.2 the minimal polynomial of 3; over K is the same

as its minimal polynomial over K; = KNQ(/;), as a result, TTK(B Y(Bi) = T'r’%ﬁ ")(ﬁi).
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Now,
Bl =Tri(B;)/t = [L: K(B)Tr ™ (8;)/t = L+ K(B)|Tr™ (8,)/t

Clearly Trggﬂi)(ﬁi) € K, then g € K; C K. Now,

o= Zﬁz
i=1

Taking the trace of L over K

n

Tri(a) = Tr(Y 6) = Y- Tri(5)

i=0
Using that o € K and replacing Trk(3;) by t3!, we get

n

ta =) (t3)

=1

Hence,

And we have that all g] € K.
U

Now we will describe the algorithm to determine whether or not o can be written
as » ., B for some algebraic numbers §; such that deg(f;) < deg(cr). Let K be the
Galois closure of Q(«). From Theorem 2.3, we know that if o = )", f3;, therefore,
we can take 3; € K.

Then, o can be the sum of 3; if and only if there exist n subfields K; of K, that
have dimension less than deg(«) such that o € > . K;. Thus we must determine if «
is in a finite list of computable sub Q vector spaces of K.

Let m = [K : Q] and ey, eg, ..., e, a basis for K and let & = aje; + ... + apenm.
Now, for every set of n subfields of K that have dimension less than deg(a), let them
be K;, we will check if there exist 8; € K; for all ¢ such that satisfy o = Z?:l B;.
Let one such set of n subfields of K that have dimension less than deg(«) be K, K,
., IG, and by, bya, ..., by, be a basis for each K;. Now, any number 3; € K; can be
written as a;1bi + @b + ... + ai,by, and since 3, are all in K, each of them is a
linear combination of a;,, ..., i, -

Now, for a = Y7, B; to be true, the following equality should be true for each j
from 1 to m:

n

> iy = q

=1

Therefore, o can be written as Y, §; if and only if the system of equations has
a solution.
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3. PRODUCTS OF ALGEBRAIC NUMBERS

Given an algebraic number «, we describe an algorithm to decide whether or
not o can be expressed as [y where S and 7 are algebraic numbers such that

deg(B) < deg(a) and deg(y) < deg(a).

Let K be the Galois closure of Q(«). To approach this problem, we will also
show that if « has such property, then there exist 8 and « that satisty a = (7,
deg(B) < deg(a), deg(y) < deg(a) and B,y € K. Then, we will use the factorizations
of ideals into prime ideals and some facts about units.

Theorem 3.1. Let a, 3, 7y be algebraic numbers such that o = By, deg(f) < deg(«)
and deg(y) < deg(a). Then, there exist 8 and ~' such that a = '+, deg(p’) <
deg(a), deg(v’) < deg(a) and ', 7' € K where K is the Galois closure of Q(«)

Proof. Let «, B, v and K be as in the theorem. Let Kz = K N Q(f) and K, =
KNQ(y).

Now we will assume that « is different than 0, because if it were the result would be
trivial. Let L = KQ(B8) = K(8) = K(v). Let P(x) = ' + a;_12'™' + ... + ag be the
minimal polynomial of 5 over K, from Lemma 2.2 P is also the minimal polynomial
of B over K.

Let @ be the polynomial

t t
Q(zx) = x—P(a/m) =t +alet g a8 Y
ap ag ag ap
Clearly, @ is in K[z], because all of its coefficients are in K. It can also be seen that
() is monic.
Then, Q(v) = v'P(8)/ag = 0. Then @ divides the minimal polynomial of v in K.
Since K () = K(7), the minimal polynomials of 8 and ~ over K should have the same
degree, thus ) has degree t. Hence, () has to be the minimal polynomial of + over
K. From the proposition ) is also the minimal polynomial of v over K, = K NQ(y).
Let f' = ap/a; and 4" = «aay/ay, clearly f'7 = a. Now, as a¢ and a; are coefficients
of P € Kglz], then ag € Kg and a; € K3, hence ' = ap/a; € K. Also, 7' = aay/ag
is a coefficient of ) € K, [z], then 7 € K,. Now we have the 5" and 7' required. O

