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Abstract: In this paper, we consider the minimal cell structure problem for G-
CW complexes. A CW complex is a nice approximation of general topological
spaces, which is constructed by repeating attaching higher dimensional cells
to lower ones. A G-CW complex is its generalized version to spaces with a
group action. The structure theorem for ordinary CW complexes is well-studied,
and we can know the minimal number of cells needed to describe the topology
properties of a space completely. However, when the group action is involved,
the structure becomes much more complicated. In this paper, we set up an
algebraic model for G-CW complexes and simplify the minimal cell structure
problem a lot. We also successfully get the minimal structure in the simple case
G=17Z/pZ.

1 Introduction

A CW complex is a space constructed by repeatedly attaching higher dimen-
sional cells to lower ones. Compared to general spaces, the topology properties
of a CW complex is easier to find and describe. In fact, each space can be ap-
proximated by a CW complex (up to weak equivalence, see [ref]), which means,
we can study the topology properties of any space from its approximated com-
plex. A natural question is, what is the minimal number of cells (for each
dimension) we need to approximate a space. [2] gives several conditions with
which we can get a finite answer. When the space is simply-connected, we can
also get the exact minimal number:

Theorem 1.1. (/2], pp. 68) Suppose X is a finite simply-connected CW com-
plex such that H;(X) has rank §; and T; torsion coefficients, for each i > 0.
Then X is (weak) equivalent to a CW complex Y with «; = B; + 7, +Ti—1 i-cells
for each i.

More precisely, we can write each H;(X) = Z% X Z/$1Z X L] $3Z X ... X L] 3, Z
and H; 1(X) = ZYxZ/t\ZLXL[tsZx ... X L/, Z, such that s1|sa|...|Su, t1t2]...|ts-



Then the number of i-cells in Y is a + u + v. According to the cellular calcu-
lation of the homology groups, this number is the minimal one to make these
homology groups possible.

In this paper, we consider the same question for G-spaces, i.e., spaces with a
group action. The concepts of CW complex, homotopy and homology theories
have generalized version for G-spaces. As ordinary CW complexes, each G-
space can be approximated by a G-CW complex ([1], pp. 17-18). We don’t
consider under which conditions a G-space can be approximated by a finite
G-CW complex. Instead we assume that we have already got a finite G-CW
complex, and we want to reduce its cells as much as possible.

More rigorously, suppose X is a finite G-CW complex, we want to find the
minimal number (we will define this minimality later) of cells for a G-CW com-
plex Y such that X is G-homotopy equivalent to Y (then the topology properties
of X are inherited by Y').

In this paper, we will consider G as a finite discrete group. We haven’t solved
this question completely. In fact, we only get the answer for the most simple
case G = Z/pZ for some prime p (see section 5). But we set up an algebraic
model and simplify the question a lot (see section 3,4), which might be quite
helpful for the case of general groups.

The solution for the case G = Z/pZ is as follows:

Theorem 1.2. Let G = Z/pZ for some prime p. Suppose X is a finite G-
simply connected G-CW complex. Then it is G-equivalent to another G-CW
complex Y, such that Y% is a minimal ordinary CW complex (which means that
we can use Theorem 1.1 to count the number of cells in it), and the number of
i-cells in Y)Y is p(1a(X/XC i) + 76(X/ X%, i — 1) + gen(HE (X/ X% N,))).
Furthermore, all these numbers reach their minimal possible values.

Here 7¢ denotes the G-torsion, gen denotes the minimal number of gener-
ators of a G-module, N, is a special coefficient system. All of their definitions
can be found at the beginning of section 5.2. In fact, the information of all these
numbers are contained in the Bredon homology groups of X (which means we
don’t even need to find out X¢ and X/X%).

In section 2 we introduce some basic definitions and properties of topology
for G-spaces. In section 3, we introduce the concept of G-chain complexes and
transfer the question into an algebraic version. In section 4, we discuss the
properties for the algebraic model in section 3 and simplify the question. In
section 5, we give a practical method to calculate the minimal structure from
the G-version homology groups in the most simple case G = Z/pZ. The result
of section 3 works for both abelian and non-abelian groups. But in the following
sections we only consider the abelian groups.



2 Preliminaries

In this section, we will show the definitions of G-spaces and the corresponding
topology concepts.

2.1 G-CW complexes

Definition 2.1. A G-space X is a space with a group action of G on it, such
that, for each g € G, g : X — X is a continuous map.

For each subgroup H < G, we use X to denote all invariant points under
H,ie, X! ={zeX:h-x=uxVheH}.

In this paper, we consider this group action as a left action. For each point
x € X, we use g - x to denote its image under the action of element g € G.

Definition 2.2. A G-space is G-connected or G-simply connected if XH s
connected or simply connected for each H < G.

Definition 2.3. For each point x in a G-space X, G, :={g € G :g -z = x}
is the isotropy group of x. For each subspace Y C X, Gy :={g€eG:g-y=
y,Vy € Y}.

Definition 2.4. A G-map f: X — Y between the G-spaces X,Y is a contin-
uous map such that f(g-x) =g- f(x) for any g € G and z € X.

For any two G-maps fo, f1 : X = Y, they are G-homotopic if there exists
a continuous G-map F : X x I =Y (G acts trivially on I) such that F(-,0) =

fO('); F(" 1) = fl()

Definition 2.5. A G-orbit is the coset G/H with a subgroup H < G. The
group action of G on it is defined naturally: g-g'H = gg'H. The topology of
G/H is induced by the topology of G.

Definition 2.6. A G-cell is the product of a cell with a G-orbit: G/H x D™.
It can also be viewed as a G-space with the group action induced by the action
on G/H.

Definition 2.7. A G-CW complex X is the union of sub G-spaces X™ such
that X° is a disjoint union of orbits G/H and X" is obtained from X™ by
attaching G-cells G/H x D" along equivariant attaching maps G/H x S™ —

(X™H. ([1], pp. 16)

On other words, a G-CW complex X is a G-space with a CW complex
structure which is compatible with the group action of G, i.e., for each cell as a
map f: D™ — X, we can find a cell f': D™ — X (it can be f itself), such that
g f(v) = f(v), Vv e D"

In this paper, we only consider the G-simply connected G-CW complexes
with base points, i.e., a 0-cell which is fixed under the group action.



