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Abstract

The following paper is aimed to be a self-contained expository paper about Daniel Dugger’s

construction of a universal homotopy theory assigned to a small category [4].
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0 Introduction

The following paper is aimed to be a self-contained expository paper about Daniel Dugger’s construc-

tion of a universal homotopy theory assigned to a small category [4]. But what does this mean?

Throughout the time I have been working on this project, I have felt an intense need to share what I

am working on with my friends and family. The problem, as any mathematician would know, is that

it is hard to explain one’s work to non mathematicians, and even to mathematicians in a different

field. As a result of many conversations in which I tried to explain my work, I have decided to write

the following fictional short story that I hope serves as a good metaphor for what I have been working

on. As any fictional story, it has as a starting point something real: physicists in the search of a

theory of everything; however, this is just a starting point and most of it is just delirium from the

author; which I hope you enjoy.

Imagine that physicists in the search of a physical theory that encompasses all physical

phenomenon in our universe, have decided that good approach is to first understand what

a ”theory of physics” means. To accomplish this, they first need to construct a definition

of an abstract universe upon which they can endow a physical theory. What properties

should a physicist expect such a definition to have? At the very least, a good definition

should have as a property that our universe, which we will call the standard universe;

and our physical theory, which we will call the standard physical theory, are special cases

of these more general notions. We will call a universe endowed with a physical theory a

physical universe, and our universe endowed with our physical theory will be called the

standard physical universe. The philosophy of this approach is that by comparing the

standard physical universe with other simpler physical universes, one should be able to

obtain a great deal of useful information that would be to hard to notice otherwise.

When presented with a new framework, any scientist should ask: how can I use this

framework to understand the objects that I care about? In particular, a physicist, when

presented with the framework presented above, should ask: how can I use this framework

to better understand the standard physical universe? The following would be a satisfying

answer: imagine that physicists are able to assign to each universe a physical theory, and

moreover, they are able to assign a simplest physical theory. For example, lets assume

for a moment that physicists have decided that a physical theory should have a notion

of positively and negatively charged particles, but the strength of their interactions is

not specified. In particular, the strength of their interactions could be zero. It is then

reasonable to assume that the simplest physical theory assigned to the standard universe

says that the interactions between positively and negatively charged particles is zero.

Imagine furthermore, that the simplest physical theory assigned to a universe comes

equipped with a way to compare it to every other physical theory assigned to the uni-

verse. Following the example above, the simplest physical theory assigned to the standard

universe comes equipped with the following way of comparing it to the standard physical

theory: if two particles, one positively charged and one negatively charged, are getting

closer in the simplest physical theory, then these particles will also get closer in the stan-

dard physical theory. If more interesting ways of comparing these two physical theories

exist, then they would give physicists the ability to reduce many interesting problems
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about the standard physical universe to a simpler setting.

We will now explain this metaphor in the context of this paper. A ’universe’ is a small category,

and a ’physical theory’ is a model structure. Model categories (a category with a model structure)

first introduced by Quillen [13], form the foundation of modern homotopy theory. As in the short

story above, where an abstract physical theory is an abstraction of the physical theory we see on

our universe, a model structure is an abstraction of the standard homotopy theory in the category

of topological spaces. The goal of this paper is to answer the following question: given a category,

is it possible to assign a model structure to it? And if so, is it possible to assign a ’simplest’ model

structure? The answer is a positive. Moreover, as in the short story above, the ’simplest’ model

structure on the category C comes equipped with a way of comparing it with every other model

structure assign to C. This turns out to be a very powerful computational tool.

For the more knowledgable reader, I present the following short discussion regarding the material

of the paper: our goal is to be able to assign a model category to any small category C, such that this

model category enjoys a certain universal property. To make this precise, let C be a small category,

and let M be a model category. The universal model category model category assign to C, will

be denoted by UC, this category is the category of simplicial presheaves sPre(C) endowed with the

projective model structure. The model category UC is universal in the following sense: for every map

γ : C →M we obtain the following diagram

C UC

M

Y

γ Reη (1)

where the functor Y : C → UC is the composition of the Yoneda embedding C → Pre(C) and the

canonical inclusion Pre(C) → UC. And η : Re ◦ Y → γ is a natural transformation that makes the

diagram commute. Moreover, the functor Re : UC →M is a left Quillen functor.

Organization of the Paper

As mentioned before, this paper is aimed to be a self-contained exposition of Daniel Dugger’s con-

struction of a universal homotopy theory assigned to a small category. Although the author has

done his best to include everything needed to understand this paper within its pages, there are a

few prerequisites to read before continuing with this paper. In particular, the author has assumed

that the reader is familiar with basic results in category theory, like the Yoneda lemma. Any further

prerequisites will be discussed at the beginning of each section. This paper is organized as follows:

• Chapter 1: Motivation A discussion about the category of presheaves of a small category C is

presented. There are two main results in this chapter. The first result is that every presheaf is

a colimit of representable presheaves, and the second is that Pre(C) enjoys a certain universal

property. I have called this chapter ”Motivation” because the universal property of UC is the

homotopical analog of the universal property of Pre(C). A discussion on simplicial sets is also

provided. I present them as a very important special case of a presheaf category.

• Chapter 2: A Model Structure for Simplicial Sets The category of Simplicial Sets is central

to modern homotopy theory, because it has basically been designed to be the fiber of what
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mathematicians have decided ’homotopy theory’ means. In this chapter, the existence of a

model structure for Simplicial Sets will be proven. This approach is somewhat non traditional,

as instead of proving it directly, some machinery is developed and the analysis proceeds from

there. This approach has been decided upon because this machinery will be needed again later

in the paper.

• Chapter 3: A Model Structure on Simplicial Presheaves The category of Simplicial Presheaves

endowed with a certain model structure are the main object of study of this paper. In this

chapter, it is proven that we can endow the category sPre(C) with this model structure, however

its universal property will not be proven until later. We will then proceed to discuss the Reedy

model structure. This model structure will be essential in proving the universal property of the

UC model category.

• Chapter 4: Homotopy Colimits In this section we provide our first homotopical analog of a

concept in category theory–an homotopy colimit is the homotopical analog of a colimit. I begin

this section with a discussion about what an homotopy colimit should intuitively look like. It

should be noted that when presented with the actual definition, the connection might not be

clear. However, at the end of the chapter it is proven that under a certain mild hypothesis the

homotopy colimit does coincide with the one described in the introduction.

• Chapter 5: Applications In this chapter, it will finally be proven the homotopical analogs of the

results presented in Chapter 1; namely, that every simplicial presheaf is an homotopy colimit of

representables, and that the model category UC enjoys a certain universal property.

• Chapter 6: Looking Forward In this section we aim to present an informal discussion regarding

some applications of the machinery developed in this paper.

I would also like to point out that I have taken advantage of the introductions of each chapter

and presented an informal discussion of other material that is related to the one in the chapter, but

which it is not covered. We have done this in the hope that it motivates the reader to learn the theory

presented in the chapter, which at times can seem overly technical.