Theorem 3.2. Let Ky and Ky be two number fields inside another number field L so
that L is Galois over Q and let K = K1NKy. Let I} and Iy be two fractional ideals of
Ky and Ky such that 1O, = [,Or, and satisfy the following. Let J = ;O = [,Oy,.
For each prime number p that divides the discriminant of L over Q, v,(J) = 0 for
each prime ideal p C Oy, that divides p. Then, there exist a fractional ideal I C K
such that Iy = IOk, and I = [Ok,

Proof. Let p be a prime number. Let p be a prime ideal in K that divides p. Let
pOL = PRSP, POk, = pIp2..pe and pOr, = ql'q)>...q/* be the factorization
of p in prime ideals in L, K; and K5 respectively. All the exponents of the prime
ideals P are the same because L/K is Galois. It can also be seen that each of p; is

a product of some ‘Bj/ “ and each g, is a product of some ‘,Bj/ /i because ramification
is multiplicative on towers of extensions. Let S; be the set of the prime ideals Py
that divide p; and T} be the set of the prime ideals ‘B, that divide q;. Let S be the
set of all the B;. Each B, lies over exactly one p; and over exactly one qy, therefore,
S = US; = UT;. Also, the S; are pairwise disjoint, and the same holds for the 7). Let
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G be the Galois group of L over K and let H; and Hy be the subgroups of G that
belong to K and K5 respectively.

The following lemmas will use the same notation as above
Lemma 3.3. G =< H{, Hy >

Proof. Let H =< Hy, Hy > and let Ky be the fixed field of H. H; and H, are
subgroups of G, then H < G. H;y < H and Hy < H, then Ky C K; and Ky C Ko,
then Ky c KiNKy =K. Then,H>G. ThUS,G:H:<Hl,HQ>. O

Lemma 3.4. Let 0 € Hy. Then, for each*B;, o(*Bi) and B, are in the same S;. The
same for o € Hy and T;

Proof. Let B; € S. Let j such that B; € S;, then B, divides p;. Since o € H;
and p; C Ky, o(p;) = p;. Then, Hmesj o(Pr)/ = H‘Bkesj ‘Bz/ej. We know that

an automorphism takes prime ideals to prime ideals. Then, o(*B;) = Pi for some
Bi € S;. Thus, o(*P;) and P; are in the same S;. Analogously, for o € Hy and 7; O

Lemma 3.5. Assume that p does not divide the discriminant of L over Q. If
Bi, B, € Sk or B, B; € Ty, for some k, then vy, (J) = vy, (J)

Proof. 1f PB;,B,; € Sk, then p,Op = P,P;... in its decomposition. Let vy, (I1) =
then J = IO = pf.... Replacing p, for its product of prime ideals in L, J
(BEBS...).... Then vy, (J) = vy, (J). Analogously the same will occur if B;, B;
Ty.

®

Om |l

Let us assume that p does not divide the discriminant of L over Q

Let P = P;. All the 0 € Gal(L/K) act transitively on all the ;. Then, for each
B, there exist 0 € Gal(L/K) such that B, = o(*B) Let Q = P, for some ¢ and let
o € Gal(L/K) such that Q = o(). Let H; and Hs be the subgroups of G that
belong to K7 and K5 respectively. From Lemma 3.3, 0 = 0103...0¢0 where o; € H; or
o; € Hy. For each o; and any prime ideal *B;, from the Lemma 3.4 0;(*B;) and B;
are prime ideals in the same Sy or Tj. From the Lemma 3.5, vy, (B;)(J) = vy, (J).
Thus, vp(J) = Vo, 00 (J) = Vor_so) (J) = -+ = Vor05.000m) (J) = Vo (J) = va(]).

This was done for any Q of the form B;, then vy, (J) = e for all 4, thus v,(J) =e
too. Now, we have that the ideal of J that has in its factorization prime ideals that
divide p comes from p® which is an ideal in K. Therefore, doing this for all prime
ideals p € K, we have that J = Hpespec(K) p¢ comes from an ideal in K.

0

Now we will describe the algorithm to determine whether or not o can be written
as [~ for some algebraic numbers § and « such that deg(3) < deg(«) and deg(y) <
deg(a). Let L be the Galois closure of Q(«). From Theorem 1.4, it will suffice to
search for 5,y € L.

