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1. Introduction

Schubert and dual Schubert polynomials were initially introduced as objects in the field of
algebraic geometry. The first systematic combinatorial study of Schubert polynomials is due to
Lascoux and Schutzenberger [2]. One of the most important problems in the area of Schubert
polynomials is to combinatorially prove the non negativity of the generalized Littlewood Richardson
coefficients. These arise when one analyzes the product of two Schubert polynomials in the basis
of Schubert polynomials. More precisely, the problem asks to give a combinatorial proof and
equivalently find a way to calculate the numbers cwu,v in the expression

Su(x)Sv(x) =
∑

cwu,vSw(x).

Although this result is known to be true, the proof is based on algebraic geometry and only special
cases have been proved combinatorially. The most general case known to the author which has
been proved combinatorially is [4]. In that paper the non negativity of the numbers cwu,v is proved
for arbitrary u and for v being a Grassmannian permutation. In the present paper we give a proof
of the non negativity of cwu,v for general u and for any v of length 2.

The paper is organized in two main sections. In section 2 we present all of the background
material needed for our proof of the above statement. More precisely, we begin by stating some
basic knowledge about permutations and we define the Bruhat order. Next we introduce the usual
Schubert polynomials, we prove that they are an integral basis of C[y1, y2, ...] and we define the
generalized Littlewood Richardson coefficients. We also give a complete proof of Monk’s formula.
In the final subsection of section 2 we define the dual and generalized dual Schubert polynomials,
which are the main tools for our proof in section 3.

In the first part of section 3 we give an alternative proof of Monk’s formula using generalized
dual Schubert polynomials and the structure of the Bruhat order. In the second part of section 3,
we generalize the this method to prove the main result, namely that 0 ≤ cwu,v for l(v) = 2.

Acknowledgement. The author thanks Dongkwan Kim for proposing this subject and for the
many useful discussions and comments throughout the UROP+ project. The author thanks
Richard Melrose for being his supervisor for the project. Finally, the author thanks professors
Slava Gerovich, David Jerison and Ankur Moitra for organizing the UROP+ program and for
choosing him to participate to it.

2. Preliminary definitions and results

Consider a permutation w ∈ Sn. We can write w as a word w(1)w(2)...w(n), meaning that
number i is mapped to w(i) by w. Denote tij to be the transposition that interchanges i and j in a
word, keeping all other elements fixed. In the special case where j = i+ 1 write ti,i+1 = si.

For any permutation w ∈ Sn, we define the length l(w) of w to be the number of inversions of
w, i.e. the number of pairs (i, j) such that i < j and w(i) > w(j), denoted by I(w). A string of
numbers a1a2...am such that w = sa1

sa2
...sam

with m minimal is called a reduced word for w. It
can be shown that m = l(w). Finally, define R(w) to be the set of all reduced words of w.
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Figure 1. Bruhat Order of S3

2.1. The Bruhat order. The (strong) Bruhat order is defined in the following way. We say that
for v, w ∈ Sn, v precedes w if l(w) = l(v) + 1 and there exist integers i < j such that w = vtij . We
will write v l w if v precedes w and more generally v ≤ w if there exists a chain of permutations
connecting v and w, each preceding the following. In figure 1 we explicitly give the Bruhat order
of S3.

Lemma 2.1. Let w = si1 ...sil be a reduced word for w. Then the set of inversions of w is given
by:

I(w) = {sil ...sim+1
(im, im + 1), 1 ≤ m ≤ l}.