Definition 2.8. For two G-spaces X, Y, a G-homotopy equivalence is a
G-map f: X — Y which has a G-homotopy inverse, i.e., a G-map f':Y — X
such that both fo f' and f'o f are G-homotopic to the identity map on the two
spaces.

Definition 2.9. For two G-spaces X, Y, a weak G-homotopy equivalence is
a G-map f: X —Y such that for each H < G, the induced map f : X7 — YH
18 a weak equivalence.

As ordinary cases, a G-homotopy equivalence is also a weak one. The in-
verse is true when X, Y are G-CW complexes ([1], pp. 17). We don’t need to
distinguish them in this paper since we only consider the complexes. We use
“equivalence” to denote a (weak) G-homotopy equivalence.

2.2 Bredon homology theory

The Bredon homology theory can be viewed as a generalization of the ordinary
homology theory onto the G-spaces. The Bredon homology groups come from
the corresponding chain complexes based on a coefficient system. It is also our
main tool in this paper.

Definition 2.10. The orbit category O(G) of G is a category with the G-
orbits G/H as its objects and the G-maps among these orbits as its morphisms.

It’s not hard to describe the morphisms in O(G):

Lemma 2.11. The morphisms in O(G) from G/K to G/H are determined by
the image of K/K in G/H:

(G/H)* ={lg) € G/H : K C gHg™"}

Definition 2.12. A coefficient system is a covariant functor from O(Q) to
the category of abelian groups.

The chain complex for the Bredon homology is the tensor product of one
such coefficient system and a fixed contravariant functor C,, (X):

Definition 2.13. Let X be a G-CW complex. The equivariant n-chains on
X, C,(X), is the contravariant functor from O(G) to abelian groups formed by
the relative homology groups

C(X)(G/H) = Hy (XM, (X"71))

as objects and morphisms defined naturally as follows:

Let f be a morphism f : G/K — G/H and g is an element of G such
that f(K) = gH. For each element in C,(X)(G/H) = H,((X") (xn»—1)H)
expressed as e : D" — (X™)H with e(OD™) C (X" 1), its image under
C.(X)(f) is the element in C, (X)(G/K) = H,(X™)E (X" 1)K) ezpressed
bygoe: D" — (XK,



We can also define the boundary map d: C,,(X)(G/H) — C,,_(X)(G/H),
which is induced naturally by the boundary map in C, (XH).

We can also view these C, (X),n = 0,1,... as one functor C(X) from the
orbit category to chain complexes:

Each object C(X)(G/H) is the chain complex corresponding to the CW
structure of X*. The morphism is the chain complex homomorphism (i.e., ring
homomorphisms in each dimension which commute with the boundary map)
formed by the C,(X)(f) in Definition 2.13 in each dimension.

Definition 2.14. Let M be a contravariant functor and N be a covariant func-
tor from O(G). The tensor product M&N is the abelian group

M&N = | @ M(G/K) @z N(G/K) |/ ~
K<G

with the relation generated by M(f)(m) @ n ~m & N(f)(n) for all morphisms
f:G/K - G/H and m € M(G/H), n € N(G/K).

Definition 2.15. The Bredon chain complex for a chosen coefficient system N
is CS(X;N) := C,(X)®N, with the boundary map 0 = d ® 1. The Bredon
homology groups are HG(X; N) = Kerd/Imd for C¢(X; N).

The following examples (with X a G-CW complex) show the generality of
this definition.

Example 2.16. N(G/H) := Z|[G/H], and for each f : G/K — G/H, N(f) :
Z|G/K) — Z[G/H] is defined naturally. In this case, we have CS(X;N) =
CSW(X), and the Bredon homology groups are just the ordinary homology
groups of X.

Example 2.17. Let N be the functor sending each orbit to Z and each mor-
phism to the identify map. Then all cells in the same orbit are identified.
So CY(X;N) forms the CW chain complex for the orbit space H \ X. Then
HY (X N) is also the corresponding homology groups.

In the following examples, we will use [H] to denote the conjugacy class of
H<G: [H:={g'Hg:g€G}.

Example 2.18. For a fized H < G, consider N such that N(G/K) = Z|G/ K]
for all K € [H] and N(G/K) = 0 otherwise, with the morphisms defined natu-
rally. Then only the cells with isotropy groups contained in [H] are preserved.
So we get the homology groups for the quotient space of a subspace. In the case
that G is abelian, it’s the space X/ Ugx XK.

Example 2.19. For a fized H < G, consider Ny with Ny(G/K) = Z[H \
G/K], with morphisms defined naturally. Then all cells in the same H-orbit
are identified. So we get the homology groups for H \ X.

The first two examples are special cases of this one, with H = {1} or G.



As the ordinary relation between homotopy and homology, weak G-homotopy
equivalences are also Bredon homology equivalences ([1], pp. 22). Now we can
state the main question we will discuss about in this paper:

For G-CW complexes X, let S(X, H) be the number of cells in X with H < G
as their isotropy group (the total number of such cells of all dimensions). We say
that a G-CW complex Y is smaller than X if S(Y, H) < S(X, H) for all H < G,
and Y is said to be strictly smaller than X if additionally S(Y, H) < S(X, H)
for some H.

X is called minimal if there doesn’t exists a smaller complex Y which is
also equivalent to it.

For any G-CW complex X, it might be equivalent to multiple minimal G-
CW complexes X"’s (automatically these X’’s are equivalent to each other). We
will show in section 4 that, when G is abelian, S(X’, H) is fixed for all such
minimal X"’s. In Theorem 1.1 we use homology groups to calculate the minimal
number of cells for ordinary CW complexes. Here the question is, can we use
Bredon homology groups for X to calculate these minimal numbers S(X’, H).

3 (G-chain complexes

For ordinary CW complexes, the algebraic structure for their cells only contains
a chain of free abelian groups and a boundary map whose square vanishes. In
the case of G-CW complexes, this structure becomes more complicated. There
is an induced G-action. The boundary map also becomes a G-map with some
additional restrictions. In this section, we introduce the G-chain complex, as
an algebraic model, and its relation with G-CW structures. At the end of this
section, we will use this new tool to transfer our main topological question into
an algebraic one.

