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ABSTRACT. We review the geometry of nilpotent orbits, and then restrict to
classical groups and discuss the related combinatorics.

1. INTRODUCTION

Throughout this note we work over C. Let G be a connected complex semisimple
Lie group and g be its corresponding Lie algebra. Let N be the set of nilpotent
elements in g. Then there is a natural action of G on A by conjugation. The
G-orbits in A are called nilpotent orbits. Nilpotent orbits are important in
geometry and representation theory, and are the object of study in this project.

In this note we review the geometry and combinatorics related to nilpotent orbits.

2. FLAG VARIETIES

The flag variety B is the variety of Borel subgroups in G (alternatively, the
variety of Borel subalgebras in g). We have B ~ G/B for any Borel subgroup B
in G. Let U be the variety of unipotent elements in G. We have U/ ~ A by the
Springer map. The Springer resolution A is the closed subvariety of B x A
consisting of pairs (b,n) where b is a Borel subalgebra, n is a nilpotent element
and n € b. Alternatively, N is the closed subvariety of B x U consisting of pairs
(B, u) where B is a Borel subgroup, v is a unipotent element and u € B. There is
a natural projection 7 : NN (- N U ), which is a resolution of singularities
of N. For any n € b (resp. u € U), let B,, (resp. B,) denote the fiber over n (resp.
u), i.e. 77 1(n) (resp. 7~ 1(u)). These fibers are called the Springer fiber.

For nilpotent elements n and n’ in the same nilpotent orbit, the Springer fibers
B, and B, are canonically isomorphic. Therefore we sometimes say the Springer
fiber over an nilpotent orbit while the actual meaning is the Springer fiber over an
nilpotent element in the orbit.

Let G acts on B x B by diagonal. The orbits are indexed by Weyl group elements.
Namely, we have the Bruhat decomopsition

BxB= || G(B,wB)
wew
where B is any Borel subgroup. This gives a map B x B — W which maps a pair
of Borel subgroups to the Weyl group element corresponding to the G-orbit. This
map is called relative position. Let O, be the orbit corresponding to w € W.
Let Z = N xy N be the Steinberg variety. It parametrizes triples (b, b’,n) €
BxBx N wheren € bnb’. Let p: Z — B x B be the map that forgets the last
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summand. Then the irreducible components of Z is are closures of Z,, = p~1O,,
for w € W. Also, for every w € W we have dim Z,, = 2n, where n = dim B.

Let u be a unipotent element. Let A,, be the component group of Z¢g(u). For any
two irreducible components of B,,, two generic elements in them have fixed relative
position. Therefore the relative position gives a map Irr(8,) x Irr(B,) — W. The
component group A, acts on Irr(B,) (therefore on Irr(B,) x Irr(B,)) and fixes the
relative position. Therefore we have a map A, \(Irr(B,,) x Irr(B,)) — W. Using the
Steinberg variety, Steinberg [Ste76] proved that if we let u goes over all unipotent
orbits, then we get a bijection, i.e.

| |A\@re(By) x Trr(B,)) ~ W.

3. NILPOTENT ORBITS

There is a natural partial order on the set of nilpotent orbits. For any two
nilpotent orbits @ and @', define O < O if © C O’. Using this partial order we
can identify certain orbits of interest.

(1) There is the zero orbit consisting of a single element 0. This is the smallest
orbit in the partial ordering.

(2) There is a unique smallest orbit larger than the zero orbit, called the min-
imal orbit.

(3) There is a unique largest orbit, called the regular orbit.

(4) There is a unique largest orbit smaller than the regular orbit, called the
subregular orbit.

The Lusztig-Spaltenstein duality (Spaltenstein [Spa82]) is an endomorphism
of the set of nilpotent orbits, which have many good properties. Nilpotent orbits
in the image of the duality are called special orbits. The duality is an involution
when restricted to the set of special orbits. The duality reverses the orbit order.

The zero orbit, regular orbit and subregular orbit are special orbits. However,
the minimal orbit is special only in simply laced cases. In all cases, there is a
unique smallest special orbit larger than the zero orbit, which is called the minimal
special orbit. The duality exchanges the zero orbit with the regular orbit, and
exchanges the subregular orbit with the minimal special orbit.