Proof. Consider a permutation v and an integer m ∈ N such that l(vsm) = l(v) + 1. It is easy to
verify that I(vsm) = smI(v)∪{(m,m+ 1)}. The conclusion follows by induction on the length l(v)
of the permutation v. �

2.2. Schubert polynomials. We begin by defining the divided difference operators denoted by
∂i, which act on polynomials of n variables. They are defined for 1 ≤ i < n by the following
relation:

(∂iP )(x1, x2, ..., xn) =
P (..., xi, xi+1, ...)− P (..., xi+1, xi, ...)

xi − xi+1

Divided difference operators satisfy the relations

∂2i = 0

∂i∂j = ∂j∂i if |i− j| ≥ 2

∂i∂i+1∂i = ∂i+1∂i∂i+1

Now for any permutation we define ∂w = ∂a1
∂a2

...∂am
, where a1a2...am is a reduced word for

w. It can be shown, using the relations above, that ∂w does not depend on the reduced word and
thus ∂w is well defined.

Definition 2.2. The simple Schubert polynomial indexed by permutation w ∈ Sn, is defined as
Sw = ∂w−1w0

xn−11 xn−22 ...x0n where w0 is the permutation of maximal length.
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It can be shown that the Schubert polynomials Sw(x) are homogeneous polynomials of degree
l(w0)− l(w). The relations of the divided difference operators combined with the definition of the
Schubert polynomials immediately imply the following lemma:

Lemma 2.3.

∂uSw =

{
Swu−1 , if l(wu−1) = l(w)− l(u)

0, otherwise.

Now lets fix a reduced word a = a1a2...am of w. We call a word b = b1b2...bm compatible with
a if the following relations hold

b1 ≤ b2 ≤ ... ≤ bm
bi ≤ ai, ∀i,

bi < bi+1 if ai < ai+1.

Denote by C(a) the set of all words b compatible with a.

Theorem 2.4. For all permutations w ∈ Sn,

Sw(x) =
∑

a∈R(w)

∑
b∈C(a)

xb1xb2 ...xbl .

A complete proof of this theorem can be found in [1].

Now, let Pn be the ring of polynomials in n variables with integer coefficients and Hn the
subgroup generated by the monomials xa where ai ≤ n − i ∀ 1 ≤ i ≤ n. It is easy to see that
this basis contains n! elements and that the Schubert polynomials corresponding to a permutation
w ∈ Sn belong to Hn.

Theorem 2.5. The Schubert polynomials Sw(x) for w ∈ Sn form an integral basis of Hn.

Proof. The number of permutations w ∈ Sn, and therefore of the corresponding Schubert polyno-
mials is n!. Since the number of the basis elements of Hn is also n!, we only need to show that Sw

for w ∈ Sn are linearly independent. For this, consider the relation
∑

w swSw(x) = 0. Apply on
this relation the operator ∂v with v ∈ Sn fixed and consider only the terms of degree zero in the
resulting expression. By lemma 2.3 and the fact that Schubert polynomials are homogeneous we
get that the constant term must be equal to sv. Thus sv = 0 ∀ v ∈ Sn since v is chosen arbitrarily.
Also, since divided difference operators send polynomials with integer coefficients to polynomials
with integer coefficients, Sw are polynomials with integer coefficients. Therefore, they must form
a rational basis of Hn. Now if P (x) ∈ Hn write it as P (x) =

∑
w pwSw(x). Again apply ∂v to

P (x). Since the resulting polynomial has integer coefficients, as above we get that pv is an integer
∀v. Therefore the Schubert polynomials form an integral basis of Hn. �

It is an immediate consequence of the above theorem that Sw for w ∈ S∞ form an integral basis
of P∞.

Now we are ready to define the generalized Littlewood Richardson coefficients.
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For any u, v ∈ S∞, since Su(x), Sv(x) ∈ P∞, Su(x)Sv(x) is an element of P∞ and thus we can
write

Su(x)Sv(x) =
∑

w∈ S∞

cwu,vSw.

Definition 2.6. The integers cwu,v are called the generalized Littlewood Richardson coefficients.

It is a result of intersection theory that these numbers are nonnegative. Proving this assertion
combinatorially and providing a way to compute these numbers is an important problem in algebraic
combinatorics. In section 4 of this paper we give a combinatorial proof of the non negativity of
these numbers in the case l(v) = 2. One last thing that we are going to need in order to give
a combinatorial description of the dual Schubert polynomials below, is a variation of theorem
2.7.