Acknowledgments

I would like to extend my gratitude to Pablo Boixeda, Joseph Hirsh, and Marc Hoyois, for many

helpful discussions on the subject of this paper. To Veronica Wilson, for her emotional support and

for carefully reading through this paper to help me fix many grammar mistakes. And to the MIT

UROP+ program for the opportunity to pursue this project.

4



1 Motivation

Algebraic topologists, despite what we are usually led to believe by the name of the profession, are

really not interested in the category of all topological spaces. The general notion of topological spaces

is much too broad; in particular, it admits many pathological objects that the machinery of algebraic

topology was simply not designed to deal with. However, there are various subcategories, like the

category of CW-complexes, in which they are highly interested.

The category of manifolds, is one of these interesting subcategories. Unlike the category of CW

complexes, the category of manifolds ends up being too small for homotopy theorists. Homotopy

theorists would like to be able to glue manifolds together by taking colimits in the same way it is

possible in the category of CW-complexes, but gluing manifolds might lead one to an object that is

no longer a manifold. The homotopy theorist must somehow enlarge the category of manifolds such

that the enlarged category is closed under small colimits in a way that pathologies like the ones in

the category of all topological spaces are overruled.

Other settings exist where one would like to do something similar. Instead of studying CW-

complexes, an homotopy theorist might want to study something like schemes. If there is any hope of

applying the methods of homotopy theory to these subjects, the theorist again finds them self needing

a bigger category. This enlarged category needs to be rich enough to permit us all the constructions

wed like, but also coarse enough so that the geometric structure on our original spaces doesnt get

lost. For instance, embedding the category of varieties into that of all topological spaces solves the

first problem, but not the second since it makes us lose sight of the algebraic structure.

The goal of this chapter is to describe a general method for enlarging categories, such that the

enlarged category is closed under colimits. What we plan to do, is to introduce a purely categorical

construction which formalizes the notion of objects built from the elements of a category C. For

example, there will be a category of creatures built from schemes. The goal of this section is to make

how we can build these new creatures precise. The author learned this motivation for presheaves from

[2].

Throughout this chapter we suppose given a category C is somehow ’deficient’ in colimits. Our

goal is to produce a category Ĉ which is not deficient and which admits a fully faithful embedding

C ↪→ Ĉ and which is as close as possible to C, in the sense that it enjoys a certain universal property.

’Deficient’ will sometimes mean that certain colimits just do not exist, but it may also mean that they

do exists yet do not have the desired properties. The formal procedure will be to add colimits to C in

as ’free’ as possible. This is accomplished by the theory of presheaves, which is the topic of the first

section. We will then present an example of a presheaf category, namely the category of simplicial

sets, which is central to abstract homotopy theory.
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1.1 Presheaves

Given a small category C, our goal in this chapter is to develop a convenient way to formally add

colimits to the category C. The idea is the following: given some diagram D : I → C, we can formally

add an object Ω to C, and we require the morphisms to be:

(i) HomĈ(Ω, Z) = limα∈I HomC(Dα, Z)

(ii) HomĈ(Z,Ω) = colimα∈I HomC(Z,Dα)

We would like to point out that this procedure destroys most of the colimits that already exist in the

category C. Too see this, consider the diagram D : I → C, such that C has a colimit for that diagram,

lets call it K. Note that although the object K will satisfy (i), by the representability property of

colimits, it is not required for K to satisfy (ii) for it to be the colimit of D : I → C. In case that

(ii) is not satisfied, it will follow that K and Ω are not isomorphic, and in particular, K is no longer

a colimit of the diagram in Ĉ. There are procedures through which we can add colimits, and at the

same time preserve certain colimits that are considered important, this is attained by the theory of

sheaves, but we will postpone this discussion until later.

Using the procedure described above, one could theoretically go about adding all colimits to a

category. The difficulty that arises, is that diagrams that appear very different may have the same

colimits, and we would not want to add the same colimit twice. As a simple example of two diagrams

with the same colimit, we consider the following two diagrams,

X X X

W Y Z W Y Z

f g g h f
g h (2)

It is clear that these two diagrams will have the same colimit in any category. Therefore, a certain

amount of bookkeeping will be needed to keep track of all such equivalent diagrams. A very elegant

solution is provided by the theory of presheaves. As we will see below, there is a functorial procedure

to assign a diagram to any presheaf, such that said presheaf is the colimit of the diagram.

I first learned about presheaves from Joseph Hirsh, at the beginning of the Summer of 2016. He

challenged me to prove Theorem (1.1.7) by myself, and I am very grateful for it. I would also like to

thank Pablo Boixeda, for helping me complete the proof of Theorem (1.1.7), and for helping me realize

that I should have a better understanding of basic categorical concepts (like colimits and adjunctions)

before going further in this project.

Theorem (1.1.7) made it clear to me why the definition of a simplicial set (a particular example

of a presheaf) was the natural definition to have. For this reason, I have presented the theory of

presheaves before simplicial sets.

The author learned this material from Joseph Hirsh and the following resources:

• Dugger - Sheaves and Homotopy Theory [2]

• Riehl - Category Theory in Context [16]

Definition 1.1.1. A presheaf on a (small) category C is a contravariant functor Cop → Set; morphisms

of presheaves are just natural transformations of functors. The category of presheaves on C will be

denoted Pre(C).
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Remark 1.1.2. Any object X ∈ C determines a presheaf HomC(−, X) = rX. This embedding

C ↪→ Pre(C) is known as the Yoneda Embedding. Particularly this means that it is a fully faithful

embedding. More generally, by the Yoneda lemma we obtain the useful fact that HomPre(C)(rX, F ) =

F (X) for any presheaf F .

Definition 1.1.3. A category is complete if it is closed under (small) limits. Dually, a category is

cocomplete if it is closed under (small) colimits.

Lemma 1.1.4. Let C be a (small) category. Then the category Pre(C) is complete and cocomplete.

Proof. Completeness and cocompleteness are inherited from the category Set as we will show now.

Since the proof of completeness and cocompleteness are dual to each other, we will only show that

Pre(C) is cocomplete. Let D : J → Pre(C) be a diagram in the category Pre(C). We will first

construct a presheaf F from this diagram, and then we will note that it is actually the colimit. For

every x ∈ C define

F (x) = colimJ Dj(x) (3)

this is equivalent as saying that F (x) is the coequalizer of the following diagram∐
g∈mor J Ddom(g)(x)

∐
j∈J Dj(x) F (x)

c

d
(4)

where c is the identity map c : Ddom(g) → Dj(x) for j = dom(g), and d = D(g) : Ddom(g) → Dj for

j = cod(g). With this description of the action of F on the objects of C, we will show that there is a

canonically induced action on the morphisms of C. For any morphism y → x we have∐
g∈mor J Ddom(g)(x)

∐
j∈J Dj(x) F (x)

∐
g∈mor J Ddom(g)(y)

∐
j∈J Dj(y) F (y)

(5)

By the universal property of the coequalizer there is an induced map F (x)→ F (y). It is easy to see

that F is indeed the colimit of the diagram J → Pre(C).

Definition 1.1.5. The category of elements of a presheaf F has:

• as objects, pairs (c, x), where c ∈ C and x ∈ F (c).