Definition 3.1. A G-chain complex A consists of:
(I) Free abelian groups {A;(H) |i =0,1,2,.... H < G} with A;(H) C A;(H')
for any H < H < G, such that there exist a G-subset S; of each A; satisfying

Ay(H) = Z(S]")

for any i, H. Here SH denotes the set of elements in S; which are fived
under the action of H < G. Write A; = A;({1}).

(II) An equivariant boundary map 0 : A; 1 — A;, satisfying 0*> = 0, and
0(Ai+1(H)) C Ai(H) for each H < G.

We use A(H) to denote the sequence of free abelian groups Ag(H), Ay (H), ...
It’s not necessarily a G-chain complex unless G is abelian.

Remark: For each H < G, by restriction, a G-chain complex A becomes a
H-chain complex.



An equivalent definition of A is a special kind of contravariant functor from
the orbit category to chain complexes (see Definition 2.13). Define the functor
A such that A(G/H) = A(H) and for each G-map f : G/K — G/H with
f(K)=gH, A(f): A(H) — A(K) is the multiplication of g in each dimension
A;(H) —» A;(K). It’s easy to check that for different A4, the corresponding
functors A are also different.

The Bredon homology groups of A can be defined naturally with the functor
A.

We can view the G-subset S; as a “basis” of A;. Actually the choice of such
“basis” is not part of the structure. We only need the abelian groups A;(H)
and the boundary map 0 to form a G-chain complex.

Definition 3.2. A G-chain complex A’ is a subcomplex of another G-chain

complex A if we can find permutation representations Sy, S1, ... inducing A and

Sy C 8o, S C S1, ... inducing A'. We write A’ C A to denote this relation.
For A" C A, we define the quotient complex A/ A’ in the natural way.

Definition 3.3. A homomorphism between G-chain compleres F : A —
A’ is a chain of group homomorphisms F; : A; — AL, which commutes with
the G-action and the boundary maps, and sends each A;(H) into A;(H). An
isomorphism is a bijective homomorphism. We use A= A’ to denote it.

F is called an equivalence if the it induces isomorphisms H;(A(H)) =
H;(A'(H)) for each H < G.

Since such F' induces maps on homology groups H;(A(H)) — H;(A'(H))
for each H < G, it also induces maps for Bredon homology groups.

The idea of G-chain complex comes from the G-CW complexes. There is a
direct relation between them, as follows:

Proposition 3.4. For each G-simply connected G-CW complex X, the abelian
groups C;(X)(G/H) and the boundary map form a G-chain complex. We still
use the functor C(X) to denote it. Conversely, for each G-chain complex A, we
can find a G-CW complex X such that C(X) = A.

For each pair of A’ C A, we can find G-CW complexes X corresponding to
A and X' corresponding to A’, such that X' is a subcomplex of X .

Each G-map between G-CW complezxes f : X — Y induces a homomorphism
between G-chain complezes F : C(X) — C(Y') (F may be not unique), such that
f and F induce the same maps on the homology groups H;( X)) — H;(YH).

Proof: We only show the idea for the last part. Each G-map f: X — Y is
G-homotopic to a cellular map ([1], pp. 17). So we can assume f itself cellular.
Then for each i-cell e in X, f(e) C Y™ and f(de) C Y""L. So f(e) can be
written as a linear combination of n-cells in Y up to homotopy (i.e., expressing
the same element in 7, (Y™, Y""1)). Since f is a G-map, it sends each X into
Y*H. So we get a homomorphism F : C(X) — C(Y) which induces the same
homology maps as f. [



Proposition 3.4 shows that, each equivalence between G-CW complexes in-
duces an equivalence between their corresponding G-chain complex. Since we
can define the same minimality on G-chain complexes, we transfer our main
question onto the algebraic chain complexes in one direction. The following
proposition shows that we can also transfer it back:

Proposition 3.5. Let X be a G-simply connected G-CW complex. A is another
G-chain complex with an equivalence F : A — C(X). Then we can find another
G-CW complex Y with an isomorphism F' : A — C(Y), and a skeletal G-
homotopy equivalence f:Y — X, such that C.(f) o F' = F.

Proof: We will use the same induction in [2] and a little adjustment to make
it into a G-version.

Since X is G-simple connected, 71(X) = 0 for all H < G. Therefore we
can construct Y! and a G cellular map f; : Y' — X which can be factored as
I-connected maps f1(H) : (Y1) # — XH for all H < G (we can map Y! to the
base point of X).

Suppose we have constructed Y" and a G cellular map f, : Y™ — X, which
can be factored as r-connected maps f,.(H) : (Y")# — XH for all H < G, such
that C(Y") is isomorphic to the first  dimension parts of A. We want to attach
(r + 1)-cells to Y" and make it into a new G-CW complex Y7+ satisfying:

(I) C(Y"*1) is isomorphic to the first 7 4+ 1 dimensions of A. Notice that
Arq1 2 7S, 41 for some permutation representation S,1. We only need to add
one cell corresponding to each element of S,;1;. Then the G-action on S,
induces the G-action on these (r + 1)-cells.

(IT) We also need to extend f,. : Y" — X to a G-map fr; : Y"1 — X
which factors as fr11(H) : (Y™ H — X for all H < G. To finish this, we
need to extend f, to the (r 4+ 1)-cells compatibly with the G-action on them.
And the (r 4 1)-cells should kill 7,1 (f-(H)) (the homotopy group of the map-
ping cone of f.(H)) for all H < G.

[2] shows that there is a natural epimorphism A,41(H) — m41(f-(H)).
Since the homomorphism A — C(X) commutes with the G-action on each A,.,
the map A, +1(H) — mr41(f-(H)) also commutes with the G-action. Since these
maps can be obtained naturally, for any H < H' < G, we have the following
commuting diagram:

A (H/) I 7Tr+1(fr(H/))

| |

Arp1(H) —— 1 (fr(H))

The row maps are the natural maps mentioned before. The left column map
is the injection and the right column map is induced by the injection.