4. KAazHDAN-LUszTIG CELLS

Let (W, S) be a Coxeter system, where W is the Coxeter group and S is the set
of simple reflections. Let [ : W — Zx( be the length function. The Hecke algebra
H is the algebra over A = Z[q"/? q~'/?] with basis T,, : w € W subject to relations

Tww =TTy if l(ww') = 1(w) + I(w),
(Ts+1)(Ts —q) =0 for s € S.
Every T, is invertible because T, ! = ¢~ 1(Ts + (1 — q)) for s € S.

There is a natural involution a + @ on A defined by ¢1/2 = ¢~'/2. This extends
to an involution on H by Y a, Ty = Z@Tq;ﬂ.

For w € W, define €, = (=1)"*) and ¢, = ¢"*). Equip W with the Bruhat
order, i.e. w < w’ if and only if there is some reduced expression of w that is a
substring of a reduced expression of w’.



Theorem 4.1 (Kazhdan-Lusztig, [KL79] Theorem 1.1). There is an A-basis {C,, :
w € W} of H such that C,, = Cy, and

Cw= Z ew’ewq}u/Qq;/le’,wTw’

w!' <w

where Py, =1 and Py, € A is a polynomial in q of degree < (l(w) —I(y) — 1)
fory <w.

The basis {Cy, : w € W} is called the Kazhdan-Lusztig basis of H.
Using the Kazhdan-Lusztig basis, we can define preorders <j, <g and <y on
W, where

(1) w<p w' if C,, appears with nonzero coefficient in C;C,, for some s € S;
(2) w <grw'if Cy, appears with nonzero coefficient in C,,Cs for some s € S;
(3) <prr is the preorder generated by <j and <g.

The preorders <;, defines an equivalence relation ~;, on W, where w ~, w’ if
w <y w and w’ <j w. The equivalence classes are called left cells. Similarly, we
can define equivalence relations ~; and ~pp using <p and < g, and the equiva-
lence classes are called right cells and two-sided cells, respectively. Note that
<r, (resp. <g, <pg) gives a partial order on the set of left (resp. right, two-sided)
cells.

In the case W is finite, let wy be the longest element in W. The map w — wow
reverses the preorders <p, <g, <pgr. So it induces an order-reversing involution
on the set of left (resp. right, two-sided) cells.

The Kazhdan-Lusztig conjecture (proven by Beilinson-Bernstein [BB81] and
Brylinski-Kashiwara [BK81]) relates Kazhdan-Lusztig polynomials with highest
weight modules of complex semisimple Lie algebras. Let g be a complex semisim-
ple Lie algebra and W be its Weyl group. Let p be the half sum of positive roots.
Let M,, be the Verma module of g with highest weight —wp — p and L, be its
irreducible quotient.

Conjecture 4.2 (Kazhdan-Lusztig [KL79]). The following two equations hold for
all we W.

ch(Lw) = Y €wewPurw(1)ch(My)

w!' <w

Ch(Mw) = Z ngw,wow’(l)Ch(Lw’)

w’ <w

5. PRIMITIVE IDEALS

Let g be a complex semisimple Lie algebra and U(g) be its universal envelop-
ing algebra. Let Z(U(g)) be the center of U(g). We have the Harish-Chandra
isomorphism Z(U(g)) ~ S(h)" where S(b) is the symmetric algebra of a Cartan
subalgebra and W is the Weyl group. A primitive ideal is the annihilator of an
irreducible (left) U(g)-module. Let Prim(g) be the set of primitive ideals of g.

Let I = Ann(M) be a primitive ideal. Then Z(U(g)) acts on M by a character
xXx: Z(U(g)) = C. We have I N Z(U(g)) = ker xa. So I determines ker x», thus
determines x», which in turn determines A up to an action of W. Let Primy(g)
(A € b*/W) be the set of primitive ideals whose central character is xx. Then we
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have a decomposition

The primary examples of irreducible U(g)-modules are the irreducible highest
weight modules. Let p be the half sum of positive roots. Denote by M (\) the
highest weight Verma module with weight A—p. It has a unique irreducible quotient,
denoted by L()). Every irreducible highest weight module is L(\) for some root A.
We have a map §* — Prim(g) given by A — Ann(L(\)). Duflo’s theorem ([Duf77])
states that this maps is surjective, i.e. every primitive ideal is the annihilator of an
irreducible highest weight module.