• a morphisms (c, x)→ (c′, x′) is a morphism f : c→ c′ in C such that Ff : x′ → x.

we will denote this category by el(F ).

Lemma 1.1.6 (Density Theorem). Every presheaf F is a colimit of a el(F ) shape diagram of repre-

sentables. And el : Pre(C)→ Cat is a faithful functor.

Proof. There exists a canonical forgetful functor UF : el(F )→ Pre(C) that maps (c, x)→ hom(−, x).

By the Yoneda lemma it follows that

ConePre(C)(U,G) ∼= homPre(C)(F,G) (6)

therefore F = colimel(F ) UF (c, x). We have shown that every presheaf is a colimit of a canoni-

cal diagram of representables. By construction it is clear that el is functorial. Too see that el is

a faithful functor, it suffices to see that the functor el(h) : el(F ) → el(G) induced a morphism

colimel(F ) UF (c, x)→ colimel(G) UG(c′, x′) which is precisely h : F → G.
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Theorem 1.1.7 (Universal Property of Pre(C)). Let C be a small category, D be any category, such

that D is cocomplete, and let H : C → D be a functor. Then there exists a left adjoint functor

Re : Pre(C)→ D that makes the following diagram commute:

C Pre(C)

D

Y

Γ
Re

(7)

in particular Re is a colimit preserving functor. Moreover, for any two such functors there is a unique

natural isomorphism between them. We will denote the right adjoint functor of Re by Sing : D →
Pre(C).

Proof. For each object F ∈ Pre(C) we have a induced diagram el(F )→ C, such that Y and Γ induce

el(F ) shaped diagrams in Pre(C) and D respectively. Since we want Re to be colimit preserving, it

follows that Re(F ) is determined up to isomorphism by the colimit of the el(F ) shaped diagram in

D. Note that the reason that Re is not unique, is because colimits are only unique up to a unique

isomorphisms, and for any two colimit preserving functors Re1, Re2 : Pre(C) → D this induces a

unique isomorphism between them.

Next, we will show that Re is a left adjoint to the functor Sing : D → Pre(C) that maps d →
homD(Γ−, d). We need to show that there is a bijection

homPre(C)(F, Sing(d)) ∼= homD(Re(F ), d) (8)

For this consider the following identity

homPre(C)(F, Sing(d)) ∼= lim
el(F )

homPre(C)(UF (j),homD(Γ−, d)) (9)

Since UF (j) is a representable presheaf, by the Yoneda lemma we obtain

∼= lim
el(F )

homD(ΓUF (j), d) ∼= homD(ReF, d0) (10)

It follows that Re is left adjoint, and therefore it is colimit preserving.

Although the definition we have for Re is very nice conceptually, it would be useful to have a

more hands on description of Re so that we can understand examples of the adjunction Pre(C) � D
in a better way. Our goal is to be able to describe the action of Re on the objects of Pre(C) as a

coequalizer of a simple diagram. For this we will introduce the following definitions.

For any set S and object d ∈ D, the copower or tensor of d by S, denoted S ⊗ d is simply the

coproduct qSd of copies of d indexed by S. In particular if F is a presheaf, we may form copowers

F (c)⊗ Γ(c′) (11)

for any c, c′ in C. A morphism f : c′ → c of C induces a map

f∗ : F (c)⊗ Γ(c′) −→ F (c)⊗ Γ(c) (12)

which applies Γf to the copy of Γ(c′) in the component corresponding to x ∈ F (c) and includes it in

the component corresponding to x in F (c)⊗ Γ(c), and also a map

f∗ : F (c)⊗ Γ(c′) −→ F (c′)⊗ Γ(c′) (13)
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which maps the component corresponding to x ∈ F (c) to the component corresponding to f∗x ∈ F (c′).

With some thought we can see that Re(F ) is the coequalizer of the following diagram

∐
f∈mor C F (c)⊗ Γ(c′)

∐
c∈C F (c)⊗ Γ(c) Re(F )

f∗

f∗
(14)

This is indeed a very nice description of the functor Re : Pre(C) → D. And recall it has a right

adjoint, the functor Sing : D → Pre(C) that maps d→ homD(Γ−, d). This constructions will be used

later, when we proof a certain universal property of the category of simplicial presheaves.
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1.2 Simplicial Sets

Let ∆ be a category with the following description. Its objects are categories, which we will denote

by [n]. The category [n] is generated by the following objects and morphisms:

0 1 · · · n− 1 n (15)

Of course, since [n] is a category, its morphisms are closed under composition. To get a better

geometric picture, we present the following complete description of [2],

0

1 2

(16)

For simplicity, it is standard to describe [n] by just specifying its objects and ’generating morphisms’,

we have adopted this in Definition (1.2.1). The problem I see with Definition (1.2.1) is that in a first

exposure to simplicial sets, you may not notice the geometry behind it. With the complete description

of [n] in mind, it is easier to see that [n] is in some sense the categorification of the standard topological

n-simplex. The category of simplicial sets is just Pre(∆). Based on this discussion of the section on

Presheaves, it is easy to see that the category sSet are just the object built from [n]. Following the

analogy that [n] is the categorification of the topological n-simplex, we can extend this analogy and

say that sSet is the categorification of the category of CW-complexes.

The morphisms in ∆ are ”order preserving functions”. More precisely, the morphisms are the

possible functors between the categories [n]. A good geometric interpretation of the morphisms in

∆, is that a morphism [n] → [m] way in which you can ’paste’ [n] to [m]. This interpretation is

particularly useful to understand the geometry of the category of simplicial sets, which we will denote

by sSet. Extending this analogy, we can see that the values that a simplicial set X takes at [n],

are just the set of ’ways’ in which one can paste [n] to X. The benefits of dealing with sSet rather

than CW , is that the morphisms in sSet are much simpler. As we know, continuous maps can be

very badly behaved; and in particular for homotopy theory, where we only care about maps up to

homotopy, the category sSet is much easier to work with.

The main object of this section is to introduce the notion of simplicial sets and present some

examples. Simplicial sets will be a central subject of this paper, so we have included several examples

so that the reader can gain some familiarity with them, and at the same time get a glimpse of its

importance in algebraic topology.

The material presented in this section can be found in the following sources:

• Riehl - A Leisurely Introduction to Simplicial Sets [14]

• Goerss and Jardine - Simplicial Homotopy Theory [8]

Definition 1.2.1. Let ∆ be the category whose objects are finite, non-empty, totally ordered sets

[n] = {0, 1, ..., n} (17)

and morphisms are order preserving functions. Equivalently, ∆ is the full subcategory of Cat whose

objects are the posets defining finite, non-empty ordinals, regarded as categories in the usual manner.
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Definition 1.2.2. A simplicial set is a functor ∆op → Set. This form a category where the morphisms

are the natural transformations between functors, we denote the category of simplicial sets by sSet.

More generally, for any category C, a simplicial object in C is a functor X : ∆op → C. This again form

a category which we denote by sC.