Lemma 2.7. Ssi(x) = x1 + x2 + ...+ xi, where si is the transposition of i and i+ 1.

Proof. This is a result of theorem 2.3. Indeed the only word in R(si) is i. Therefore Ssi(x) =∑
j≤i xj as wanted. �

Theorem 2.8 (Monk’s Formula). For any permutation w ∈ S∞, and for any n ∈ N,

Sw(x)Ssn(x) =
∑

j≤n<k
l(wtjk)=l(w)+1

Swtjk .

Proof. First, it is easy to verify that the divided difference operator acts on the product of two
polynomials in the following way:

∂i(A(x)B(x)) = (∂iA(x))siB(x) +A(x)∂iB(x).

Now consider a permutation u such that l(u) = l(w)+1 and v = sa1
...sal

be a reduced decomposition
of v. Since Ssn(x) is a degree one polynomial, it follows that

∂v(SwSsn(x)) =

l∑
m=0

∂a1
...∂am−1

∂am+1...∂al
Sw(x) · ∂am

(sam+1
...sal

Ssn(x)).

Since l(w) = l(u)− 1, the term ∂a1 ...∂am−1∂am+1 ...∂al
Sw is nonzero iff a1...am−1am+1...al ∈ R(w).

This implies that w l v in the Bruhat order, so v = wtjk. Lemma 2.2 implies that {j, k} =
sal
...sam+1

{am, am + 1} which is equivalent to {am, am + 1} = sam+1
...sal

{j, k} since s2i = 1.

Now the quantity ∂am
(sam+1

...sal
Ssn) = ∂am

∑n
i=1 xsam+1

...sal
(i) 6= 0 iff exactly one of {xam

, xam+1}
appears in the sum. Due to the above observation, xam

appears when i = j and xam+1
when i = k.

Therefore the expression is nonzero iff j ≤ n < k is which case it is equal to 1. This observation
combined with the fact that Schubert polynomials are a basis of P∞, implies that Sw(x)Ssn(x) is
in fact equal to ∑

j≤n<k
l(wtjk)=l(w)+1

Swtjk

as wanted. �
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2.3. Dual Schubert polynomials. In order to define the dual Schubert polynomials we will need
some algebra.

Definition 2.9. Given polynomials P,Q ∈ C[x1, x2, ..., xn], we define the symmetric bilinear form

〈P,Q〉D = P

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

)
Q(x1, x2, ..., xn)

∣∣∣∣
x=0

.

We will call this form D-pairing of P and Q.

Definition 2.10. Assume that I ⊂ C[x1, x2, ..., xn] is a graded ideal. Define HI to be the space
of I-Harmonic polynomials i.e. the space of polynomials perpendicular to polynomials in I with
respect to the D-pairing.

The fact that I is an ideal, implies that HI is the space of polynomials Q such that

P

(
∂

∂x1
, ∂
∂x2

, ..., ∂
∂xn

)
Q(x1, x2, ..., xn) = 0 ∀ P ∈ I. Also call two bases fi and gi dual with respect

to the D-pairing when the following holds:

〈fi, gj〉D = δij .

Finally,we will denote by In the (graded) ideal generated by symmetric polynomials in n variables
without constant terms.

Lemma 2.11. Suppose that {f̄i} is a graded basis of C[x1, x2, ..., xn]/I and {gi} is a basis of HI .
The following are equivalent:

1. {f̄i} is dual to {gi}

2. ex·y =
∑

i f̄i(x)gi(y) (mod Î) where x · y = x1y1 + ... + xnyn and Î is the extension of I to
C[[x1, x2, ..., xn]].

The proof of this lemma can be found in [3].

Lemma 2.12. The cosets S̄w(x) = Sw(x) + In form a linear basis of C[x1, x2, ..., xn]/In(= Cn).