Now let us consider the primitive ideals in Prim_,(g). For w € W, let M,, =
M(—wp), L, = L(—wp) and I,, = Ann(L,,). This gives a map W — Prim_,(g)
which maps w to I,,. On W we can define preorders <j, <g and <y g, where

(1) w <p w if Ly, C Iy
(2) w<gpw if w1t <pwl;
(3) <pLr is the preorder generated by <, and <p.

A corollary of the Kazhdan-Lusztig conjecture is that the preorders <, <g, <rr
defined using primitive ideals is the same as the corresponding preorders defined
using the Hecke algebra. This justifies that we use the same symbols to denote the
preorders defined in different ways.

The algebra U(g) has a standard filtration 0 = U_1(g) C Up(g) C U1(g) C ---
The associated graded algebra

er(U(s)) = P Ui(9)/Ui-1(9)))
i>0
is S(g), the symmetric algebra of g, and is a polynomial ring. Let I be a primitive
ideal. We have the associated graded ideal

gr(I) = @PUNUi(g))/(I N Ui_1(g))-
i>0
The associated variety Ass(I) is the affine variety defined by gr(I). Borho-
Brylinski [BB82], Joseph [Jos85] and Kashiwara-Tanisaki [KT84] proved that Ass([,,)
is the closure of a nilpotent orbit in g, and is irreducible. This relates primitive
ideals with nilpotent orbits.

6. CLASSICAL TYPES

The complex simple lie algebras of classical types are A,, (sl,11), By, (§02,41), Cn,
(8psy,), and D,, (s02,). The Weyl group for type A,, is the symmetric group Sy41.
The Weyl group for type B,, and C), is the hyperoctahedral group H, = C3 x S,
where S, acts on C§ by permutation. We can see Cy as the multiplicative group
{=1,+1}. Therefore H, is the group of signed permutations. The Weyl group for
type D,, is the subgroup of H,, containing elements whose C§ part is —1 for an
even number of positions. Therefore the Weyl group is the group of even signed
permutations. We use a compact notation for hyperoctahedral group elements
following van Leeuwen [vL89]. For (61,...,0n,01,...,pn) € H,, we write it as
(w1, ..., w,) where w; = §;p;. Sometimes we use P; to denote —p;.

In classical types the flag variety can be described in terms of flags, justifying
its name. In type A, we fix a vector space V' of dimension n + 1, and a flag is a
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sequence 0 =V, CV; C--- CV, CV,y1 =V where dimV; = 4. The flag variety
is just the variety of flags.

In other classical types, we fix a vector space V with basis {e_,, -+ , €0, - ,€n}
in type By, and {e_,, -+ ,e_1,e1, -, e, } in type C, and D,,. Now define a bilinear
form (-,-) on V where

(ei,e;) =0wheni+j#0
(es,e—;) =1fori>0
(e—i,e;) =efori>0

where e = 1 in types B and D, and e = —1 in type C. An isotropic flag (sometimes
simply called a flag) is a sequence 0 = Vo C V4 C --- C V,, where dimV; = i and
(Vn, Vi) = 0. A unipotent element u € G is said to stabilize a flag V if uV; C V;
for every i. Let F denote the variety of isotropic flags. We have a map F — B that
maps a flag V to the set of elements in G° that stabilizes F (which forms a Borel
subgroup of G). In types B and C, this map is a bijection. In type D, this map is
a two-to-one map. F has two irreducible components and each is isomorphic to B.
From the above description, we see that the Springer fiber over a unipotent element
u € G can also be described as the set of flags that is stabilized by u. Denote by
Fu the variety of flags fixed by u.

By considering G-orbits in F x F, we can define relative position of flags. The
result for classical types other than D are the same. However, in type D, the orbits
are not in bijection with W, but in bijection with H,,. Let W denote the group that
classifies the G-orbits in F x F, i.e. W = Sn41 in type A, and W = H, in type
By, Cy, and D,,. The relative position gives a map A, \(Irr(F,) x Irr(F,)) — W.
If we let u goes over all nilpotent orbits, we get a bijection

LlAu\(Irr(]:u) x Trr(F,)) ~ W.