By definition we have that the category sSet is actually the presheaf category Pre(∆). For each

[n] ∈ ∆, we denote its image under the Yoneda embedding

Y : ∆→ Pre(∆) = sSet by ∆n := hom∆(−, [n]) (18)

This is the simplicial set representing the standard n-simplex. From the definition, ∆n
k = hom∆([k], [n]),

i.e., k-simplices in ∆n are maps [k]→ [n] in ∆. Among all the morphisms [m]→ [n] in ∆ there exists

special ones, namely

di : [n− 1]→ [n] 0 ≤ i ≤ n (cofaces)

sj : [n+ 1]→ [n] 0 ≤ j ≤ n (codegeneracies)
(19)

where, by definition,

di(0→ 1→ · · · → n− 1) = (0→ 1→ · · · → i− 1→ i+ 1→ · · · → n) (20)

(i.e. compose i− 1→ i→ i+ 1, giving a string of arrows of length n− 1 in [n]), and

sj(0→ 1→ · · · → n+ 1) = (0→ 1→ · · · → j → j → · · · → n) (21)

(insert the identity Idj in the jth place, giving a string of length n + 1 in [n]). It is easy to see that

these functors satisfy a list of identities as follows, called the cosimplicial identities

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = 1 = sjdj+1

sjdi = di−1sj if i > j + 1

sjsi = sisj+1 if i ≤ j

(22)

The maps dj , si and these relations can be viewed as a set of generators and relations ∆. This in

order to define a simplicial set Y it suffices to write down sets Yn, n ≥ 0 (sets of n-simplices) together

with maps

di : Yn → Yn−1 0 ≥ i ≥ n (faces)

sj : Yn → Yn+1 0 ≥ j ≥ n (degeneracies)
(23)

satisfying the simplicial identities:

didj = dj−1di if i < j

disj = sj−1di if i < j

djsj = 1 = dj+1sj

disj = sjdi−1 if i > j + 1

sisj = sj+1si if i ≤ j

(24)

This is the classical way to write down data for a simplicial set Y .
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Next, we will present two classical examples of simplicial sets. The first one, the nerve of a category,

is a way of assigning a (small) category C a simplicial set. The second example, the total singular

complex of a space, assigns a simplicial set to a topological space, in a way that is closely related to

the singular homology groups as we will show. We will construct this examples in a non-standard

way, we will use the machinery develop in the Section on Presheaves to describe them. The author

believes this approach gives a better conceptual understanding of the examples than the standard

descriptions.

Example 1.2.3 (Nerve of a category). Let Cat denote the category of small categories. Consider the

canonical inclusion ∆ ↪→ Cat, since Cat is a cocomplete category we consider the following diagram

∆ sSet

Cat

Y

Re (25)

Such that Re : sSet � Cat : Sing is an adjunction, as shown in Theorem (1.1.7). The nerve of a

category C is precisely Sing(C). It is standard to denote the nerve of the category C by NC. Concretely

we have that

NCn = homCat([n], C) (26)

The face and degeneracy are induced by the functoriality of homCat(−, C). This shows that categories

can be studied through simplicial sets, this is the main object of the book Higher Topos Theory by

Jacob Lurie [10]

Example 1.2.4 (Total singular complex of a space). We define a functor ∆→ Top that sends [n] to

the standard topological n-simplex

∆n = {(x0, . . . , xn) ∈ Rn+1|x0 + · · ·+ xn = 1, xi ≥ 0} (27)

The morphisms di : ∆n−1 → ∆n insert a zero in the ith coordinate, while the morphisms si : ∆n+1 →
∆n add the xi and xi+1 coordinates. Geometrically, di inserts ∆n−1 as the ith face of ∆n and si

projects the n+ 1 simplex ∆n+1 onto the n-simplex that is orthogonal to its ith face.

Since Top is a cocomplete category we obtain the following diagram

∆ sSet

Top

Y

Re (28)

Such that Re : sSet� Top : Sing is an adjunction, as shown in Theorem (1.1.7). By this adjunction

we can assign a simplicial set to a topologial space Y . Concretely we have that

SingYn = homTop(∆n, Y ) (29)

which is the set of continuous maps from the standard topological n-simplex to Y . Elements of

this set are called n-simplices of Y in algebraic topology, which coincides with our terminology. The

morphisms are canonically induced by the functoriality of homTop(−, Y ).

The functor Re : sSet→ Top is also interesting in its own right. This functor captures the intuitive

notion that simplicial sets are in some sense the categorification of CW-complexes. Form the discusion

12



at the end of the section of Presheaves, we have a good simple description of how the functor Re acts

on the simplicial sets. Recall that for a simplicial set X, its image under the functor Re is

Re(X) = coeq
[∐

f :[n]→[m]Xm ⊗∆n

∐
[n]Xn ⊗∆n

]f∗

f∗
(30)

With some thought we can see that Re(X) is a CW-complex. It is standard to denote this functor by

| − | : sSet→ Top, and it is called the geometric realization functor.

We conclude our example by making a connection with the singular homology groups as we

promised. From a simplicial set X, one may construct a simplicial abelian group ZX (i.e. a con-

travariant functor ∆op → Ab), with ZXn set equal to the free abelian group on Xn. ZX has associated

to it a chain complex, called its Moore complex and also written ZX, with

· · · ZX2 ZX1 ZX0
∂ ∂ ∂ (31)

and

∂ =

n∑
i=0

(−1)idi (32)

in degree n. Recall that the integral singular homology groups H∗(Y,Z) of the space Y are defined to

be the homology groups of the chain complex ZSing(Y ).

We will conclude this section by describing two fundamental examples of simplicial sets which are

central to modern homotopy theory, this are the simplicial n-sphere ∂∆n and the simplicial horn Λnk .

There are many descriptions of these simplicial sets, but the author believes that Emily Riehl’s [14]

description as subsets of ∆ is the most natural. But for this, we need to understand what it means

for a simplicial Y to be a subset of X.

Definition 1.2.5. We say that a simplicial set Y is a subset of a simplicial set X if there is a

monomorphism Y → X, i.e., if Yn ⊂ Xn for all [n] ∈ ∆ and if

Xf |Yn = Y f (33)

for all f : [m] → [n] in ∆. This second condition says that the subsets Yn are closed under the right

action by the face and degeneracy operations and furthermore that these operations agree with their

definition for X.

In the presence of a simplicial set X, we often specify a simplicial subset by giving a set of

generators, which will typically form a subset S ⊂ Xn for some n.

Definition 1.2.6. The simplicial set generated by S is then the smallest simplicial subset of X that

contains S. Its k-simplices will be the union of those k-simplices of X that are in the image of S under

the right action by some f : [k]→ [n] in ∆.

Example 1.2.7. The ith face ∂i∆
n of ∆n is the simplicial subset generated by the image of

∆n−1
k ∆n

k
di (34)

for all k.

13



Example 1.2.8. The simplicial n-sphere ∂∆n is the simplicial subset of ∆n given by the union of

the faces ∂0∆n, . . . , ∂n∆n. The sphere ∂∆n has the property that (∂∆n)k = ∆n
k for all k < n; all

higher simplices of ∂∆n are degenerate. In other words, ∂∆n is the (n-1)-skeleton of ∆n.