Now we can attach the (r+1)-cells according to these natural G-epimorphisms.
For each (r 4+ 1)-cell e corresponding to an element in S,41, choose the smallest



subgroup H such that e is fixed under H. Then attach e to Y and extend f"
to it through the image of the corresponding element in S,y; under the map
Ari1(H) = mr41(f-(H)). Then the adding of e eliminate some elements in
7r+1(fr(H)) naturally. For any H’ such that e appears in A,11(H’) (we have
H < H'), the above commuting diagram tells us that the cell e also eliminate
elements in 7,41 (f-(H')) naturally. In fact, we can add one cell in each or-
bit first, then add the rest of the orbit according to the G-action in Y"+! and
extend f" according to the G-action in X. Then finally we can get a G-map
fra1: Y™ — X and continue the induction.

Finally, according to the Whitehead Theorem, we get another G-CW com-
plex Y with a G-homotopy equivalence f : Y — X. As we attach the cells of Y
through the homomorphism A4; — C,(X) for each dimension, the induced map
C.(f) : C(Y) = C(X) agrees with F' automatically (which gives the isomor-
phism F” we need). O

If X is not G-simply connected, we can get the same result but we need A
to be the same as C(X) on the first two dimensions. In this case, it’s hard to
tell whether the number of cells in X is minimal or not.

G-simply connected G-CW complexes correspond to G-chain complexes with
H(A(H)) = 0 for all H < G. We also call this kind of G-chain complexes
G-simply connected. Since the equivalence relation for G-CW complexes is
invertible, for these G-simply connected G-chain complexes, the equivalence
relation among them is also invertible.

Proposition 3.4 and 3.5 give us both directions to change our main question
to an algebraic one:

For each G-chain complex induced by Sp, S, ..., let S(A, H) be the total
number of elements in Sy, Si,... with isotropy group H < G (which doesn’t
depend on the choice of Sy, Sq,...). We can define the same minimality for G-
chain complexes. Then we only need to find out the minimal number of “cells”
(more exactly, S(A’, H) for an equivalent minimal G-chain complex A’) for a
G-simply connected G-chain complex from the information given by its Bredon
homology groups.

4 More about minimal G-chain complexes

For the rest of this paper, we will discuss the algebraic version of our main
question in the case that G is abelian. In this case, each A(H) is a subcomplex
since the G-action is closed on it (which is not necessarily true for non-abelian

G).

In the previous sections, we have shown that the equivalence of complexes
induces isomorphisms on their Bredon homology groups. When G is abelian, the
inverse is also true, since each H;(A(H)) can be expressed by a Bredon homology



group HE (A; N> ), with the coefficient system N>y defined as follows:

N>y (G/K) =Z[G/K] if H < K, otherwise N>y (G/K) = 0. For any two
Ki,Ks > H and a G-map f : G/K; — G/Ks, we must have K; < K, (in the
non-abelian case, K; is conjugate to a subgroup of K5) and f is induced by
the multiplication of an element g € G. The morphism N>y (f) : Z|G/K1] —
Z|G/ K] is induced by the same multiplication.

From the definition of Bredon homology for A, we have the following imme-
diate result:

Lemma 4.1. A is G-simply connected if and only if all its 1-dimensional Bredon
homology groups are trivial.

In this section, we will first simplify the question to free complexes. A G-
chain complex A is called free if each A; is a free G-module. More exactly, for
any choice of S; (see Definition 3.1), the G-action on it is free.

4.1 Free parts of general complexes

Suppose that A is an arbitrary G-chain complex with abelian group G. For each
H < G, we define the subcomplex A(> H) such that each A;(> H) is the union
of A;(H') for all H' strictly larger than H (i.e., not equal H but contain H as a
subgroup). Let Sp, S, ... be a chain of permutation representations inducing .A.
Define S;” H to be the subrepresentation consisting of all elements with isotropy
groups strictly larger than H. Then S5, 57 ... induces A(> H) (it doesn’t
depend on the choice of Sy, 51, ...).

Define the quotient complex A(H*) = A(H)/A(> H), which is also in-
duced by the quotient representations SH* := SH /S>H Then each A(Hx) is a
free complex under group G/H. In fact, any homomorphism A — A’ induces
homomorphisms A(Hx) — A'(H*).

Notice that each A; can be viewed as the direct sum of A; (Hx) for all H < G,
and each A(Hx) is a free G/H-chain complex. So we divide A into several free
parts.

In this section, we will show that, A is minimal if and only if all its free
parts A(Hx) are minimal. Furthermore, the information of Bredon homology
groups for these free parts are also contained in the Bredon homology groups of
A itself. Then automatically, the minimal complexes equivalent to the same A
share the same total number of cells with isotropy H for all H < G, since they
are also equivalent to each other (this makes the definition of minimal G-chain
complexes at the end of section 2 clearer). And we only need to consider the
minimal free complexes.

Proposition 4.2. The Bredon homology groups of A(Hx*) under group G/H
can be expressed as Bredon homology groups of A under group G. Therefore,
any equivalence A — A’ induces equivalences A(Hx) — A'(Hx) for all H < G.

Proof: For each H < G, consider the following coefficient system N, :
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Np.(G/K) = 0 for K # H and Ny.(G/H) = Z[H]. Each G-map f :
G/H — G/H is induced by a multiplication of element g € G. Let Np.(f) :
Z[H] — Z[H] to be induced by the same multiplication.

For each coefficient system N for group G/H, it can be viewed as a coeffi-
cient system of G by sending each G/K to N(G/H/K N H) and each G-map
f: G/K; — G/K5 induced by the multiplication of g to N(f’), where [’ :
G/H/Ki;NH — G/H/K>N H is induced by the multiplication of g/H € G/H.

Consider the tensor product Ny, ® N. We have HY(A; Ng. @ N) =

HiG/H(A(H*); N) since A(H=x) is free. O
Together with Lemma 4.2, if A is G-simply connected, so are all its free
parts A(Hx*). We also have:

Corollary 4.3. If A(Hx) is minimal for oll H < G, then A is minimal.

Proof: Assume that A is not minimal in this case. Then we can find an equiv-
alence A" — A such that S(A'(Hx),H) = S(A,H) < S(A,H) = S(A(H=*),H)
for some H < G. However, A'(Hx) — A(Hx) is also an equivalence, which
contradicts with the minimality of A(Hx*). O

The converse is also true:

Proposition 4.4. Each equivalence F : A" — A(Hx*) can be extended to an
equivalence A" — A such that A" = A" (Hx) and S(A, H") = S(A"”,H') for all
H' # H. Hence if A is minimal, so are all its free parts.

