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Abstract. In this paper, I investigate when an algebraic number can be expressed
in terms of algebraic numbers of smaller degree. First, I describe an algorithm to
decide, given an irreducible polynomial P in Q[x], whether one of its roots α can
be expressed as β + γ , where β and γ are roots of polynomials in Q[x] of degree
strictly less than the degree of α. Then, I turn to generalizations such as when α
can be expressed as βγ, when α can be expressed as P1(β) + P2(γ) where P1 and
P2 are two given polynomials in Q[x] and similar with more variables.
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2 C. ALTAMIRANO

1. Introduction

The following notation will be used throughout this paper.
For an algebraic number z, let the degree of z, deg(z), be the degree of the minimal
polynomial of z. This is the same as the degree of the extension Q(z) over Q.
For a number field K, I(K) will denote the set of all the fractional ideals in K.

In the second section I will describe when can α be written as a sum of βi.
In the third section I will describe when can α can be written as βγ.
For these two sections I will first show that all the variables can be taken to be
contained in the Galois closure of Q(α).
In the fourth section I will show that that the same method will not work for the
sum of polynomials case.
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2. Sums of algebraic numbers

Given an algebraic number α, we describe an algorithm to decide whether or not
α can be expressed as β+γ where β and γ are algebraic numbers such that deg(β) <
deg(α) and deg(γ) < deg(α).
To approach this problem, we will first show that if an algebraic number α has such
property, then there exists a fixed field F (that only depends on α) such that there
exist β and γ that satisfy α = β + γ, deg(β) < deg(α) and deg(γ) < deg(α). Then,
we will use linear algebra to describe α.

Theorem 2.1. Let α, β, γ be algebraic numbers such that α = β+γ, deg(β) < deg(α)
and deg(γ) < deg(α). Let K be the Galois closure of Q(α). Then, there exist β′ and
γ′ such that α = β′ + γ′, deg(β′) < deg(α), deg(γ′) < deg(α) and β′, γ′ ∈ K.

Lemma 2.2. Let K be a Galois extension of Q and β be any algebraic number,
then the minimal polynomial of β over K is the same as its minimal polynomial over
K ∩Q(β)

Proof. Let P ∈ K ∩ Q(β)[x] and P ′ ∈ K[x] be the minimal polynomials of β over
K ∩ Q(β) and K respectively. Since P (β) = 0 and P ∈ K ∩ Q(β)[x], which implies
that P ∈ K[x], then P is divisible by P ′ where both are monic and have the same
degree because [K(β) : K] = [Q(β) : K ∩Q(β)]. Thus, P = P ′. �
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Proof. Let Kβ = K ∩ Q(β) and Kγ = K ∩ Q(γ), now we will show that there exist
β′ ∈ Kβ and γ′ ∈ Kγ that satisfy the property in the theorem.

Now, K and Qβ are extensions of Q. Let L = KQ(β) = K(β), K(β) = K(γ)
because α ∈ K and β + γ = α. Applying Lemma 2.2 to K and β

[L : K] = [KQ(β) : K] = [Q(β) : K ∩Q(β)] = [Kβ(β) : Kβ]

Let t = [L : K], β′ = TrLK(β)/t and γ′ = TrLK(γ)/t where TrLK is the trace with
respect to the extension L/K. Let P (x) = xt + at−1x

t−1 + ... + a0 be the minimal
polynomial of β in K[x], then TrLK(β) = −at−1 and β′ = TrLK(β)/t = −at−1/t. From
Lemma 2.2, P is the minimal polynomial of β in Kβ. Therefore, P ∈ Kβ[x], then
at−1 ∈ Kβ and β′ ∈ Kβ. Analogously, γ′ ∈ Kγ. Also, since α ∈ K and β + γ = α,
TrLK(β) + TrLK(γ) = TrLK(α), then tβ′ + tγ′ = tα, thus β′ + γ′ = α.
Now, β′ ∈ Kβ ⊆ Q(β), therefore, deg(β′) ≤ deg(β) < deg(α) and deg(β′) < deg(α).
Analogously, deg(γ′) < deg(α).
Hence, we have such β′ and γ′ that satisfy the theorem statement.