When restricted to the classical groups, nilpotent orbits can be studied using
combinatorics. Roughly we have the following dictionary:
(1) nilpotent orbits ~ partitions;
(2) irreducible components of the Springer fiber ~ tableaux;
(3) relative position of flags ~ Robinson-Schensted correspondence and its ana-
logues.

7. NILPOTENT ORBITS IN CLASSICAL TYPES

The main reference for this section is Collingwood and McGovern [CM93].

In classical types, a nilpotent element is just a nilpotent matrix that satisfies
certain conditions. An obvious invariant of a nilpotent orbit is the Jordan decom-
position. Because of nilpotency, diagonals of the Jordan decomposition are zeros.
So the Jordan decomposition is the same as a list of the sizes of the Jordan blocks,
i.e. a partition. It turns out that in types A, B and C, the partition corresponding
to a nilpotent orbit is a complete invariant; and in type D, it is almost a complete
invariant.

(1) In type A, the nilpotent orbits are in bijection with partitions of n + 1;
(2) In type B,, the nilpotent orbits are in bijection with partitions of 2n + 1
where even parts occur with even multiplicity;
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(3) In type C,,, the nilpotent orbits are in bijection with partitions of 2n where
odd parts occur with even multiplicity;

(4) In type D, the nilpotent orbits are in bijection with partitions of 2n where
even parts occur with even multiplicity, with exception for very even par-
titions, whose parts are all even, which corresponds to two (instead of one)
nilpotent orbits.

For a fixed type, partitions that correspond to nilpotent orbits are called admis-
sible partitions.

Therefore we can use partitions to refer to nilpotent orbits. In type D, for
a very even partition )\, we use Al and A to refer to the two nilpotent orbits
corresponding to A. (The choice of T and 1T is not at random, and does matter for
e.g. the Lusztig-Spaltenstein dualityf, but we omit it here.)

For a partition A\, we write it as [azfl, e ,a?’] where a; > a;y+1 and b; > 1. This
means a; occurs exactly b; times in \. When b; = 1 it is usually omitted. We can
also write the partition as [A1,- -+ , Ax] where A; > A;;1, which means that the parts
of A are Ay,..., . We allow zero parts for convenience.

The partial ordering on nilpotent orbits in classical types can be interpreted
using partitions (Gerstenhaber [Ger61], Hesselink [Hes76]). Let A = [A1,...,\]
and = [p1,. .., tn] be two partitions. (We can add trailing zeros so that the two
partitions have the same number of parts.) Wesay A < pif > i cp A <D0y cicp i
forall 1 < k < n. Then A < p in the orbit order if and only if A < p in the partition
order.

Using the above description, we can identify several nilpotent orbits in classical
types. The results are listed in the following table. (Special orbits in classical types
are discussed later.)

Zero minimal | minimal special | regular | subregular
Ay | [ 217 2,17 1] [n+1] [0, 1]
B, | [17F1] ] 22,1279 (3,127 2n+1] |[2n—1,17]
Co | [P [ 2177 | 2217 1] 2n] | 2n—2,7]
D, | 1?7 |[2% 121 [22,12777] 2n—1,1] | [2n —3,3]

TABLE 1. Some nilpotent orbits in classical types

Now we describe the Lusztig-Spaltenstein duality in classical types using parti-
tions. In type A, the involution is just transpose, and all orbits are special.

In other classical types, simply taking the transpose may result in non-admissible
partitions. The way to resolve this is to “collapse” the partition to an admissible
one.

For types B, C and D, and any partition A\ (not necessarily admissible), there
exists a unique largest admissible partition that is < A in the partition order. The
partition is denoted Ag, Ac or Ap depending on the type.