Proof. The proof is very similar to theorem 2.5. We leave the details to the reader. �

Definition 2.13. The Dual Schubert polynomials Dw(y1, y2, ..., yn) ∈ C[y1, y2, ..., yn] are defined
as the basis of HIn , dual to the basis {S̄w(x)} of Cn.

The definition implies that

ex·y =
∑
w∈Sn

Sw(x)Dw(y) (mod In).

Now since both Sw and Dw are stable under the inclusion Sn ⊂ Sn+1, Dw for w ∈ S∞ form a
basis of C[y1, y2, ...]. This implies the identity

ex·y =
∑

w∈S∞

Sw(x)Dw(y).

Theorem 2.14. Dw(y + z) =
∑
cwuvDu(y)Dv(z).
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Proof. ∑
u,v,w

cwuvSw(x)Du(y)Dv(z) =
∑
uv

(Su(x)Du(y))(Sv(x)Dv(z))

= ex·yex·z = ex·(y+z) =
∑
w

Sw(x)Dw(y + z).

The result follows since Sw(x) is a basis of P∞. �

Lemma 2.15. For w ∈ Sn we have

(y1x1 + ...+ ynxn)Sw(x) =
∑
i<j

l(wtij)=l(w)+1

(yi − yj)Swtij (x) (mod In).

Proof. First observe that the following formula is equivalent to Monk’s formula

xmSu(x) =
∑
m<k

l(utmk)=l(u)+1

Sutmk
(x)−

∑
j<m

l(utjm)=l(u)+1

Sutjm(x) (mod In)

and therefore

(ymxm)Su(x) =
∑
m<k

l(utmk)=l(u)+1

ymSutmk
(x)−

∑
j<m

l(utjm)=l(u)+1

ymSutjm(x) (mod In).

The result follows by adding up these relations for 1 ≤ m ≤ n. �

The following theorem allows us to express the Dual Schubert polynomials combinatorially in
terms of the Bruhat order of Sn.

Theorem 2.16. If l(v) = l(w) + 1 and v = wtij or in other words w precedes v in the Bruhat
order, attach to the edge connecting w and v the weight yi − yj. Now consider the Bruhat order of
Sn and an arbitrary w ∈ Sn. Denote by P a path from id to w in the Bruhat order and by w(P) the
product of the weights of the edges of the path. Then we have

Dw(y) =
1

l(w)!

∑
P

w(P ),

summed over all paths from id to w.

Proof. By the above lemma repeatedly to (y1x1+...+ynxn)
kSid(x)

k! we obtain

(y1x1 + ...+ ynxn)k

k!
=

∑
l(w)=k

(
1

k!

∑
P

w(P ))Sw(x) (mod In).

Adding these relations we get that

ex·y =
∑
w∈Sn

Sw(x)(
1

l(w)!

∑
P

w(P )) (mod In).

This implies that Dw(y) = 1
l(w)!

∑
P w(P ) as wanted. �
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Definition 2.17. We define the generalized dual Schubert polynomials for u,w ∈ Sn such that
u ≤ w in the Bruhat order in the following way:

Du,w(y) =
1

(l(w)− l(u))!

∑
P

P (u→ w)(y)

where the sum is taken over all weighted paths in the Bruhat order of Sn from u to w.

Lemma 2.18.
ex·ySu(x) =

∑
u≤w

Du,w(y)Sw(x)

.

Proof. From lemma 2.15 for w ∈ Sn we have that

(y1x1 + ...+ ynxn)Sw(x) =
∑
i<j

l(wtij)=l(w)+1

(yi − yj)Swtij (x) (mod In).

Using the definition of Du,w(y) it is easy to see that

1

k!
(y1x1 + ...+ ynxn)kSu(x) =

∑
w∈Sn

l(w)=l(u)+k

Sw(x)Du,w(y) (mod In)

. Adding these relations we obtain

ex·ySu(x) =
∑
u≤w
w∈Sn

Du,w(y)Sw(x) (mod In).