�

Now, the next step for this algorithm will be included in the following general case.

We now prove an analogous result for sums of n items.
Given an algebraic number α, we describe an algorithm to decide whether or not α
can be expressed as β1 + β2 + ... + βn where the βi are algebraic numbers such that
deg(βi) < deg(α) for all i.

Theorem 2.3. Let α, β1, β2, ..., βn be algebraic numbers such that α = β1 + ...+ βn
and deg(βi) < deg(α) for all i. Then, there exist β′1, β′2, ..., β′n such that α =
β′1 + ...+ β′n, deg(β′i) < deg(α) and β′1, β′2, ..., β′n ∈ K for all i from 1 to n where K
is the Galois closure of Q(α)

Proof. Let α, β1, β2, ..., βn and K be as in the theorem. Let L be the extension of
K containing β1, β2, ..., βn. Let t = [L : K] and for each βi let Ki = K ∩Q(βi).
Let β′i = TrLK(βi)/t. From Lemma 2.2 the minimal polynomial of βi overK is the same
as its minimal polynomial over Ki = K∩Q(βi), as a result, TrK(βi)

K (βi) = Tr
Q(βi)
Ki

(βi).
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Now,

β′i = TrLK(βi)/t = [L : K(βi)]Tr
K(βi)
K (βi)/t = [L : K(βi)]Tr

Q(βi)
Ki

(βi)/t

Clearly TrQ(βi)
Ki

(βi) ∈ Ki, then β′i ∈ Ki ⊂ K. Now,

α =
n∑
i=1

βi

Taking the trace of L over K

TrLK(α) = TrLK(
n∑
i=0

βi) =
n∑
i=1

TrLK(βi)

Using that α ∈ K and replacing TrLK(βi) by tβ′i, we get

tα =
n∑
i=1

(tβ′i)

Hence,

α =
n∑
i=1

(β′i)

And we have that all β′i ∈ K.
�

Now we will describe the algorithm to determine whether or not α can be written
as

∑n
i=1 βi for some algebraic numbers βi such that deg(βi) < deg(α). Let K be the

Galois closure of Q(α). From Theorem 2.3, we know that if α =
∑n

i=1 βi, therefore,
we can take βi ∈ K.

Then, α can be the sum of βi if and only if there exist n subfields Ki of K, that
have dimension less than deg(α) such that α ∈

∑
iKi. Thus we must determine if α

is in a finite list of computable sub Q vector spaces of K.
Let m = [K : Q] and e1, e2, ..., em a basis for K and let α = α1e1 + ... + αmem.

Now, for every set of n subfields of K that have dimension less than deg(α), let them
be Ki, we will check if there exist βi ∈ Ki for all i such that satisfy α =

∑n
i=1 βi.

Let one such set of n subfields of K that have dimension less than deg(α) be K1, K2,
..., Kn and bi1, bi2, ..., bili be a basis for each Ki. Now, any number βi ∈ Ki can be
written as ai1bi1 + ai2bi2 + ... + ailibili and since βij are all in K, each of them is a
linear combination of ai1 , ..., aili .
Now, for α =

∑n
i=1 βi to be true, the following equality should be true for each j

from 1 to m:
n∑
i=1

cij = αj

Therefore, α can be written as
∑n

i=1 βi if and only if the system of equations has
a solution.
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3. Products of algebraic numbers

Given an algebraic number α, we describe an algorithm to decide whether or
not α can be expressed as βγ where β and γ are algebraic numbers such that
deg(β) < deg(α) and deg(γ) < deg(α).

Let K be the Galois closure of Q(α). To approach this problem, we will also
show that if α has such property, then there exist β and γ that satisfy α = βγ,
deg(β) < deg(α), deg(γ) < deg(α) and β, γ ∈ K. Then, we will use the factorizations
of ideals into prime ideals and some facts about units.