Example 1.2.9. The simplicial horn Λnk is the simplicial subset of ∆n given by the union of the faces

∂0∆n, . . . , ∂k−1∆n, ∂k+1∆n . . . ∂n∆n. Equivalently, is the union of all the faces of ∆n except for the

kth face. The horn Λnk has the property that (Λnk )j = ∆n
j for j < n− 1 and (Λnk )n−1 = ∆n−1 \ ∂k∆n,

with higher simplices again being degenerate.

Remark 1.2.10. For each of these simplicial sets, their geometric realization is the topological object

suggested by their name; |∂i∆n| is the ith face of the standard topological n-simplex ∆n = |∆n|, |∂∆n|
is its boundary, and |Λnk | is the union of all faces but the kth.

14



2 A Model Structure for Simplicial Sets

Model categories, first introduced by Quillen in [13], have been an incredibly successful axiomatization

of homotopy theory. The basic problem that model categories solve is the following: given a certain

category, one often has certain maps (weak equivalences) that are not isomorphisms, but one would

like to consider them to be isomorphisms. For example, in the category of topological spaces, we

would like to consider the homotopy equivalences as isomorphisms. One can always formally invert

the weak equivalences, but in this case one loses control of the morphisms in this new category. But,

if the weak equivalences are part of a model structure, then the morphisms of the new category can

be easily understood.

In these paper we will follow the following definition of a model category:

Definition 2.0.1. A model category is a category C which is equipped with three distinguised classes

of morphisms in C, called cofibrations, fibrations, and weak equivalences, in which the following axioms

are satisfies:

(1) The category C admits all (small) limits and colimits.

(2) Given a composable pair of maps f : X → Y and g : Y → Z, if any two of g ◦ f, f and g are weak

equivalences, then so is the third.

(3) Suppose f : X → Y is a retract of g : X ′ → Y ′: that is, suppose there exists a commutative

diagram

X X ′ X

Y Y ′ Y

i

f

r

g f

i′ r′

(35)

where r ◦ i = IdX and r′ ◦ i′ = IdY . Then

(i) If g is a fibration, so is f .

(ii) If g is a cofibration, then so is f .

(iii) If g is a weak equivalence, then so is f .

(4) Given a diagram

A X

B Y

i p (36)

A dotted arrow can be found rendering the diagram commutative if either

(i) The map i is a cofibration, and the map p is both a fibration and a weak equivalence.

(ii) The map i is both a cofibration and a weak equivalence, and the map p is a fibration.

(5) Any map X → Z in C admits a two types of functorial factorizations

(i) f : X → Y and g : Y → Z where f is a cofibration, and g is a fibration and a weak

equivalence

(ii) f ′ : X → Y and g′ : Y → Z where f ′ is a cofibration and a weak equivalence, and g is a

fibration.
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A map f in a model category is called a trivial cofibration if it is both a cofibration and a weak

equivalence; similarly, f is called a trivial fibration if its both a fibration and a weak equivalence. By

axiom (1), any model category C has a initial object ∅ and a final object ∗. An object X ∈ C is said

to be fibrant if the unique map X → ∗ is a fibration and cofibrant if the unique map ∅ → X is a

cofibration.

Definition 2.0.2. Suppose C is a model category, and denote the weak equivalences by W . Define

the homotopy category Ho C as follows. Form the free category F (C,W−1) on the arrows of C and

the reversal of the arrows of W . An object of F (C,W−1) is an object if C, and a morphism if a finite

string of composable arrows (f1, f2, . . . , fn) where fi is either an arrow of C or the reversals w−1
i of an

arrow wi of W . The empty string at a particular object is the identity at that object, and composition

is defined by concatenation of strings. Now, define Ho C to be the quotient category of F (C,W−1) by

the relations IdA = (IdA) for all objects A, (f, g) = (g ◦ f) for all composable arrows f, g of C, and

Iddomw = (w,w−1) and Idcodw = (w−1, w) for all w ∈W .

Note that although neither the fibrations or cofibrations appear in the construction of Ho C, they

are essential to prove that Ho C has only a set worth of morphisms between two objects. It is also

possible to define the homotopy category by identifying homotopic morphisms. This definition yields

category which is categorically equivalent to Ho C. But this will require us to take a detour from

the main object of this paper. We refer the reader to the following resources from which the author

learned the material:

• Hovey - Model Categories, Chapter 1 [9]

• Dwyer and Spalinski - Homotopy Theory and Model Categories [7]

Our goal in this chapter is to prove that the category of simplicial sets admits a model structure,

we will call this model structure the Kan model structure. Moreover, it is well known that this model

structure is equivalent in a strong sense to the standard model structure on topological spaces. For

more details on the standard model structure on topological spaces we refer the reader to [9]. And

for more details of its relation to the Kan Model structure we refer the reader to [8].

The chapter is organized as follows: The first section on ”Presentable and Accessible Categories”

is very technical and can be ignored on a first reading. As the title suggests, we will present a

introduction to the theory of presentable and accessible categories. The results here will be used to

prove the existence of certain model structures, but it serves no purpose besides that. In the second

section, which is named ”Combinatorial Model Categories”, we will introduce a very important class

of model categories, namely, combinatorial model categories. In particular, the category of simplicial

sets admits a combinatorial model structure, and this will be the topic of the section ”Kan model

structure”.
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2.1 Presentable and Accessible Categories

As mentioned in the introduction, this section is very technical and may my skipped on a first reading.

The results in this section will be used in the rest of the chapter to prove the existence of a very

important class of model structures. All of this material can be found in:

• Lurie - Higer Topos Theory, A.1.1 [10]

• Lurie - Higer Topos Theory, A.2.6 [10]

A more detailed treatment of the material, which also describes connections of presentable and acces-

sible categories to other branches of mathematics can be found in:

• Adamek and Rosicky - Locally Presentable and Accessible Subcategories [1]

It is worth noting that in the literature, what we call presentable categories is usually called locally

presentable categories.

Definition 2.1.1. A partially ordered set J is κ-filtered if, for any subset J0 ⊂ J having certain

cardinality < κ, there exists an upper bound for J0 ⊂ J .

Let C be a category which admits (small) colimits and let X be an object of C. Suppose we are

given a κ-filtered partially ordered set J and a diagram {Yα}α∈J in C indexed by J . Let Y denote a

colimit of this diagram. Then there is an associated map of sets

ψ : colimJ HomC(X,Yα) HomC(X,Y ) (37)

We say that X is κ-compact if ψ is bijective for every κ-filtered partially ordered set J and every

diagram {Yα} indexed by J . We say that X is small if it is κ-compact for some (small) regular cardinal

κ. In this case, X is κ-compact for all sufficiently large regular cardinals κ.

Definition 2.1.2. A category C is presentable if it satisfies the following conditions:

(1) The category C admits all (small) colimits.

(2) There exists a (small) set S of objects of C which generates C under colimits; in other words, every

object of C may be obtained as the colimit of a (small) diagram taking values in S.

(3) Every object in C is small. (Assuming (2), this is equivalent to the assertion that every object

which belongs to S is small.)