Proof: We extend the equivalence F' with two steps. First we consider the
case that H = 1. Then A(Hx) = A(H)/A(> H) = A/A(> H). Let Sy, 51, ...
induce A and S}, S, ... induce A’. Construct A” by S/ = S/US>H i=0,1,...
First we define a homomorphism A” — A and then define the boundary map
compatibly.

Notice that S; can be viewed as S7" 1U1S/* and F; maps Z(S!) into Z(S*).
Together with the identity map Z(S7 ) — Z(S>H). We can define F! = F;®id :
2USY) = US) & TSP ) — Z(SH) & 2(S7 ) = 2(S)).

Assume that 9,9’ are boundary maps for A and A’. The boundary map 9"
for A" is defined as follows:

Each element in A can be written as o +  with o € Z(S]) and 8 €
Z(S7™). Then o and B can also be viewed as elements in A} and A;(> H) C A;
respectively. Since F is a homomorphism, 9(F;(a)) = F;—1(9'(«)) + 8" with
Be A7 Let 0" (a+B) := 09 (a) + B + 9(B). Then 9" commutes with F.

We also have (9”)% = 0: Since (8')%(a) = 0, we have 9" (9 (o)) = O(F;_1(0'(cv))
and hence

9"(a+B) = 0"(9' (o) + O(B) + 0%(B) = &*(Fi(a) + B) =0,

which makes A" a well-defined G-chain complex and F”' a homomorphism.
Moreover, it’s easy to check that, A”(Hx) = A’ and the induced homomorphism
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A"(Hx) — A(Hx) agrees with F. Notice that the induced homomorphisms
A"(> H) — A(> H) is an isomorphism. So we have S(A.H') = S(A", H') for
all H # H.

Finally, F’ is also an equivalence. Since we have A”(> H) = A(> H), we
only need to show that F’ induces isomorphisms H;(A”) = H;(A). We have
short exact sequences A;(> H) — A; — A;(Hx) and A)/(> H) —» A/ —
Al (Hx) which induces long exact sequences and the following diagram:

.—— H;(A"(> H)) —— H;(A") —— H;(A"(H%)) — ...

| l |

All the column maps are induced by F’. Notice that all column maps with
forms H;(A"(Hx*)) — H;(A(Hx*)) (agrees with the maps induced by F) and
H;(A"(> H)) — H;(A(> H)) (induced by isomorphisms of chain complexes)
are isomorphisms. According to the Five Lemma, H;(A"”) — H;(A) is also an
isomorphism.

Now let’s consider the general case. According to the previous argument,
we can extend the equivalence to A(H) (since A(Hx*) = A(H)/A(> H)). So
we can assume that we have already got an equivalence F' : A" — A(H) and
we want to extend it to A. We still choose S, S1, ... inducing A and S, S7, ...
inducing A’ and use 9,9’ to denote the boundary maps. Let Sl-/H = 5;/Si(H)
and A;(/H) := A;/A;(H). Then Si/H induces A;(/H) and we can still view S;
as S/"USH . Construct A” by S” = $/US/" . The homomorphism F’ : A” — A
and the boundary map 8" for A” are much more complicated in this case. We
have to define them inductively.

First, F} maps Z(S}) into Z(SH). We can define F}, = Fy @ id : Z(S}) =
Z(S,) ® Z(SéH) — Z(SiH @ Z(SéH) = Z(Sp). Automatically 9" on Aj is the
zero map.

Suppose that we have defined F{, F{,...F/_; and 9" on Af,...A7 | whose
square is zero and commutes with F’. In addition, the induced map A;/ (H) —
A;j(H) agrees with F; and the induced map AJ(/H) — A;(/H) is an isomor-
phism. Now let’s define F’ and 9” on A/. In fact, we only need to define them

on each element of S}’ = S/ U Si/ " and then extend them linearly.

For each o € S}, let F/(«) := F () and 8" (o) = 9'(«x) € Z(S]_,).

For each 5 € SZ-/H, we choose F!(B) := 3+ a for some a € S¥. We need to
choose « such that (8 + «) is contained in F_; (A} ;) and it has a pre-image
under F' in A7 ; Nkerd” in order to make F’ a homomorphism and satisfy
(0”2 =0.

Write 9(8) = F/_,(8') + & for some §' € Z(Sz/i) and o' € A . Then
9"(0") € Z(Si—p) and 9(a') = —O(F_1(B")) = F|_»(9"(8")) = Fi-2(8"(8")) is
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in the image of F'. Since d(c’) is also a boundary (contained in the image of 9)
and F' is an equivalence, its pre-image 9" (') is also a boundary in A} _,. So we
can find v € A,_; =2 A | (H) such that 9" (v) = 9'(y) = =9"(8').

Now F!_;(y) = Fi—1(7) has the same boundary as o, and F/_;(v) — o’
becomes a cycle. Since F is an equivalence, we can find a cycle 4/ € A;_, and a
boundary o’ € A | such that F;_1(y') = F/_;(y) — &/ + &”. Choose a € A
to be any pre-image of —a under 9. Then 9(8+ a) = F]_1(8')+ o —a" =
F/_ (8 4+~ —+'), which is in the image of F]_; and the pre-image 8’ +~vy —+/
is a cycle. We only need to define F/(5) =+ a and 0"(8) =8 +~v—+'.

In order to agree with the G-action, we only need to do this process for one
element of each orbit in Si/ ",

Finally, we get the complex A" together with a homomorphism F’ : A" —
A, such that the induced map A”(H) — A(H) agrees with F' and the map
A"(/H) — A(/H) is an isomorphism. F’ is also an equivalence according to
the following diagram and the Five Lemma:

s Hi(A"(H N H')) — H;(A"(H')) — H;(A"(H")JA"(H N H')) —— ...

| l |

" H(A(H N H')) —— H;(A(H")) Hy(A(H')JA(H N H')) — ...

for all subgroups H' < G. O

Now we only need to consider the free complexes. For the rest of this section,
we discuss some necessary conditions for a free complex to be minimal.