Now it is easy to see by its definition that Du,w(y) is stable under the inclusion Sn ⊂ Sn+1 and so
is Sw(x). Therefore we obtain the required identity by letting n→∞. �

Theorem 2.19.
Du,w(y) =

∑
v

cwuvDv(y).

Proof. We can write

ex·ySu(x) =
∑

v∈S∞

(Su(x)Sv(x))Dv(y)

=
∑

v,w∈S∞

cwuvSw(x)Dv(y)

Now fix w = w1 and consider the D-pairing

Du,w1(y) = 〈Dw1(x),
∑
u≤w

Du,w(y)Sw(x)〉D

= 〈Dw1(x),
∑

v,w∈S∞

cwuvSw(x)Dv(y)〉D

=
∑
v

cw1
uvDv(y)

since the usual and dual Schubert polynomials are dual bases with respect to the D-pairing. Since
w1 was arbitrary the theorem is proved. �
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3. Combinatorial proof of the positivity of generalized Littlewood Richardson
coefficients cwuv for l(v) = 2

3.1. An alternative proof of Monk’s formula. In this subsection we will use the generalized
dual Schubert polynomials Du,w(y) with l(w) = l(u)+1 to reprove Monk’s formula. In the following
subsection we will generalize the argument in the proof to show the non negativity of cwu,v for
l(v) = 2.

Consider Du,w(y) as above. Then this polynomial is 0 unless w = utij for some i, j. In this case
Du,w(y) = (yi−yj). Now, since all weights of segments with one vertex being the identity are of the
form (yk−yk+1) we can write Du,w(y) =

∑
i≤m<j(ym−ym+1). Since the dual Schubert polynomials

are a basis of C[y1, y2, ...], this decomposition is unique. This immediately implies that for v = sk,
cwu,v = 0 unless w = utij with i ≤ k < j, in which case it is 1. Now Su(x)Ssk(x) =

∑
cwu,skSw(x)

with l(w) = l(u) + 1, so the above result immediately implies that

Su(x)Ssk(x) =
∑

i≤k<j
l(utij)=l(u)+1

Sutjk

as wanted.

3.2. Proof of the main theorem. In this subsection we present the proof of the following theo-
rem.

Theorem 3.1. (Main Theorem) The generalized Littlewood Richardson coefficients cwuv with l(v) =
2 are non negative.

The following lemma gives a full characterization of intervals of length 2 in the Bruhat order of
Sn.

Lemma 3.2. Consider the permutations u,v,w in the Bruhat order of Sn such that ulvlw. There
exists a unique permutation x 6= v such that ul xl w.

Proof. The u, v and w above satisfy w = vtij = utkltij such that l(w) = l(v) + 1 = l(u) + 2.

If all of i, j, k, l are distinct then it holds that tkltij = tijtkl. Clearly in this case the only possible
x is x = utij . We can assume without loss of generality that i < j, k < l and j < l. If j < k or
k < i, then it can be seen immediately that l(x) = l(u) + 1. In the case i < k < j < l we could have
u(i) < u(k) < u(j) in which case l(x) = l(u)+2. However this cannot happen. Since l(v) = l(u)+1
and u(k) < u(j) it must hold that u(i) < u(k) < u(l) < u(j). This would imply that l(w) = l(v)+2
which is absurd. Thus x satisfies the required property.

Now assume that only three of i,j,k,l are distinct with l being one of the other three. Without
loss of generality, let i < j < k. Consider the word u = ...u(i)...u(j)...u(k).... The only relations
between u(i), u(j) and u(k) that can hold so that we can go to a w such that l(w) = l(v)+1 = l(u)+2
by permuting only i, j and k are the following:

1)u(i) < u(j) < u(k)

2)u(j) < u(i) < u(k)