(4) For any pair of objects X,Y ∈ C, the set HomC(X,Y ) is small.

Example 2.1.3. Given a small category C we will show that Pre(C) is a presentable category. Let

S be the set of representable objects. Then conditions (1) and (2) follow directly from the discussion

on the sections about Presheaves. For condition (3) let rX be a representable presheaf, and abusing

the notation, denote by el(Y ) the diagram induced by the canonical functor el(Y ) → Pre(C). Since

el(Y ) is a faithful functor, it follows that

ψ : colimel(Y ) HomPre(C)(rX, Yα) HomPre(C)(rX, Y ) (38)

is surjective. Injectivity of ψ follows from the universal property of colimits. The general case for an

arbitrary X ∈ Pre(C) follows from the universal property of colimits and the fact that X is a colimit

of representables. Condition (4) follows form the fact that el : Pre(C)→ Cat is a faithful functor and

Cat is a locally small category.
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Definition 2.1.4. Let C be a presentable category and let κ a regular cardinal. We will say that a

full subcategory C0 ⊂ C is a κ-accessible subcategory of C if the following conditions are satisfied:

(1) The full subcategory C0 ⊂ C is stable under κ-filtered colimits.

(2) There exists a (small) subcategory C0 which generates C0 under κ-filtered colimits.

We will say that C0 ⊂ C is an accessible subcategory if C0 is κ-accessible subcategory of C for some

regular cardinal κ.

Condition (2) of Definition (2.1.4) can be hard to use in practice. The following proposition is will

provide a reformulation of condition (2) that may be easier to use. We will not provide a proof of

Proposition (2.1.5) because it requires techniques that are beyond the scope of this paper. We refer

the reader to [10] Proposition A.2.6.3

Proposition 2.1.5. Let κ be a regular cardinal, C a presentable category, and C0 ⊂ C a full subcategory

which is stable under κ-filtered colimits. Then C satisfies condition (2) of Definition (2.1.4) if and

only if the following condition is satisfies for sufficiently large cardinals τ � κ:

(2τ ) Let A be a τ -filtered partially ordered set, and {Xα}α∈A a diagram of τ -compact objects of C
indexed by A. For every κ-filtered subset B ⊂ A we let XB denote the (κ-filtered) colimit of the

diagram {Xα}α∈B. Suppose that XA belongs to C0. Then for every τ -small subset C ⊂ A there

exists a τ -small κ-filtered subset B ⊂ A which contains C, such that XB belongs to C0

Corollary 2.1.6. Let f : C → D be a functor between presentable categories which preserves κ-filtered

colimits and let D0 ⊂ D be a κ-accessible subcategory. Then f−1D0 ⊂ C is a κ-accessible subcategory.

Proof. First, suppose that there exists a κ-filtered diagram {Xα}α∈A in f−1D0, such that XA 6∈
f−1D0. Since f preserves κ-filtered colimits, it follows that f(XA) 6∈ D0, contradicting the hypothesis

that D0 is stable under κ-filtered colimits. Let S be a subcategory of D0 that generates D0 under

κ-filtered colimits. To proof condition (2) of Definition (2.1.4) we will invoke Proposition (2.1.5) and

show that if D0 satisfies condition (2τ ) then so does f−1D0. This follows by a similar argument to

the one used for condition (1).
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2.2 Combinatorial Model Categories

Among model categories, combinatorial model categories form a very important class of model cate-

gories. The reason is that it is possible to give a complete description of the model structure with just

a small amount of data. This can be thought of as the homotopical analog of presentable categories.

A combinatorial model category is just a presentable model category, which was a set of ’generating’

cofibrations and trivial cofibrations. The goal of this section is to prove Theorem (2.2.4). This Theo-

rem is a very powerful tool – it allows us to assign model structures to an important kind of category

with very little work.

In this section, and for the rest of the paper, we will be using terms like ”weakly saturated” and

”small object argument”. We will not present a treatment of this material in this paper, but we refer

the reader to:

• Lurie - Higher Topos Theory, A.1.2 [10]

We strongly suggest to the reader who has never heard of these terms to read the section of [10]

referenced above. It will be of central importance in the rest of this chapter and the following chapter.

The author learned this material from

• Lurie - Higher Topos Theory, A.2.6 [10]

Definition 2.2.1 (Smith). Let A be a model category. We say that A is combinatorial if the following

conditions are satisfied:

(1) The category A is presentable

(2) There exists a set I of generating cofibrations such that the collection of all cofibrations in A is

the smallest weakly saturated class of morphisms containing I.

(3) There exists a set J of generating trivial cofibrations such that the collection of all trivial cofibra-

tions in A is the smallest weakly saturated class of morphism containing J .

Proposition 2.2.2 (Smith). Let A be a combinatorial model category, let A[1] be the category of

morphisms in A, let W ⊂ A[1] be the full subcategory spanned by the weak equivalences, and let

F ⊂ A[1] be the full subcategory spanned by the fibrations. Then F,W and F ∩ W are accessible

subcategories of A[1].

Proof. For every morphisms i : A → B, let Fi : A[1] → Set[1] be the canonical functor that carries a

morphism f : X → Y to the induced map of sets

HomA(B,X) HomA(B, Y )×HomA(A,Y ) HomA(A,X) (39)

Note that a map i : A → B is a fibration (resp. trivial fibration) if and only if the induced functor

Fi : A[1] → Set[1] sends all trivial cofibration (resp. cofibration) to surjective maps. Also note that

if A and B are κ-compact objects of A, then Fi preserves κ-filtered colimits. This follows because

(small) filtered colimits commute with finite limits, and a pull back square is a finite limit.

Let C0 be the full subcategory of Set[1] spanned by the collection of surjective maps between

between sets. It is easy to see that C0 is an accessible subcategory of Set[1]. It follows by Corollary

(2.1.6) that the full subcategories R(i) = F−1
i C0 ⊂ A[1] are accessible subcategories of A[1].
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Let I be the sat of generating cofibrations for A and let J be the set of generating trivial cofibra-

tions. We claim that the following subcategories

F =
⋂
j∈J

R(j) W ∩ F =
⋂
i∈I

R(i) (40)

are accessible subcategories of A[1]. We need to check the conditions of definition Definition (2.1.4).

Condition (1) is clear and condition (2) is a direct consequence of Proposition (2.1.5). As noted above

F and W ∩ F are the full subcategories of fibrations and trivial fibrations respectively.

By the small object argument we deduce that there exists a pair of functors T ′, T ′′ : A[1] → A[1],

which carry arbitrary morphisms f : X → Y to a factorization

X Y Z
T ′(f) T ′′(f)

(41)

where T ′(f) is a trivial cofibration and T ′′(f) is a fibration. Moreover, the functor T ′′ can be chosen

to commute with the κ-filtered colimits for a sufficiently large regular cardinal κ. We now observe

that W is the inverse image of F ∩W under the functor T ′′ : A[1] → A[1] and therefore an accessible

subcategory of A[1] by Corollary (2.1.6).