4.2 Free complexes

When A is free, we have A({1}) = A and A(H) = 0 for any nontrivial subgroup
H. The chain complex becomes a single chain of free abelian groups, more
exactly, free G-modules (Z[G]-modules), Ag, Aq, ....

We say that a basis for A; is a G-module basis. In fact, if {e1, ea, ..., €, } form
a basis, then {g-e; |g € G,i =1,2,...,r} form a free permutation representation
which induces A;.

The following proposition tells which elements can be selected into a basis:

Proposition 4.5. For e € A;, if Z|Gle = Z[G], and for any ¢’ € A;, a € Z,
0 # ae’ € Z[Gle = ¢ € Z|G]e, then we can find a basis containing e.

Proof: These conditions are equivalent to that, if we view A; as a Z-module,
then Z[Gle = ZIE! and A;/Z[G]e is still a free Z-module. In other words, {ge
lg € G} can be extended into a Z-module basis of A;.

We choose e, e, ..., e, as an arbitrary basis for A; (as Z[G]-module). Then
{g-€ |lg€G,i=1,2,.,r}is aZmodule basis. We consider the Z[G] and Z
coordinates under these two basis separately.
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Consider Z-matrix M whose rows are the coordinates of {ge |g € G}. Since
{ge |g € G} can be extended into a basis, by adding other elements in this basis
to M, we can extend M to a square matrix M’, which can be transformed into
the unit matrix by invertible column operations on Z. Therefore we can use
invertible column operations (in Z) to change M into

10 ... 00 ... O
0 1 0 0 0
o0 ... 10 ... 0

Now consider Z[G]-matrix with only one row corresponding to the Z[G] coor-
dinates of e. The previous operations of M induces invertible column operations
in Z[G] which can change this 1-row matrix into

10 ... 0

Apply the inverse of these operations to the unit square Z[G]-matrix, then
the first row becomes e, and all rows form a Z[G]-module basis for 4; which
contains e. [J

This proof can also be applied for a generalized version:

Corollary 4.6. Forey,es,...,e; € A;, if Z|G][e1, e, ..., e1] =2 Z[G)!, and for any
e € Aj,a €Z,0 +# ae’ € Z|G]le1, e, ...,e;] = €' € Z|G][e1, ez, ..., €], then we
can extend {e1, ez, ...,e;} to a basis of A;.

In other words, if My C My are free G-modules and My/M; is a free Z-
module, then Ms/M; is also a free G-module, and we can extend any basis of
M to a basis of My. We call My a torsion free submodule of M.

We call all elements satisfying the conditions in Proposition 4.5 as basic
elements. Then we can get necessary conditions for a minimal free complex.

Proposition 4.7. For a free G-chain complex A, if the image of boundary map
contains at least one basic element, then A is equivalent to one of its subcomplex
(which is not A itself) by the inclusion map.

Proof: Assume that e € A; is a basic element in the image of the boundary
map. Let ¢ € A;y1 be a pre-image of e. First we show that €’ is also a basic
element:

Since 0¢/ = e and Z[Gle = Z[G], we must have Z[G]e’ = Z[G] and 0 :
Z|Gle’ — Z|G]e is an isomorphism. For each a@ € A;4; and s € Z — {0}, if
sa € Z[G)e', then sO(a) = d(sa) € Z[Gle. So d(a) € Z[Gle. Let S is the
pre-image of d(«) in Z[GJer. We have 0((sa—sf)e’) = 0, hence a = f € Z[G]e'.

Extend e to a basis {e = eg,e1,...,es} of A; and ¢ to {¢/ = e[, e],...,e}}
of Aiy1 (as Z[G]-modules). We can adjust ef,e5, ... such that each Je) can
be written as aie; + azez + ... + ases for ai,ag, ... € Z[G]. In fact, if dej =
ageg + arey + ases + ... + ages, we only need to replace it by e;- —ape’.
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Now e, e’ are “separated” from other basis elements. Let A’ be a subcom-
plex of A such that A] = Z[G][e1, ez, ..., €], A, | = Z[G][€], ..., e;], and all other
dimensions are the same as A. From the calculation of homology groups, we can
show that the inclusion A’ < A induces isomorphisms on all Bredon homology
groups. [J

According to these two propositions, we get the following necessary condition
for minimal complexes:

Corollary 4.8. Suppose A is a minimal free G-chain complex. Then for each
e € A;NIm0, we can find an ideal I < Z[G) (not Z|G] itself ), such that e € I A;.

Proof: If we cannot find such ideal I, it’s easy to show that e will satisfy the
condition in Proposition 4.5. Then Proposition 4.7 gives the contradiction. [J

For some special G, we can show that Corollary 4.8 is also a sufficient con-
dition. In fact, it might be true for general G. In the next section, we show a
practical method to calculate the number of cells for a minimal free complex for
G = Z/pZ, which satisfies the inverse of Corollary 4.8. In fact, assume A is a
free complex satisfies the condition in Corollary 4.8 (when G = Z/pZ), we can
use its Bredon homology groups to calculate the dimensions of all A;. Hence
automatically A is minimal and Corollary 4.8 must be true for G = Z/pZ.

5 7Z/pZ-chain complexes

In this section, we discuss the special case that G = Z/pZ for some prime p
and show how to get the dimensions of any minimal G-chain complex from its
Bredon homology groups.

We will mainly show the following result:

Proposition 5.1. For a free G-chain complexr A satisfying the conditions in
Corollary 4.8, we can use its Bredon homology groups to calculate dim(A;) for
each 1.

We will explain how to calculate that practically at the beginning of the
subsection 5.2.

Following this Proposition, the inverse of Corollary 4.8 is automatically true,
since if A is equivalent to another minimal complex, with the Bredon homology
groups, we can get the same dimensions for that complex. Then according to
the argument in the last section, we can simplify general G-chain complexes to
free complexes for G and for G/G = {1}, where the latter is just the ordinary
CW complex. So finally we can get a method to get dimensions for any Z/pZ-
chain complex from its Bredon homology groups.