Theorem 3.1. Let α, β, γ be algebraic numbers such that α = βγ, deg(β) < deg(α)
and deg(γ) < deg(α). Then, there exist β′ and γ′ such that α = β′γ′, deg(β′) <
deg(α), deg(γ′) < deg(α) and β′, γ′ ∈ K where K is the Galois closure of Q(α)

Proof. Let α, β, γ and K be as in the theorem. Let Kβ = K ∩ Q(β) and Kγ =
K ∩Q(γ).
Now we will assume that α is different than 0, because if it were the result would be
trivial. Let L = KQ(β) = K(β) = K(γ). Let P (x) = xt + at−1x

t−1 + ... + a0 be the
minimal polynomial of β over K, from Lemma 2.2 P is also the minimal polynomial
of β over Kβ.
Let Q be the polynomial

Q(x) =
xt

a0
P (α/x) = xt + α

a1
a0
xt−1 + ...+ αt−1

at−1
a0

x+
αt

a0
.

Clearly, Q is in K[x], because all of its coefficients are in K. It can also be seen that
Q is monic.
Then, Q(γ) = γtP (β)/a0 = 0. Then Q divides the minimal polynomial of γ in K.
SinceK(β) = K(γ), the minimal polynomials of β and γ overK should have the same
degree, thus Q has degree t. Hence, Q has to be the minimal polynomial of γ over
K. From the proposition Q is also the minimal polynomial of γ over Kγ = K ∩Q(γ).
Let β′ = a0/a1 and γ′ = αa1/a0, clearly β′γ′ = α. Now, as a0 and a1 are coefficients
of P ∈ Kβ[x], then a0 ∈ Kβ and a1 ∈ Kβ, hence β′ = a0/a1 ∈ Kβ. Also, γ′ = αa1/a0
is a coefficient of Q ∈ Kγ[x], then γ′ ∈ Kγ. Now we have the β′ and γ′ required. �

Theorem 3.2. Let K1 and K2 be two number fields inside another number field L so
that L is Galois over Q and let K = K1∩K2. Let I1 and I2 be two fractional ideals of
K1 and K2 such that I1OL = I2OL and satisfy the following. Let J = I1OL = I2OL.
For each prime number p that divides the discriminant of L over Q, vp(J) = 0 for
each prime ideal p ⊂ OL that divides p. Then, there exist a fractional ideal I ⊂ K
such that I1 = IOK1 and I2 = IOK2

Proof. Let p be a prime number. Let p be a prime ideal in K that divides p. Let
pOL = Pe

1P
e
2...P

e
m, pOK1 = pe11 pe22 ...p

es
s and pOK2 = qf11 qf22 ...q

ft
t be the factorization

of p in prime ideals in L, K1 and K2 respectively. All the exponents of the prime
ideals P are the same because L/K is Galois. It can also be seen that each of pi is
a product of some P

e/ei
j and each qi is a product of some P

e/fi
j because ramification

is multiplicative on towers of extensions. Let Si be the set of the prime ideals Pk

that divide pi and Tj be the set of the prime ideals Pk that divide qj. Let S be the
set of all the Pi. Each Pi lies over exactly one pj and over exactly one qk, therefore,
S = ∪Si = ∪Ti. Also, the Si are pairwise disjoint, and the same holds for the Tj. Let



6 C. ALTAMIRANO

G be the Galois group of L over K and let H1 and H2 be the subgroups of G that
belong to K1 and K2 respectively.

The following lemmas will use the same notation as above

Lemma 3.3. G =< H1, H2 >

Proof. Let H =< H1, H2 > and let KH be the fixed field of H. H1 and H2 are
subgroups of G, then H < G. H1 < H and H2 < H, then KH ⊂ K1 and KH ⊂ K2,
then KH ⊂ K1 ∩K2 = K. Then, H > G. Thus, G = H =< H1, H2 >. �

Lemma 3.4. Let σ ∈ H1. Then, for each Pi, σ(Pi) and Pi are in the same Sj. The
same for σ ∈ H2 and Tj

Proof. Let Pi ∈ S. Let j such that Pi ∈ Sj, then Pi divides pj. Since σ ∈ H1

and pj ⊂ K1, σ(pj) = pj. Then,
∏

Pk∈Sj
σ(Pk)

e/ej =
∏

Pk∈Sj
P
e/ej
k . We know that

an automorphism takes prime ideals to prime ideals. Then, σ(Pi) = Pk for some
Pk ∈ Sj. Thus, σ(Pi) and Pi are in the same Sj. Analogously, for σ ∈ H2 and Tj �

Lemma 3.5. Assume that p does not divide the discriminant of L over Q. If
Pi,Pj ∈ Sk or Pi,Pj ∈ Tk for some k, then vPi

(J) = vPj
(J)

Proof. If Pi,Pj ∈ Sk, then pkOL = PiPj... in its decomposition. Let vpk(I1) = e,
then J = I1OL = pek.... Replacing pk for its product of prime ideals in L, J =
(Pe

iP
e
j ...).... Then vPi

(J) = vPj
(J). Analogously the same will occur if Pi,Pj ∈

Tk. �

Let us assume that p does not divide the discriminant of L over Q

Let P = P1. All the σ ∈ Gal(L/K) act transitively on all the Pi. Then, for each
Pi, there exist σ ∈ Gal(L/K) such that Pi = σ(P) Let Q = Pi for some i and let
σ ∈ Gal(L/K) such that Q = σ(P). Let H1 and H2 be the subgroups of G that
belong to K1 and K2 respectively. From Lemma 3.3, σ = σ1σ2...σ` where σi ∈ H1 or
σi ∈ H2. For each σi and any prime ideal Pj, from the Lemma 3.4 σi(Pj) and Pj

are prime ideals in the same Sk or Tk. From the Lemma 3.5, vσi(Pj)(J) = vPj
(J).

Thus, vP(J) = vσ`(P)(J) = vσ`−1σ`(P)(J) = ... = vσ1σ2...σ`(P)(J) = vσ(P)(J) = vQ(J).
This was done for any Q of the form Pi, then vPi

(J) = e for all i, thus vp(J) = e
too. Now, we have that the ideal of J that has in its factorization prime ideals that
divide p comes from pe which is an ideal in K. Therefore, doing this for all prime
ideals p ∈ K, we have that J =

∏
p∈Spec(K) p

ei comes from an ideal in K.
�

Now we will describe the algorithm to determine whether or not α can be written
as βγ for some algebraic numbers β and γ such that deg(β) < deg(α) and deg(γ) <
deg(α). Let L be the Galois closure of Q(α). From Theorem 1.4, it will suffice to
search for β, γ ∈ L.

Now, for each pair of subfields of L that have dimension less than deg(α), let one
such pair be K1 and K2, we will check if there exist β ∈ K1 and γ ∈ K2 that satisfy
α = βγ.

Here we will use some facts about prime ideals. Let Iα be the principal fractional
ideal generated by α in L. Now we want some principal fractional ideals Iβ and



A PROBLEM IN ALGEBRAIC NUMBER THEORY 7

Iγ in K1 and K2 respectively such that Iα = IβIγ, which is the same as vp(Iα) =
vp(Iβ) + vp(Iγ) for all prime ideals p in L.
We will show that the ideals Iβ and Iγ can be taken to have a very constrained form
and that it will suffice to take such ideals of that form. Let S be the set of the
following

• The prime ideals p ⊂ OK such that the prime number in Q below p does not
divide the discriminant of L over K.
• The prime ideals p ⊂ OK such that there exist a prime ideal P ⊂ OL over p
that appears in the factorization of Iα in prime ideals.
• Prime ideals that are representatives of each ideal class in K.

Let S1, S2 and T be the sets of prime ideals in K1, K2 and L that lie over some prime
ideal K that belongs to S.

For the next two propositions we will assume that there exist such principal frac-
tional ideals Iβ and Iγ such that Iα = IβIγ.

Proposition 3.6. There exist I ′β and I ′γ so that the prime ideals in K that lie below
any prime that appears in the factorization of I ′β or I ′γ are all in S and I ′βI ′γ = Iα.

Proof. Let Iβ =
∏

pep ∈ I(K1), let I1 =
∏

p∈S1
pep ∈ K1 and let I ′′β = IβI

−1
1 , then I ′′β =∏

p/∈S1
pep ∈ I(K1). Similarly, let Iγ =

∏
qeq ∈ I(K2), let I2 =

∏
q∈S1

qeq ∈ I(K2),
and let I ′′γ = IγI

−1
2 , then I ′γ =

∏
q/∈S2

qeq ∈ I(K2). Let J = I ′′βI
′′
γ = IβI

−1
1 IγI

−1
2 =

IγI
−1
1 I−12 ∈ I(L).