Now, for each pair of subfields of L that have dimension less than deg(a), let one
such pair be K; and K5, we will check if there exist 5 € K; and v € K, that satisfy
a = [.

Here we will use some facts about prime ideals. Let I, be the principal fractional
ideal generated by o in L. Now we want some principal fractional ideals Iz and
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I, in K; and K, respectively such that I, = Igl,, which is the same as v,(I,) =
vy(1g) + vy(1,) for all prime ideals p in L.

We will show that the ideals Ig and I, can be taken to have a very constrained form
and that it will suffice to take such ideals of that form. Let S be the set of the
following

e The prime ideals p C Ok such that the prime number in Q below p does not
divide the discriminant of L over K.

e The prime ideals p C Ok such that there exist a prime ideal 8 C Op, over p
that appears in the factorization of I, in prime ideals.

e Prime ideals that are representatives of each ideal class in K.

Let S, S, and T be the sets of prime ideals in K7, K5 and L that lie over some prime
ideal K that belongs to S.

For the next two propositions we will assume that there exist such principal frac-
tional ideals I3 and I, such that I, = Igl,.

Proposition 3.6. There exist I and I, so that the prime ideals in K that lie below
any prime that appears in the factorization of Iy or I, are all in S and I;I = I,.

Proof. Let Ig = [[p® € I(K1), let I = [[,cq, P € Ky and let I = IgI", then I =
[logs, P € I(K1). Similarly, let I, = [[q% € I(K>), let Ir = [],cq, 9% € I(K>),
and let I) = LI;", then I = [ g, a4 € I(Ky). Let J = IfIY) = ;I LI =
LIT'I e I(L).

J = ]g]fy’ = Hp¢51 per I—qus2 q°, then J = ngT Bew.

J =L 'I;' then J = HmeT P* since 1,, I1, I have in their factorization only
prime ideals in 7.

Then, J has to be Op. Then we have that Ig[;’ = Oy, then I50 = I;’_lOL.
Now we know that the fractional ideal I§ = [] .5 p* O only has in its factorization
prime ideals that are not in 7. As a consequence, the prime number that lies below
P does not divide the discriminant of L. The same happens for ];/—1_

Now we have that Ij; and ];*1 satisfy the condition of Theorem 3.2. Then there
exists a fractional ideal J € I(K) such that I = JOk, and I'~' = JOk,. Let p € S
be the representative of the ideal class of J. Let I = I1p and I/ = Lp~! Now all the
prime ideals in K that lie below any prime ideal that appears in the factorization of
I, are the ones in S and the same for I'. I, = I;p~" = Izl 'p = I3J 'p is in the

B v tB BLp B
same ideal class as [, then I} is principal. Analogously, I, is principal. Recall that
J =II;7' 1" and J = Op. Then, I, = 115, therefore, I, = Ij1]. 0O

Now, we will assume that I3 and I, are the I and I’ found.

Proposition 3.7. There exists a set of prime ideals S such that Ig and I, contain
only prime ideals that lie over some prime ideal in S. Then there exist Iy and I’
such that the exponents of the prime ideals in the factorization of Iy in Ky and the
factorization of I, in Ky are bounded by some computable number N.
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Proof. Let ¢; and ¢y be the number of elements in the ideal class groups of K; and
K5, let ¢ be the lem of ¢; and ¢,.

For each prime ideal p € S, let my, = ) |vg, (1) where B; are all the prime ideals in
L over p. Let M = max(m,,) for all the prime ideals p € S. Let n = [L : K].

Let N =cn®*+ M.

Let p € S be a prime ideal in K. Let the decompositions of p be pOg, = []p;’,
pOx, = [[q" and pOr = []B¢. Let p; = [[B/* for some B, let S; be that set of
the 9 that divide p;. Let q; = [[B*/ for some B, let T} be the set of those B that
divide g;.

Lemma 3.8. For each p; and q;, all the numbers v,, () and vy, (y) can be taken to
be bounded by N

Proof. Let x; = v,,(Ig) for all i and y; = v,,(I,) for all j. Now we will check that
vy, (1o) = vp,(Ig) + vy, (1) for each P;. Let P be one of the P;, let iy and iy such
that P lies over p;, in K; and lies over q;, in K5. Then, checking the valuations over
B we have that z;, (e/e;,) + vi,(e/ fi,) = vp(1a).