Now suppose that A is a free G-chain complex satisfying the condition in

Corollary 4.8. Let g € G be a generator of G. We will find a basis for each A4;
which makes the boundary map clear.
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5.1 A clear basis of A;

Definition 5.2. The augmentation map C : Z[G] — Z is a ring homomor-
phism which sends each g € G to 1. For each integer a € 7Z, define the ideal
I, :=C"1(a).

Consider the following chain of ideals: Z[G] = Jig D I, = Ji1 D Ji2 D
e D Joq D Jap D ... D {0}, such that Jy ; = Z[G][1+g+9%+...4+97 L, (1—g)7],
Jo; =ZIGl[(1+ g+ ¢*+ ... + ¢*~H)Y]. Then we have:

Lemma 5.3. For each ideal I in this chain, it has a successor I’ (i.e., the ideal
just after it). We also have I - I, C I'.

For each finite or infinite set of ideals in this chain, the lower limit (or
intersection) of all elements in this set is still an ideal in this chain.

Define an order among these ideals according to the inclusion relation ({0}
has the smallest order and Z[G] has the largest). Then an order is induced to
the elements in A; as follows: For each o € A;, let I be the smallest ideal in
the chain such that da € I - A;_1 (I must exist since the chain is closed under
lower limits). Then give a the same order as I. Define a map O which sends
each a to such I with the same order.

Now we construct a basis (e, s, ...e,.) for A; satisfying:

M er<ex<es<..<epy

(IT) For each o = ) aje; € A;, if C(a;) ¢ pZ (or equivalently, a; ¢ I,) for
some j, then a > e;.

The basis is defined inductively according to the dimension of A; as a finite
dimensional free G-module. In fact, the order can be defined on any pair of
(M, M’"), where M is a finite dimensional free G-module, M’ is an arbitrary
finite dimensional G-module, together with a homomorphism 0 : M — M’
(here we have M = A;, M' = A;_1).

It’s easy to show that such basis exists when dim M = 1. Assume the
existence when dim M = r — 1, we consider the case of r:

Let I be the smallest ideal in the chain such that OM C I - M’. Then we
can find a basic element e, in M such that the order of e, is the same as I.
Now replace M by My = M/Z[G]e, (which is still a free G-module) and M’ by
M} = M'/Z[G]Oe,. By induction, we can find such basis (e}, es,...,es_;) for
M. It can be extended to a basis (e1, €2, ..., e,;) of M such that each e; has the
same order as e;f. Then automatically e; < es < ... < e,.. For each a € M,
a =) ae; such that a < e; for some j, if j < r, then the image o =) aje] of
a in My cannot have larger order than « itself. So we have a* < e} and hence
C(a;) € pZ by induction. If j = r, assume that the order of e,,e,._1,...,€._¢
are the same but e,_;_1 is smaller. Then by the previous case, we know that
Cla;) € pZ for l =r —1,r —2,...,r — t. Assume that e, has the same order as
I and I’ is the successor of I. Then da and each 9(a;e;) are contained in I’ M’
for i =1,2,...,r — 1. So we must have d(ae,) € I'M’ and hence C(a,) € pZ.
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Now we finish the construction of such basis. We divide (e, e, ...) into 4
parts: P; := {ej, e, ..., e, } have image {0} under O; P; := {et, 41, ..., €1, } have
image with the form J, ; for some j; Ps := {e,+1,...€1, } have image with the
form Jy ; for j > 0; Py := {e4,+1, €542, ..., €dim 4, } have image J1 o = Z[G]. We
write Z[G|[P;] to denote the (free) submodule generated by all elements in P;.

From the condition (IT) of this basis, we can get the following properties:
Lemma 5.4. For any o € Z[G][Py], if Oa € Iy A;_1, then o € I, A;.

Corollary 5.5. For each o € Jy 1.A; written in the form under basis (e1, ez, ...),
the coefficient of each element in Py is in I,.

Lemma 5.6. For each a € Z|G][P3 U Py], if da € (1+ g+ ... + g V) A;i1 =
J271Ai_1, then o € (1 +g+..+ gp_l)Ai = J271AZ‘.

Corollary 5.7. For each o € Jo 1 A;, the coefficient of each element in P3U Py
isinZ[1l+g+..+g°P 1] = Ja1.

Lemma 5.8. For each a € ker 0 N A;, the coefficient of each element in Py is
in Ip.

We still need to do some more adjustment for the elements in P; according
to the image of the boundary map:

Consider the coefficient system N, such that N,(G/G) = Z[G]/1, = Z/pZ
and the morphisms are defined naturally. Then ker 0 for N, is Z[G]/I,[P, U
P, U P;] according to Corollary 5.5 and the choice of Py, P», P;5. For each ele-
ment o € Im0, Lemma 5.6 and 5.8 tell us that the coefficients for elements in
P> U P3 U Py are zero for N, (since they are contained in I, in ordinary case).
Therefore Imd C Z[G]/I,[P1]. Since Z[G]/I,[P1], ImO are free Z/pZ(as a ring,
not a group)-modules, we can select a Z/pZ-basis for Imd and extend it to
Z|G]/I,[P1]. The new choice of basis of Z[G]/I,[P1] can be lifted into a basis of
Z(G][P1].

In conclusion, finally we can find proper {ej, es, ..., &;, } with some 0 < ¢ < ¢y,
such that, for any o € Im0, the coeflicient of each e; with j > ¢ are contained
in I,. Furthermore, for each j =1,2,...;¢, we can find o € Im0, such that only
the coefficient of e; is not in I,.

5.2 Calculation of dim A;

We state the result first:

We need the following coefficient systems: N, Norp, Ny with Np(G/G) =
ZIG)/ Iy, Now(G/G) = ZIG)/To, Ny(G/G) = Z[G)/Z[L + g + ... +g~1] and
the morphisms are defined naturally. We also need a map f : HZ(A; N,) —
HE(A; N,) induced by the quotient may Z[G]/Z[1 + g + ... + g*~1] — Z[G]/1,.

For any G-module M, use gen(M) to denote the minimal number of gener-
ators for M.
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Define the G-torsion for dimension ¢, written as 74 (i), to be the larger one
of gen(HE (A; Ny)) — gen(Im(f)) and the torsion coefficient of HE (A; Noyp)
mod p, i.e., we can write HE (A; Nopp) = 2% X ZJarZ x Z/asZ... x Z.]a,Z such
that each a; divides a;y1, and then consider the maximal j such that a; is not
a multiple of p.