J = I ′′βI
′′
γ =

∏
p/∈S1

pep
∏

q/∈S2
qeq , then J =

∏
P/∈T P

eP .

J = IαI
−1
1 I−12 , then J =

∏
P∈T P

eP since Iα, I1, I2 have in their factorization only
prime ideals in T .

Then, J has to be OL. Then we have that I ′′βI ′′γ = OL, then I ′′βOL = I ′′−1γ OL.
Now we know that the fractional ideal I ′′β =

∏
p/∈S1

pepOL only has in its factorization
prime ideals that are not in T . As a consequence, the prime number that lies below
P does not divide the discriminant of L. The same happens for I ′′−1γ .

Now we have that I ′β and I ′−1γ satisfy the condition of Theorem 3.2. Then there
exists a fractional ideal J ∈ I(K) such that I ′′β = JOK1 and I ′′−1γ = JOK2 . Let p ∈ S
be the representative of the ideal class of J . Let I ′β = I1p and I ′γ = I2p

−1 Now all the
prime ideals in K that lie below any prime ideal that appears in the factorization of
I ′β are the ones in S and the same for I ′γ. I ′β = I1p

−1 = IβI
′′−1
β p = IβJ

−1p is in the
same ideal class as Iβ, then I ′β is principal. Analogously, I ′γ is principal. Recall that
J = IαI

−1
1 I−12 and J = OL. Then, Iα = I1I2, therefore, Iα = I ′βI

′
γ. �

Now, we will assume that Iβ and Iγ are the I ′β and I ′γ found.

Proposition 3.7. There exists a set of prime ideals S such that Iβ and Iγ contain
only prime ideals that lie over some prime ideal in S. Then there exist I ′β and I ′γ
such that the exponents of the prime ideals in the factorization of I ′β in K1 and the
factorization of Iγ in K2 are bounded by some computable number N .
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Proof. Let c1 and c2 be the number of elements in the ideal class groups of K1 and
K2, let c be the lcm of c1 and c2.
For each prime ideal p ∈ S, let mp =

∑
|vPi

(Iα)| where Pi are all the prime ideals in
L over p. Let M = max(mp) for all the prime ideals p ∈ S. Let n = [L : K].
Let N = cn2 +M .

Let p ∈ S be a prime ideal in K. Let the decompositions of p be pOK1 =
∏

peii ,
pOK2 =

∏
qfii and pOL =

∏
Pe
i . Let pi =

∏
Pe/ei for some P, let Si be that set of

the P that divide pi. Let qi =
∏

Pe/fi for some P, let Ti be the set of those P that
divide qi.

Lemma 3.8. For each pi and qj, all the numbers vpi(β) and vqi(γ) can be taken to
be bounded by N

Proof. Let xi = vpi(Iβ) for all i and yj = vqj(Iγ) for all j. Now we will check that
vPi

(Iα) = vPi
(Iβ) + vPi

(Iγ) for each Pi. Let P be one of the Pi, let i1 and i2 such
that P lies over pi1 in K1 and lies over qi2 in K2. Then, checking the valuations over
P we have that xi1(e/ei1) + yi2(e/fi2) = vP(Iα).

Let us assume that one exponent of the xi or yj is not bounded by cn2 + M .
Without loss of generality x1 > cn2 +M . Let t = bx1/cnc. Let x′1 = x1 − tcn < cn,
let x′i = xi − tcn(ei/e1) and y′j = yj + tcn(fj/e1) for all i and j. Such numbers x′i
and y′j are integers because all ei and fj divide e and e divides n . Now, each of the
equations of the form x′i1(e/ei1) + y′i2(e/fi2) = vP(Iα) is going to be satisfied. Then
the valuation equation will be satisfied for each prime ideal in L that lies over p. Let
Pi1 be a prime ideal that divides p1 Let y = yj for some j. We will now show that
there is an equation of the following form