Our next goal is to proof a converse to Proposition (2.2.2), which will allow us to construct

examples of combinatorial model categories. First, we need the following preliminary result. We will

not give a proof for this result, to proof it we will need techniques that will force us to take a big

detour, which the author is not willing to make. For a complete proof we reference the reader to [10]

Lemma A.2.6.7.

Lemma 2.2.3. Let A be a presentable category. Suppose W and C are collections of morphisms of

A with the following properties

(1) The collection C is a weakly saturated class of morphisms of A, and there exists a (small) subset

C0 ⊂ C which generates C as a weakly saturated class of morphisms

(2) The intersection C ∩W is a weakly saturated class of morphisms of A.

(3) The full subcategory W ⊂ A[1] is an accessible subcategory of A[1].

(4) The class W has the two-out-of-three property.

Then C ∩W is generated, as a weakly saturated class of morphisms, by a (small) subset S ⊂ C ∩W .

Theorem 2.2.4. Let A be a presentable category and let W and C be classes of morphisms in A

with the following properties:

(1) The collection C is a weakly saturated class of morphisms of A, and there exists a (small) subset

C0 ⊂ C which generates C as a weakly saturated class of morphisms

(2) The intersection C ∩W is a weakly saturated class of morphisms of A.

(3) The full subcategory W ⊂ A[1] is an accessible subcategory of A[1].

(4) The class W has the two-out-of-three property.
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(5) If f is a morphisms in A which has the right lifting property with respect to each element of C,

then f ∈W

Then A admits a combinatorial model structure which may be described as follows:

(C) The cofibrations in A are the elements of C

(W) The weak equivalences in A are the element of W .

(F) A morphism in A is a fibration if it has the right lifting property with respect to every morphism

in C ∩W .

Proof. The category A has all (small) limits and colimits since it is presentable. The two-out-of-three

property for W is among our assumptions, and the stability of W under retracts follows from the

accessibility of W ⊂ A[1]. Indeed, let Y be a retract of X, then there exist maps i : Y → X and

r : X → Y such that r ◦ i = IdY . This implies that there exists a map p = i ◦ r : X → X such that

p ◦ p = p, and colim(p : X → X) = Y . We can conclude that if W is an accessible subcategory, then

it is closed under retracts.

The class of cofibrations is closed under retracts by condition (1), and it is easy to see that the

class of fibrations is closed under retracts since it is defined as the maps that have the right lifting

property with respect to trivial cofibrations.

We next establish the factorization axioms. By the small object argument, any morphisms X → Z

admits a factorization

X Y Z
f g

(42)

where f ∈ C and g has the right lifting property with respect to every morphisms in C. In particular,

g has the right lifting property with respect to every morphisms W ∩ C, so that g is a fibration; and

condition (5) then implies that g is a trivial fibration. We have shown that there exists a functorial

factorization consisting of a cofibration followed by a trivial fibration. Similarly, using Lemma (2.2.3)

we know that C ∩ W is generated as a weakly saturated class of morphisms by a (small) subset

S ⊂ C∩W . Using S instead of C we invoke the small object argument as above to obtain a functorial

factorization consisting of a trivial cofibration followed by a fibration.

To complete the proof, it suffices to show that the cofibrations have the left lifting property with

respect to trivial fibrations, and the trivial cofibrations have the left lifting property with respect to

fibrations. The second of these statements is clear, since it is precisely the definition of the fibrations.

For the first statement, let us consider an arbitrary trivial fibration p : X → Z. By the small object

argument, there exists a factorization of p

X Y Z
q r (43)

where q is a cofibration and r has the right lifting property with respect to all cofibrations. Then r is a

weak equivalence by (5), so that q is a weak equivalence by the two-out-of-three property. Considering

the diagram

X X

Y Z

q p

r

(44)

we deduce the existence of the dotted arrow from the fact that p is a fibration and q is a trivial

cofibration. It follows that p is a retract of r, and therefore p also has the right lifting property with
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respect to all cofibrations. This completes the proof that A is a model category. The assertion that

A is combinatorial follows immediately from (1) and from Lemma (2.2.3).

Corollary 2.2.5. Let A be a presentable category equipped with a model structure. Suppose that there

exists a (small) set which generates the collection of cofibrations in A (as a weakly saturated class of

morphisms). Then the following are equivalent:

(1) The model category A is combinatorial; in other words, there exists a (small) set which generates

the collection of trivial cofibrations in A (as a weakly saturated class of morphisms).

(2) The collection of weak equivalences in A determines an accessible subcategory of A[1].

Proof. The implication (1)⇒ (2) follows from Proposition (2.2.2), and the reverse implication follows

from Theorem (2.2.4).
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2.3 Kan Model Structure

The Kan model structure on simplicial sets is probably the most important model structure in this

paper, and one of the most important ones in homotopy theory. The proof of the Kan model structure

we provide here is a consequence of the general framework we have been developing in the previous

section and in this section. This approach has a downside. Unlike the standard approach, we are

unable to completely characterize the trivial cofibrations in the Kan model structure. This is not a

big problem, since we are not going to need this fact in the rest of the paper. But we refer the reader

to

• Hovey - Model Categories, Chapter 3 [9]

for a proof of a complete characterization of the trivial cofibrations. The author learned most of the

material from

• Lurie - Higher Topos Theory, A.2.6 [10]

• Lurie - Higher Topos Theory, A.2.7 [10]

We would also like to thank [9] for a proof of a complete characterization of the cofibrations in the

Kan model structure, a fact that we will use in the rest of the paper. And [14] for the discussion on

(∞, 1) categories at the end of the section.

Definition 2.3.1. Let A be a presentable category. A class W of morphisms in C is perfect if it

satisfies the following conditions:

(1) Every isomorphism belongs to W .

(2) Given a pair of composable morphisms f : X → Y and g : Y → Z, if any two of the morphisms

f, g, and g ◦ f belong to W , then so does the third.

(3) The class W is stable under filtered colimits. More precisely, suppose we are given a family of

morphisms {fα : Xα → Yα} which is indexed by a filtered partially ordered set. Let X denote a

colimit of {Xα}, Y a colimit of {Yα}, and f : X → Y the induced map. If each fα belongs to W ,

then so does f .

(4) There exists a (small) subset W0 ⊂W such that every morphism belonging to W can be obtained

as a filtered colimit of morphisms belonging to W0.

Corollary 2.3.2. Let F : C → C′ be a functor between presentable categories which preserves filtered

colimits and let WC′ be a perfect class of morphisms in C . Then WC = F−1WC′ is a perfect class of

morphisms in C.

Proof. Condition (1) and (2) are immediate. And conditions (3) and (4) are a direct consequence of

Corollary (2.1.6).

Theorem 2.3.3. Let A be a presentable category. Suppose we are given a class W of morphisms of

A, which we will call weak equivalences, and a (small) set C0 of morphisms of A, which we will call

generating cofibrations. Suppose furthermore that the following assumptions are satisfied:

(1) The class W of weak equivalences is perfect.
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(2) For any diagram

X Y

X ′ Y ′

X ′′ Y ′′

f

g g′

(45)

in which both squares are pushout squares, f belongs to C0, and g belongs to W , the map g also

belongs to W .