Then we have

Proposition 5.9. dim A; = 7¢(i) + 7¢(i — 1) + gen(HE (A; N,)).

Recall that in the last subsection, we find a basis {ej,es,...} for A; and
divide it into five parts (four parts Pi, Py, P3, Py and we divide P; into two
parts {e1,...,et},{€t+1,..., €1, } at the end).

We only need to show that 7¢ (i) = t, 7¢(i—1) = dim A;—t3, and gen(HF (A; N,)) =
ts —t.

In fact, we can also give A4;_; such a basis and divide it into five parts.
Then its first part (see the end of subsection 5.1) will have the same number

of elements as P, (according to Lemma 5.4). Therefore, we only need to prove
76(i) = t and gen(HE (A; N,)) = t3 — t.

We consider gen(HE (A; N,)) first. Notice that HF(A; N,) can be written
as a power of Z/pZ = Z[G]/I, where G acts trivially. At the end of the last
section, we have shown that under N,,, Imd = Z[G]/I,le1, e, ..., ¢;]. The defini-
tion of Py, Py, P; and Corollary 5.5 tells us that ker 0 = Z[G]/I,[e1, ez, ..., €1,].
Therefore, gen(HE (A; N,)) = t3 — t.

Now we consider 7¢(4). There are two possible cases and we need two differ-
ent methods to deal with them separately (that’s why we define the G-torsion
to be the larger one of two numbers).

Proposition 5.10. For each o € ImdA;, use I(a) to denote the ideal of Z[G|
generated by all coefficients of a (which doesn’t depend on the choice of basis of
A;). Then the following two cases cannot exist at the same time:
(I) There exists vy € ImOA; such that I(ay) +Z[1+ g+ ... + gP~ 1] = Z[G];
(II) There exists aa € ImOA; such that I(ag) contains an element in

c(1).

Proof: We only need to show that, if both «q, s exist in Im0, then we can
find a basic element in Imd, which contradicts with our assumption of A. Let
a1 = aje1+agea+..., ag = bie; +baes+.... Consider the following Z[G]-matrix:

ap az
b1 by

We only need to apply row and column operations (not necessarily invert-
ible) to it to get 1 as an entry. Since each row operation commutes with any
column operations. We can do all the row operations first. Then each row still
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expresses an element in I'm@d. If we can apply column operations to one row in
order to get 1, then that row expresses the basic element we want.

First we use column operations to get two special entries s1, s2 in two rows
separately, such that s; can be written as a(1 + g + ... + g?~!) + 1 for some
a € Z, and C(s2) = 1. We can assume that s has already exist, since the
condition of g implies that ged(C(by), C(b2),...) = 1, and we can use invertible
column operations to get such s;. Then the ideal generated by the entries in
the first row will not change (since the operations are inveritble). Assume that
cra; + coag + ... = a(l+g+ ... +g?71) + 1 and sy = by, we only need to use
column operations to replace as by s; and bs by ¢1b1 + c2bs + .... Now we only
need to consider the first 2 x 2 submatrix:

ay si
- )
Replace (column 2) by (column 2)+k(1+ g+ ... + g~ 1)(column 1) for some
k € Z. Then the two elements in column 2 becomes d; = (a + kC(a1))(1 +
g+ ...+ gP 1) + 1 and dp with C(ds) = C(ba) + pk. Since ged((a + kC(a1))p +
1,C(b) + pk) = ged(ap + 1 — C(a1)C(b2), C(b2) + pk), we can always find k
to make (a + kC(a1))p + 1 and C(by) + pk relative prime to each other. Now
we can write d; = a’(1 + g + ... + g?71) + 1 with a’p + 1 relative prime to
C(dz). Then there exist x,y € Z such that z(a’p + 1) + o’ = yC(da). Then
l=2(1+g+..+¢* Hdy +di —y(1+g+ ... + g?1)dy and we can use row
operations to get it. [

We define 7¢ /(i) as the larger one of two numbers. We consider one of them
first: gen(HE (A; Ny)) — gen(Im(f)).

Under N, Corollary 5.7 and the definition of Py, P tell us ker 0 = Z[G]/Z[1+
g+ ...+ 9P H[PLUP,]. So gen(HE (A; Ny)) < to. Together with the structure of
HE(A; N,), we have Im(f) = Z[G]/Ip[e1+1, €142, - €1,]- S0 gen(Im(f)) = t2 —
t. When condition (I) in Proposition 5.10 doesn’t happen, we have gen(HS (A; N,)) =
t2. Otherwise, consider the quotient map Z[G|[P1 U P] — Z|G|/Z[1 + g+ ... +
gP Y[P1 U Ps] — HE(A; N,). Since the generators of HZ (A; N,) is less than
the dimension of Z[G][P; U P,] as a free G-module, we can find a basic element
a with zero image. Then there is 3 € (1 + g+ ... + g?~1)A; such that a + 3 is
in Imd. Then condition (I) happens.

Now let’s consider the other one, the torsion coefficient (we write as 7,
here) of HE(A; Nowy) = Hi(G \ A) mod p. Write HY (A; Nopy) = Hi(G \ A) =
Z° X Z]/a1Z X L]asZ... X Z/asZ such that each aj|aj+1 and 7, is the largest
number with p not dividing a,.

From the definition of elements in P; at the end of subsection 5.1, Imd/Imon
I, A; can be generated by at most ¢ elements. In fact, when we change into the
orbit space, the result is more exact: Imd/Imd N pGA; can be generated by
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exactly ¢ elements. Consider the structure of HZ (A; Nowy) = ker d/Imd, we
have 7, no larger than gen(Imd/Imd N pGA;). So we have 7, < ¢.

If the condition (II) in Proposition 5.10 doesn’t happen, we get 7, = ¢t. In
this case, there are no basic elements in G\ A; N Imd. So we have ker § = Z*5.
Hence Imd = Zlay e}, azeh, ...asel], where {e], ..., e, } can be extended to a basis
of G\ A;. Therefore 7, = gen(Imd/Imd NpGA;) = t.

Finally, in conclusion, we get 7¢(i) = ¢, and hence finish the proof of Propo-
sition 5.9.
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