x′1(e/e1) + y′j(e/fj) = t

for some constant t ≤M . This will allow us to bound yj

Let P be a prime ideal in Tj for some j. From Lemmas 3.3 and 3.4 there is an
element of Gal(L/K) that takes Pi1 to P and that is generated by H1 and H2. Let
that element be σ = σ`σ`−1...σ1 with minimal `. This minimal ` can make sure that
all σkσk−1...σ1(Pi1) are different prime ideals. We can assume that there are not σi
and σi+1 such that they are both in H1 or both in H2. If σ0 ∈ H1, from Lemma
3.5 σ0(Pi0) ∈ S1, then σ0(Pi0) is a prime ideal that divides p1. Thus, we can take
σ0(Pi0) instead of Pi0 and assume that σ0 ∈ H2. Analogously, we can assume that
σ` ∈ H1 because P was chosen as a prime ideal in Tj. Therefore, σi ∈ H1 for i even
and σi ∈ H2 for i odd. Also, l is even Let Pik = σk−1...σ1(Pi1). For all k we will have
the following using Lemma 3.5. σ2k ∈ H1, then Pi2k and Pi2k+1

are in the same Sa for
some a. Analogously, Pi2k−1

and Pi2k are in the same Tb for some b. Let Pik ∈ Sak
and Pik ∈ Tbk for all k. Then, a2k = a2k+1 and b2k−1 = b2k. Recall that Pi1 ∈ S1 and
that Pi`+1

= P ∈ Sj. Then, a1 = 1 and b`+1 = j. Taking the valuation of Pik ,

x′ak(e/eak) + y′bk(e/fbk) = vPik
(Iα)

for each k. Let that equation be Ek. The equation
∑`+1

1 (−1)kEk will become

x′a1(e/ea1) + y′b`+1
(e/fb`+1

) =
`+1∑
1

(−1)kvPik
(Iα)
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We know that a1 = 1 and b`+1 = j. Also all the Pik are different. Then,

|x′1(e/e1) + y′j(e/fj)| = |
`+1∑
1

(−1)kvPik
(Iα)| ≤

∑
|vPi

(Iα)|

Analogously we can get

|x′1(e/e1)− x′i(e/ei)| ≤
∑
|vPi

(Iα)|

Then, |y′j| ≤ M(fj/e) + |x′1(fj/e1)| < M + cn2 for any j and |x′i| ≤ M(ei/e) +

|x′1(ei/e1)| < M + cn2. Thus, all x′i and y′j are bounded by N =M + cn2.
�

Let xp,i = vpi(Iβ) for all pi that divide p for every prime ideal p in K. Analogously
let yq,j = vqj(Iβ). and let x′p,i and y′q,j be the exponents after bounding them using
Lemma 3.8. Let

I ′β =
∏
p∈S

(
∏

pi over p

p
x′p,i
i )

and
I ′γ =

∏
p∈S

(
∏

qj over p

q
y′q,j
i )

Now,
I ′βI
−1
β =

∏
p∈S

(
∏

pi over p

p
−tcn(ei/e1)
i )

This ideal has all of its exponents multiples of c which is a multiple of the class group
of K1. Then there exists a principal fractional ideal J1 in K1 such that I ′βI

−1
β = J1.

Then, I ′β is principal, analogously I ′γ is also principal.
�

Now it suffices to search for principal fractional ideals Iβ and Iγ that satisfy the
following

• Their factorizations only contain prime ideals that lie over a prime ideal in S
• The exponents of such prime ideals are bounded