In types B, C and D, the Lusztig-Spaltenstein duality is A — A\ where X = B,
C, or D is the type. In type D, additional care is needed for nilpotent orbits
corresponding to very even partitions. We omit it here.
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8. COMBINATORICS IN TYPE A

Work in type A,,. The Weyl group is W = S,,41. Let P(n + 1) be the set of
partitions of n+1. For A € P(n+1), define SYT(A) to be the set of standard Young
tableaux with shape A. The well-known Robinson-Schensted correspondence is a
bijection

(L,R):W — || SYT()) x SYT().
AEP(n41)

The Robinson-Schensted correspondence has many interesting properties. We
have L(w) = R(w™?) for w € W. Also, there is a pair of maps P,Q : SYT()\) —
SYT(A!) such that for all w € W, we have

(L(wow), R(wow)) = (P(L(w)), Q(R(w))).

Therefore, L(wow) depends on L(w) but not on R(w). Actually, the map P is the
transpose and the map @ is transpose composed with the so-called Schiitzenberger
involution.

The combinatorics is closely related to geometry. We have seen that partitions
are in bijection with nilpotent orbits.

Starting from a nilpotent element n in orbit (partition) A and a flag V = V5 C
-+ C V1 preserved by n. The Jordan decomposition of n on V;,;1 gives a partition
of n + 1. The Jordan decomposition of n on V,, then gives a partition of n that is
one smaller than the previous partition. This means one position is removed from
the Young diagram. We mark the position with n+1. Then we consider the Jordan
decomposition on V;,_; and mark a position with n. Continuing this process, we
finally get a marking of the initial Young diagram that is a valid Young tableau.
In this way we associate a Young tableau of shape A to a flag in the Springer fiber
over the nilpotent orbit .

Let T be a Young tableau of shape A. Define By 1 be the set of flags over
A that give the Young tableau 7. Then the closures of By r are the irreducible
components of By. Fix two Young tableaux 77,75 € SYT(A). For two generic
points Vi € By, V2 € Ba 1, their relative position is an element w(7y,Ts) € W.
The relative position is consistent with the Robinson-Schensted correspondence, i.e.
(Ty,T2) = (L(w), R(w)) (Steinberg [Ste88]).

The Schiitzenberger involution can also be interpreted geometrically (van Leeuwen
[vLOO]). Let V =V, C --- C V,41 be a flag fixed by a nilpotent element n in orbit
A. We can get a Young tableau of shape A in a different way than the above. We
first consider the Jordan decomposition on V, 1 = V,41/Vo. Then we consider
the Jordan decomposition on V;,11/V; and mark the removed position with n + 1.
Then we consider V;,1/Va2 and so on. In this way we can also get a standard Young
tableaux of shape A. Let T be the standard Young tableaux gotten using the first
method, and 7" be the standard Young tableaux gotten using the second method.
Then T" is the Schiitzenberger involution of T'.

The Kazhdan-Lusztig cells in type A can also be described using the Robinson-
Schensted correspondence (Barbasch-Vogan [BV82]). For w,w’ € W, we have

(1) w~g w" if and only if L(w) = L(w');

(2) w~pgw if and only if R(w) = R(w');

(3) w~pg w' if and only if L(w) has the same shape with L(w').
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9. STANDARD DOMINO TABLEAUX

Garfinkle [Gar90] [Gar92] [Gar93] [Gar] gave a combinatorial description of the
cells in classical types.

A standard domino tableaux is a Young diagram (i.e. a partition) with every
position marked with a positive integer, such that

(1) there is some integer m such that each integer from 1 to m occurs twice,
and other integers do not occur;

(2) if a positive integer occurs twice, then the two positions are adjacent in the
Young diagram;

(3) the numbers are non-decreasing in each row and column.

Define the shape of a standard domino tableaux to be the shape of the
underlying Young diagram. Let SDT(n) be the set of standard domino tableaux
with n positions. For A € P(n), let SDT(X) be the set of standard domino tableaux
with shape A.

Garfinkle [Gar90] gave a correspondence for standard domino tableaux.

(L,R): H, — | | SDT(X) x SDT()).
AEP(n)

Note that Garfinkle’s correspondence does not depend on type.

Garfinkle’s correspondence has properties similar to the Robinson-Schensted cor-
respondence. For w € H,,, we have R(w) = L(w™?!).