3)u(i) < u(k) < u(j)
9



In the first case there can be two possible rearrangements of i, j and k that can give a word w with
l(w) = l(u) + 2. One is w = utijtjk = utjktik giving w = ...u(k)...u(i)...u(j)... with all other letters
in the same order as in u. It can be seen that l(v) = l(utij) = l(u) + 1 and that x = utjk also
satisfies l(x) = l(utjk) = l(u) + 1. It is easy to see that the only other way to obtain w from u by
permuting i, j and k is w = utiktij . However l(utik) = l(u) + 3 absurd. Thus x is unique. Similarly,
the other is w = utijtik = utjktij giving w = ...u(k)...u(i)...u(j)... with all other letters in the same
order as in u. v = utij and x = utjk are the only two permutations such that l(v) = l(x) = l(u)+1.
The reasoning is the same as above. In the other two cases there is only one possible rearrangement
of i, j and k that give a word w with l(w) = l(u) + 2.
In the second case the only w that works is w = utjktik = utiktij giving w = ...u(k)...u(i)...u(j)...
with all other letters in the same order as in u. v = utjk and x = utik. The reasoning that these
two are the only permutations with this property is the same as above.
In the third case the only w that works is w = utijtik = utiktjk giving w = ...u(j)...u(k)...u(i)... with
all other letters in the same order as in u. v = utij and x = utik are the unique two permutations
with l(v) = l(x) = l(u) + 1. �

Figure 2 illustrates all of the above cases. From now on we attach on the edges of the Bruhat
order of Sn their weights as defined above. Consider the generalized dual Schubert polynomials
Du,w such that l(w) = l(u) + 2. Since these intervals are of length two, they have one of the shapes
in figure 2.

Example 3.3. For example, assuming that i < j < k, the generalized dual Schubert polynomial
corresponding to shape ( B ) in figure 2 is Du,w(y) = 1

2 [(yi − yj)(yj − yk) + (yj − yk)(yi − yk)].

We wish to show that these polynomials can be written as sums of dual Schubert polynomi-
als Dv(y) with l(y) = 2. Since the dual Schubert polynomials are a basis of C[y1, y2, ...], this
decomposition will be unique, and since we know that

Du,w(y) =
∑
v

cwuvDv(y),

this will prove that 0 ≤ cwuv when l(v) = 2.

Now consider the edges of the Bruhat order of Sn between id and any w with l(w) = 2. The
weights of the edges connecting id to a u with l(u) = 1 can only have the form (yi− yi+1) for some
1 ≤ i ≤ n − 1. The edges connecting a u with l(u) = 1 to a w with l(w) = 2 can either be of the
above form or of the form (yi − yi+2). The latter case can only occur when the weight of the edge
joining id with u is either (yi − yi+1) or (yi+1 − yi+2). Also for an edge connecting id to a u with
l(u) = 1 with weight (yi − yi+1), it is easy to see that there exist w with l(w) = 2 such that the
edge connecting u to w has weight (yj − yj+1) for any j 6= i, while j = i cannot occur.

Proof. (Main Theorem) First we do the simplest case. For this consider the generalized dual
Schubert polynomial corresponding to shape ( A ) in figure 2 with the further restriction i < j <
k < l. We have that

Du,w(y) =
1

2
[(yi − yj)(yk − yl) + (yk − yl)(yi − yj)] =∑

i≤m<j
k≤n<l

1

2
[(ym − ym+1)(yn − yn+1) + (yn − yn+1)(ym − ym+1)].
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w

v x

u

tij

tkl tij

tkl

(a)
tkltij =

tijtkl

w

v x

u

tjk

tij tjk

tik

(b)
tijtjk =

tjktik

w

v x

u

tik

tij tjk

tij

(c)
tijtik =

tjktij

w

v x

u

tik

tjk tik

tij

(d)
tjktik =

tiktij

w

v x

u

tik

tij tik

tjk

(e)
tijtik =

tiktjk

Figure 2. All possible length two intervals

From the last observation in the previous paragraph, it can be seen that each summand of the sum
corresponds to a dual Schubert polynomial. Therefore in this case our theorem is proved.