Let us assume that one exponent of the z; or y; is not bounded by cn? + M.
Without loss of generality z; > cn? + M. Let t = |x/cn|. Let ) = x1 — ten < en,
let 7] = x; — ten(ei/er) and yj; = y; + ten(fj/er) for all @ and j. Such numbers z}
and y; are integers because all ¢; and f; divide e and e divides n . Now, each of the
equations of the form zj (e/e;,) + yi,(e/ fi,) = vp(la) is going to be satisfied. Then
the valuation equation will be satisfied for each prime ideal in L that lies over p. Let
Bi, be a prime ideal that divides p; Let y = y; for some j. We will now show that
there is an equation of the following form

wi(e/er) +y;le/f;) =t
for some constant ¢ < M. This will allow us to bound y;

Let B be a prime ideal in T} for some j. From Lemmas 3.3 and 3.4 there is an
element of Gal(L/K) that takes ;, to P and that is generated by H; and Hs. Let
that element be ¢ = 0,0/_1...01 with minimal /. This minimal ¢ can make sure that
all oxog_1...01(%B;,) are different prime ideals. We can assume that there are not o;
and ;1 such that they are both in H; or both in Hs. If 0y € H;, from Lemma
3.5 00(*Bi,) € S1, then 0o(*P;,) is a prime ideal that divides p;. Thus, we can take
00(PB;,) instead of P, and assume that oy € Hy. Analogously, we can assume that
o¢ € Hy because 3 was chosen as a prime ideal in 7. Therefore, o; € H; for i even
and o; € Hy for i odd. Also, [ is even Let P;, = o—1...01(*B;, ). For all k& we will have
the following using Lemma 3.5. o9, € Hy, then B;,, and *B;,, ., are in the same S, for
some a. Analogously, ‘B;,, , and B;,, are in the same 7} for some b. Let B;, € S,,
and *B;, € Ty, for all k. Then, asr = agry1 and bgy—1 = by Recall that B;, € S; and
that *B;,., =B € 5;. Then, a; = 1 and byy; = j. Taking the valuation of B;,,

x;k (e/eak) + yllyk (e/fbk) = U‘ﬁik ([Oé>

for each k. Let that equation be Ej. The equation i7" (=1)¥Ej, will become
041

l‘;l (e/eal) + yl’)g+1 (e/fbe+1) = Z(_Dkv‘ﬁik (Ia)

1
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We know that a; = 1 and by = j. Also all the 3;, are different. Then,
r+1

[wi(e/en) +yi(e/ )l = 1D (=D Fup, (T)] <D Jog, (o)
1
Analogously we can get

ey (e/er) — zi(efen)] < Y o, (o)

Then, |y5| < M(f;/e) + [21(f;/er)] < M + cn? for any j and |z}| < M(e;/e) +
| (es/e1)| < M + cn®. Thus, all 2 and yj are bounded by N = M + cn?.
U

Let @y ; = vy,(I3) for all p; that divide p for every prime ideal p in K. Analogously
let yq; = vg;(I5). and let ) ; and Yq; be the exponents after bounding them using

p.i
Lemma 3.8. Let )
],23 = H( H p.")

peS p; over p

r=TIC I] &)

peS q; over p

Iéjﬁ_l _ H( H pi—tcn(ei/el))

peS p; over p
This ideal has all of its exponents multiples of ¢ which is a multiple of the class group
of K. Then there exists a principal fractional ideal J; in K; such that ]23]/571 = J.
Then, I is principal, analogously I is also principal.