Garfinkle defined an operation on standard domino tableaux called “moving
through”. Two standard domino tableaux are called equivalent if they can be
transformed into each other by moving through cycles. Then we have w ~j w’
if and only if L(w) and L(w') are equivalent. (The criteria for ~z and ~pg can
be derived from this.) However, note that the moving through operation does not
preserve shape. Therefore Kazhdan-Lusztig two-sided cells in types B, C' and D
are not characterized by shapes of the corresponding standard domino tableaux.

10. SIGNED DOMINO TABLEAUX

Van Leeuwen [vL89] used signed domino tableaux to give a combinatorial de-
scription of the relative position of two flags. In this section we introduce his work.

Fix a type B, C or D. An admissible domino tableaux is a Young diagram
with every position marked with a non-negative integer, such that

(1) in type B, the upper-left position is marked with 0, and there is some integer
m such that each integer from 1 to m occurs twice, and other positive
integers do not occur;

(2) in type C or D, there is some integer m such that each integer from 1 to
m occurs twice, and other integers do not occur;

(3) if a positive integer occurs twice, then the two positions are adjacent in the

Young diagram;

the numbers are non-decreasing in each row and column;

the shape of the Young diagram is admissible;

when m > 1, if we remove the positions marked with m, the remaining

tableau is an admissible domino tableaux.

W

~~
D ot
N NN

Note that this is a recursive definition.



A domino is a pair of positions marked with the same numbers. Define ¢; =
—€(—1)7. (Recall that € = 1 in type B and D, and € = —1 in type C.) Define the
type of a domino to be

(I+) if the domino is vertical and in a row j with ¢; = 1;
(I-) if the domino is vertical and in a row j with ¢; = —1;
(N) if the domino is horizontal.

A signed domino tableaux is an admissible domino tableaux where each
domino of type (I+) is marked with a sign, + or —. The set of signed domino
tableaux of size n is denoted XDT(n). The set of signed domino tableaux of shape
A is denoted XDT(\).

Let T be an admissible domino tableau. Van Leeuwen [vL89] defined a notion of
clusters, which is a certain partition of the set of positions of 7. Certain clusters
are called open clusters, while others (except for one cluster in type B or C) are
called closed clusters.

Now let T and T” be two signed domino tableaux that correspond to the same
admissible domino tableaux. We say T ~qp a1 T" if for all open clusters and closed
clusters, the product of signs of type (I+) dominoes in the cluster are the same
in T and T'. We say T ~¢ T' if for all closed clusters, the product of signs of
type (I+) dominoes in the cluster are the same in T and T”. Let XDTqp, c1(n) (resp.
YDTop.c1(A)) be the set of equivalence classes of XDT(n) (resp. ¥XDT(A)) under the
equivalence relation ~gp 1. Let XDT¢(n) (resp. EDTq(A) be the set of equivalence
classes of ¥DT(n) (resp. XDT(A)) under the equivalence relation ~;.

Van Leeuwen [vL89] proved that if u is a unipotent element which corresponds
to partition A, then there is a bijection between XDT,p, ¢1(A) with Irr(F,), the set
of irreducible components of the variety of flags fixed by wu.

Furthermore, he defined a map ¥DTqp c1(A) x EDTqp a1(A) — W that gives a
bijection

| |A\(EDTopa(A) x EDTopa(N) = W
A

and coincides with the relative position map

| | Au\(Irr(Fy) x Ter(F)) — W.

There is an obvious projection map ¥DT,p o1 — XDT¢. Let X DT — YDTqp a1
be its section (right inverse) that maps an equivalence class under ~ to the equiv-
alence class under ~, o that has negative product of signs in every open cluster
and the same product of signs in other clusters. In this way we can see XDT, as
a subset of XDTqy q1.

Pietraho [Pie04] proved that

(1) Garfinkle’s moving through map gives a bijection XD T c1(n) — SDT(n);

(2) restricting to XDT¢(n), the map preserves shape;

(3) for any admissible partition A, the restriction gives a bijection ¥XDT¢j(\) —

SDT(A).
Using known bijections ¥DT (X)) = A\\EDTop,a1(A) and Irr(O Nn) = A, \Irr(Fy,)
(where O is a nilpotent orbit corresponding to A and n is a Borel subalgebra), we
see that there is a bijection between the set of irreducible components of the orbital
variety O Nn and the set of standard domino tableaux of shape .
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