Let p ∈ S be a prime ideal in K. Let the decompositions of p be pOK1 =
∏

peii ,
pOK2 =

∏
qfii and pOL =

∏
Pe
i . Let xi = vpi(Iβ) for all i and yj = vqj(Iγ). What we

want now is to find such xi and yj or determine if they exist. Let x = x1. As seen
in the proof of Lemma 3.8, for every z of the form xi or yj there is an equation that
involves ax + bz = c. Then, we have that every variable of the system of equations
is uniquely determined by x. So, for all x with |x| < cn2 +M we compute the other
variables and check if they satisfy all the equations. This way, we will get a finite
number of possibilities. We do the same for every prime ideal over S and end up with
finitely many possibilities. For each of those possibilities we compute the class of the
ideals in K1 and K2. We only keep the possibilities that give us principal fractional
ideals both in K1 and K2, let the set of these solutions be A. A solution for Iβ and Iγ
gives us one of these possibilities after doing all the changes. If A were empty then
there is no solution for IβIγ = Iα. Otherwise, there is a set of finite solutions for the
ideals. For each solution Iβ and Iγ, let β be a generator of Iβ and γ a generator for
Iγ. Then, the principal fractional ideal generated by βγ in L is the same as the one
generated by α, then there exist a unit u ∈ L such that α = βγu. As we do this for
each solution of ideals, we get a finite set of units, let that be Su.



10 C. ALTAMIRANO

Proposition 3.9. There are principal fractional ideals Iα ∈ I(L), Iβ ∈ I(K1), Iγ ∈
I(K2) such that Iα = IβIγ. Then, there exist β ∈ K1 and γ ∈ K2 such that βγ = α
if and only if some unit of L in Su can be written as the product of two units in K1

and K2.

Proof. Let us assume that there is some unit u ∈ Su that can be written as u1u2 where
u1 is a unit in K1 and u2 is a unit in K2. Then, there are β ∈ K1 and γ ∈ K2 such
that α = βγu because u ∈ Su and that is how Su was defined. Then, α = (βu1)(γu2)
where βu1 ∈ K1 and γu2 ∈ K2.
Now let us assume that there are β ∈ K1 and γ ∈ K2 such that α = βγ. Then, the
principal fractional ideals generated by β and γ had to be a solution for IβIγ = Iα.
Then, there had to be β′ ∈ K1 and γ′ ∈ K2 that are generators of the principal
fractional ideals generated by β and γ respectively such that α = β′γ′u. From that
such unit u was also included in Su. Now, generators in a principal fractional ideal
differ up to a unit. Then, there exist units u1 ∈ K1 and u2 ∈ K2 such that β = βu1
and γ = γ′u2. Then, β′γ′u = α = βγ = β′u1γ

′u2. Thus, u = u1u2 �

Now we only need to check for each unit u ∈ S if there exist units uβ ∈ K1 and
uγ ∈ K2 such that uβuγ = u.
It is known that the unit group of a field has the form Z/mZ × Zn. From [2] the
generators of unit group of a field can be computable. Then, using group theory and
linear algebra it determined whether or not there exist such units uβ and uγ.

4. Sums of polynomials of algebraic numbers

Let P1, P2 ∈ Q[x]. Given an algebraic number α, describe an algorithm to decide
whether or not α can be expressed as P1(β) + P2(γ) where β and γ are algebraic
numbers such that deg(β) < deg(α) and deg(γ) < deg(α).

Theorem 4.1. There exist algebraic numbers α, β, γ and two polynomials P1, P2 ∈
Q[x] such that α = P1(β) + P2(γ), deg(β) < deg(α) and deg(γ) < deg(α) and
there does not exist β′ and γ′ such that α = P1(β

′) + P2(γ
′), deg(β′) < deg(α),

deg(γ′) < deg(α) and β′, γ′ ∈ K where K is the Galois closure of Q(α).

Proof. Let x1 be a negative root of the polynomial x3 − 3x+ 1 and x2 be a negative
root of the polynomial x3 + x2 − 2x − 1. Let α = x1 + x2, β =

√
x1, γ =

√
x2,

P1(x) = P2(x) = x2.
It can be proved that deg(α) = 9. Clearly, deg(β) = deg(γ) = 6. Thus, α, β and

γ satisfy the condition.
Q(x1) and Q(x2) are Galois because both have discriminants that are squares in

Q. Then, Q(α) = Q(x1)Q(x2) is also Galois, then the Galois closure of Q(α) is Q(α).
Since x1, x2 ∈ R, Q(α) ⊂ R. If there existed β′ and γ′ such that α = P1(β

′) +P2(γ
′),

then α = β′2 + γ′2. Since α < 0, either β′ or γ′ does not belong to R. Thus, one of
them cannot be inside Q(α), which is the Galois closure of Q(α). �

.
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