Now we do the case i < k < j < l. If we try to analyze the generalized dual polynomial as in
the case above, terms of the form (yi−yi+1)2 with k ≤ i < l would appear. However, we have ruled
out this possibility above. Therefore we need to find a way of analyzing generalized dual Schubert
polynomials, avoiding terms like this. To do this, we write

2Du,w(y) = [(yi − yj)(yk − yl) + (yk − yl)(yi − yj)] =∑
i≤m<k
k≤n<l

(ym − ym+1)(yn − yn+1) +
∑

k≤s<j

(ys − ys+1)
( ∑

k≤n<l
n 6={s,s+1}

(yn − yn+1) + (ys − ys+2)
)

+

∑
i≤m<j
j≤n<l

(ym − ym+1)(yn − yn+1) +
∑

k≤s<j

( ∑
k≤n<l

n 6={s−1,s}

(yn − yn+1) + (ys−1 − ys+1)
)

(ys − ys+1).

Now we can rewrite this by pairing up terms in order to form dual Schubert polynomials in the
following way:
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2Du,w(y) = [(yi − yj)(yk − yl) + (yk − yl)(yi − yj)] =∑
i≤m<j
k≤n<l

m/∈{n−1,n,n+1}

[(ym − ym+1)(yn − yn+1) + (yn − yn+1)(ym − ym+1)] +

∑
k≤s<j

[(ys−1 − ys)(ys − ys+1) + (ys − ys+1)(ys−1 − ys+1)] +

∑
k<s≤j

[(ys − ys+1)(ys−1 − ys) + (ys−1 − ys)(ys−1 − ys+1)].

Finally, we do the case k < i < j < l. Again we are going to use a clever decomposition of
2Du,w(y) = [(yi − yj)(yk − yl) + (yk − yl)(yi − yj)]. Here the decomposition is trickier. For this
reason we present the decompositions of (yi − yj)(yk − yl) and (yk − yl)(yi − yj) seperately. We
have that:

(yi − yj)(yk − yl) =
∑

i≤n<j
{k≤m<i−1}∪{j<m<l}

(yn − yn+1)(ym − ym+1) +

(yi − yi+1)
(

(yi−1 − yi+1) +
∑

i+2≤m≤j

(ym − ym+1)
)

+

∑
i<n<j−2

(yn − yn+1)
(

(yn − yn+2) +
∑

{i−1≤m<n}∪{n+2≤m≤j}

(ym − ym+1)
)

+

(yj−2 − yj−1)
( ∑
i−1≤m<j−2

(ym − ym+1) + (yj−3 − yj−1) + (yj−1 − yj)
)

+

(yj−1 − yj)
( ∑
i−1≤m<j−1

(ym − ym+1) + (yj−1 − yj+1)
)
.

Similarly,

(yk − yl)(yi − yj) =
∑

{k≤m<i}∪{j≤m<l}
i≤n<j

(ym − ym+1)(yn − yn+1) +

(yi − yi+1)
(

(yi − yi+2) +
∑

i+2≤n<j

(yn − yn+1)
)

+

∑
i+1≤m<j
m 6=j−2

(ym − ym+1)
(

(ym−1 − ym+1) +
∑

{i≤n<m−1}∪{m+1≤n<j}

(yn − yn+1)
)

+

(yj−2 − yj−1)
(

(yj−2 − yj) +
∑

i≤n<j−2

(yn − yn+1).

Now adding the above two relations and rearranging,we obtain the relation
12



2Du,w(y) = [(yi − yj)(yk − yl) + (yk − yl)(yi − yj)] =∑
i≤m<j
k≤n<l

m/∈{n−1,n,n+1}

[(ym − ym+1)(yn − yn+1) + (yn − yn+1)(ym − ym+1)] +

[(yi−1 − yi)(yi − yi+1) + (yi − yi+1)(yi−1 − yi+1)] +

[(yj−1 − yj)(yj−1 − yj+1) + (yj − yj+1)(yj−1 − yj)] +∑
i≤s<j−1

(
[(ys − ys+1)(ys − ys+2) + (ys+1 − ys+2)(ys − ys+1)] +

[(ys − ys+1)(ys+1 − ys+2) + (ys+1 − ys+2)(ys − ys+2)]
)
.