and

Now,

O

Now it suffices to search for principal fractional ideals Ig and I, that satisfy the
following

e Their factorizations only contain prime ideals that lie over a prime ideal in S

e The exponents of such prime ideals are bounded
Let p € S be a prime ideal in K. Let the decompositions of p be pOk, = []p;’,
POk, = [[a;" and pOp = [[PB5. Let x; = vy, (Ip) for all 4 and y; = vy, (I,). What we
want now is to find such z; and y; or determine if they exist. Let z = x;. As seen
in the proof of Lemma 3.8, for every z of the form x; or y; there is an equation that
involves ax + bz = c¢. Then, we have that every variable of the system of equations
is uniquely determined by z. So, for all x with |z| < cn? + M we compute the other
variables and check if they satisfy all the equations. This way, we will get a finite
number of possibilities. We do the same for every prime ideal over S and end up with
finitely many possibilities. For each of those possibilities we compute the class of the
ideals in K7 and K5. We only keep the possibilities that give us principal fractional
ideals both in K and K, let the set of these solutions be A. A solution for Ig and I,
gives us one of these possibilities after doing all the changes. If A were empty then
there is no solution for Igl, = I,. Otherwise, there is a set of finite solutions for the
ideals. For each solution Ig and I, let 8 be a generator of Iz and v a generator for
L,. Then, the principal fractional ideal generated by 8v in L is the same as the one
generated by a, then there exist a unit v € L such that o = fvyu. As we do this for
each solution of ideals, we get a finite set of units, let that be 5,,.
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Proposition 3.9. There are principal fractional ideals 1, € I(L), Iz € I(K;), I, €
I(K3) such that I, = Igl,. Then, there exist § € Ky and v € Ky such that fy = «
if and only if some unit of L in S, can be written as the product of two units in K;
and K.

Proof. Let us assume that there is some unit u € S, that can be written as u;us where
up is a unit in Ky and us is a unit in K5. Then, there are 8 € K; and v € K5 such
that a = pyu because u € S, and that is how S, was defined. Then, oo = (Buq)(vyus)
where fu;, € K; and yuy € K.

Now let us assume that there are § € K; and v € K5 such that a = 7. Then, the
principal fractional ideals generated by 8 and v had to be a solution for Izl, = I,.
Then, there had to be ' € K; and 7/ € K, that are generators of the principal
fractional ideals generated by S and ~ respectively such that o = 'y'u. From that
such unit u was also included in S,. Now, generators in a principal fractional ideal
differ up to a unit. Then, there exist units u; € K; and us € K5 such that g = fuy
and v = v'us. Then, 'Y'u = a = fy = f'uiy'us. Thus, u = ujus O

Now we only need to check for each unit u € S if there exist units ug € K; and
u, € Ky such that ugu, = u.
It is known that the unit group of a field has the form Z/mZ x Z". From |[2| the
generators of unit group of a field can be computable. Then, using group theory and
linear algebra it determined whether or not there exist such units ug and u,.

4. SUMS OF POLYNOMIALS OF ALGEBRAIC NUMBERS

Let Py, P, € Q[z]. Given an algebraic number «, describe an algorithm to decide
whether or not a can be expressed as Pi(f) + P»(y) where 5 and v are algebraic
numbers such that deg(5) < deg(a) and deg(y) < deg(«).

Theorem 4.1. There exist algebraic numbers o, 3, v and two polynomials Py, Py €
Q[z] such that a = Pi(B) + Pa(y), deg(f) < deg(a) and deg(y) < deg(a) and
there does not exist 8’ and ' such that o = Py(f") + Pa(7), deg(p’) < deg(a),
deg(v') < deg(a) and ', v/ € K where K is the Galois closure of Q(«).

Proof. Let z; be a negative root of the polynomial 2 — 32 4+ 1 and z» be a negative
root of the polynomial 2® + z* — 2z — 1. Let a = 1 + x2, f = /T1, 7 = /T2,
Pi(z) = Py(z) = 2%

It can be proved that deg(a) = 9. Clearly, deg(8) = deg(y) = 6. Thus, «, 8 and
~ satisfy the condition.

Q(z1) and Q(z2) are Galois because both have discriminants that are squares in
Q. Then, Q(a) = Q(z1)Q(x2) is also Galois, then the Galois closure of Q(«) is Q(a).
Since x1,x2 € R, Q(a) C R. If there existed f’ and +' such that a = P, (5') + Pa(7),
then o = 3”2 +~+™. Since a < 0, either 8’ or 7/ does not belong to R. Thus, one of
them cannot be inside Q(«), which is the Galois closure of Q(«). O
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