It is clear that all terms in brackets divided by two are dual Schubert polynomials corresponding
to a permutation v with l(v) = 2.

Now in order to finish the proof, we need to decompose the generalized dual Schubert polyno-
mials of the cases ( B ), ( C ), ( D ) and ( E ) of figure 2. However the polynomials corresponding
to cases ( D ) and ( E ) are the same. Also we only need to do one of the cases ( B ) and ( C )
since the decompositions of the two are very similar.

In case ( B ) the generalized dual Schubert polynomial is Du,w(y) = 1
2 [(yi− yj)(yj − yk) + (yj −

yk)(yi − yk)]. Consider the following decomposition:

2Du,w(y) = [(yi − yj)(yj − yk) + (yj − yk)(yi − yk)] =∑
i≤m<j
j≤n<k

(ym − ym+1)(yn − yn+1) +
∑

j≤m<k

(ym − ym+1)
(

(ym−1 − ym+1) +
∑

i≤n<k
n 6={m−1,m}

(yn − yn+1)
)

=

∑
i≤m<k
j≤n<k

m 6={n−1,n,n+1}

[(ym − ym+1)(yn − yn+1) + (yn − yn+1)(ym − ym+1)] +

∑
j−1≤s<k

[(ys − ys+1)(ys+1 − ys+2) + (ys+1 − ys+2)(ys − ys+2)]

Again it is clear that all terms in brackets divided by two are dual Schubert polynomials corre-
sponding to a permutation v with l(v) = 2.

Finally we decompose the generalized dual Schubert polynomial corresponding to case ( D ) in
figure 2 above.
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2Du,w(y) = [(yi − yk)(yi − yj) + (yj − yk)(yi − yk)] =∑
i≤m<j−1

(ym − ym+1)
(

(ym − ym+2) +
∑

i≤n<j
n 6={m,m+1}

(yn − yn+1)
)

+

(yj−1 − yj)
( ∑
i≤n<j−1

(yn − yn+1) + (yj−1 − yj+1)− (yj − yj+1)
)

+

2
∑

j≤m<k
i≤n<j

(ym − ym+1)(yn − yn+1) +
∑

j≤s<k

(ys − ys+1)
(

(ys − ys+2) +
∑

j≤n<k−1
n 6={s,s+1}

(yn − yn + 1)
)

+

(yk−1 − yk)
( ∑
j≤n<k−2

(yn − yn+1) + (yk−2 − yk)
)
.

Although there is a negative term in the decomposition, it cancels out and the above decompo-
sition can be rewritten in the following way:

2Du,w(y) = [(yi − yk)(yi − yj) + (yj − yk)(yi − yk)] =∑
j≤m<k
i≤n<j

m 6={n−1,n,n+1}

[(ym − ym+1)(yn − yn+1) + (yn − yn+1)(ym − ym+1)] +

∑
{i≤m,n<j}∪{j≤m,n<k}

m6={n−1,n,n+1}

[(ym − ym+1)(yn − yn+1) + (yn − yn+1)(ym − ym+1)] +

∑
i≤s<k

[(ys − ys+1)(ys − ys+2) + (ys+1 − ys+2)(ys − ys+1)] +

[(yk−2 − yk−1)(yk−1 − yk) + (yk−1 − yk)(yk−2 − yk)].

�

It can be seen from the above decompositions that the following holds:

cwuv ∈ {0, 1, 2} for l(v) = 2.

As in the previous subsection, one can derive generalized Monk’s formulas for multiplication of
an arbitrary Schubert polynomial with a Schubert polynomial of the form Sv(x) for l(v) = 2. The
derivation is left as an exercise to the interested reader.
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