(3) If g : X → Y is a morphism in A which has the right lifting property with respect to every

morphism in C0, then g belongs to W .

Then there exists a left proper combinatorial model structure on A which may be described as follows:

(C) A morphism f : X → Y in A is a cofibration if it belongs to the weakly saturated class of

morphisms generated by C0.

(W) A morphism f : X → Y in A is a weak equivalence if it belongs to W .

(F) A morphism f : X → Y in A is a fibration if it has the right lifting property with respect to

every map which is both a cofibration and a weak equivalence.

Proof. We first show that the class of weak equivalences is stable under pushouts by cofibrations. Let

P denote the collection of all morphisms f in A with the following property: for a diagram composed

of two pushout squares

X Y

X ′ Y ′

X ′′ Y ′′

f

g g′

(46)

where g belongs to W , the map g′ also belongs to W . By condition (2) we have that C0 ⊂ P , it suffices

to show that P is weakly saturated since then C ⊂ P and the result follows. The only non trivial

point is that P is that P is closed under transfinite composition, but this follows by the stability of

W under filtered colimits.

It remains to show that A is a model category. We would like to invoke Theorem (2.2.4), given

the hypothesis it suffices to show that C ∩W is a weakly saturated class of morphisms. First, note

that C ∩W is closed under retracts. This follows from the fact that C is closed under retracts since

it is a weakly saturated class of morphisms, and W is closed under retracts by condition (3). We

now check that C ∩W is stable under transfinite composition, this follows because W is stable under

transfinite composition because it is stable under filtered colimits and finite composition, and C is a

weakly saturated class of morphisms.

It remains to show that C ∩ W is stable under pushouts. Concretely, this means that given a

pushout diagram

X X ′′

Y Y ′′

f f ′′ (47)
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in which f belongs to C ∩W ; we wish to show that f ′′ also belongs to C ∩W . Since C is weakly

saturated, it will suffice to show that f ′′ belongs to W . Using the small object argument, we can

factor the top horizontal map to produce two pushout squares

X X ′ X ′′

Y Y ′ Y ′′

g

f f ′

h

f ′′

h′

(48)

in which g is a cofibration and h has the right lifting property with respect to all the morphisms in

C0. Since W is stable under the formation of pushouts by cofibrations, we deduce that f ′ belongs to

W . Moreover, by assumption (3), h belongs to W . Since h′ is a pushout of h by the cofibration f ′,

we deduce that h′ belongs to W as well. Applying the two-out-of-three property (twice), we deduce

that f ′′ belongs to W . Now we can invoke Theorem (2.2.4) and the result follows.

Our main goal in this section is that the category of simplicial sets has a model structure. This

result is central to the rest of the paper, since all the following proofs regarding model categories will

be based on the existence of a combinatorial left model structure on simplicial sets.

Proposition 2.3.4 (Kan Model Structure). The category of simplicial sets has a combinatorial left

proper model structure. It may be described as follows:

(C) A map of simplicial sets f : X → Y is a cofibration if it belongs to the weakly saturated class of

morphisms generated by the canonical inclusion ∂∆n ↪→ ∆n

(W) A map of simplicial sets f : X → Y is a weak equivalence if the induced map of geometric

realizations |X| → |Y | is an homotopy equivalence of topological spaces

(F) A map of simplicial sets f : X → Y is a fibration if it has the right lifting property with respect

to every map which is both a cofibration and a weak equivalence.

Proof. We would like to invoke Theorem (2.3.3), we only need to check that the class of morphisms

W is perfect. The only non trivial point here is that there exists a subset W0 ⊂ W such that every

morphism belonging to W can be obtained as a filtered colimit of morphisms belonging to W0. This

follows by Proposition (2.1.5)

The Kan model structure has a more complete description in which the cofibrations and fibrations

can be described explicitly as follows

• A map of simplicial sets f : X → Y is a cofibration if it is a monomorphism; that is, if the

induced map Xn → Yn is injective for all n ≥ 0.

• A map if simplicial sets F : X → Y is a fibration if it is a Kan fibration: that ism if for any

diagram

Λni X

∆n Y

(49)

It is possible to supply the dotted arrow rendering the diagram commutative.
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• A map of simplicial sets f : X → Y is a weak equivalence if the induced map of geometric

realizations |X| → |Y | is a homotopy equivalence of topological spaces.

We will not be able to give a complete proof that the Kan model structure described on Proposition

(2.3.4) is equivalent to this more explicit description. The reason is, that it will take us to much of a

detour from the main topic of this paper. For a complete proof of this fact we refer the reader to [9]

or [8]. But for the sake of completeness we will provide a proof of the fact that the weakly saturated

category of maps generated by ∂∆n ↪→ ∆n are indeed all the monomorphisms.

Proposition 2.3.5. A map f : X → Y in sSet is a cofibration if and only if it is injective. In

particular, every simplicial set is cofibrant.

Proof. Denote the set of generating cofibrations ∂∆n ↪→ ∆n by C0. Certainly the maps in are injective.

Since the class of injection is a weakly saturated class, it follows that every cofibration is injective.

Conversely, suppose that f : X → Y is injective. We will give an explicit construction of f to show

that it is an element of C. Define K0 = X. Having defined Kn → Y that is an isomorphisms on

simplices of dimension less than n, let Sn denote the set of n-simplices of Y not in the image of Kn.

Each such simplex s is necessarily non degenerate, and corresponds to a map ∆n → Y . The restriction

of s to ∂∆n factors uniquely through Kn. Define Kn+1 as the pushout in the diagram below.∐
S ∂∆n Kn

∐
S ∆n Kn+1

(50)

Then the inclusion Xn → L extends to a map Xn+1 → L. This extension is surjective on simplices of

dimension ≤ n, by construction. It is also injective, since we are only adding non-degenerate simplices.

The map f : X → Y is a composition of the sequence of maps K0 → K1 → · · · , so f is an element of

the weakly saturated class of C0.

Although for the purpose of this paper, we do not need to know that fibrations in the Kan model

structure are the maps that have the right lifting property with respect to Λnk ↪→ ∆n for all k and n,

this ”horn filling” condition is central in the theory of higher categories. We will proceed to give a

informal description about the theory of (∞, 1) categories as described by [10].

Definition 2.3.6. A Kan complex is a simplicial set X such that every horn has a filler (which is not

assumed to be unique). This means that for each horn Λnk → X in X there exists an extension along

the inclusion Λnk ↪→ ∆n as shown

Λnk X

∆n

(51)

By the Yoneda lemma, the map ∆n → X identifies an n-simplex in X whose faces agree with

those specified by the horn.

Lemma 2.3.7. If X is a topological space, then Sing(X) is a Kan complex
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Proof. By the adjunction Re : sSet� Top : Sing, the following diagrams are equivalent

Λnk SX |Λnk | X

∆n |∆n|

(52)

A topological Λnk horn is a deformation retract of the standard n-simplex ∆n = |∆n| so the lift n the

right hand side exists. The adjunct to this map gives us the desires lift on the left.

As we know, the study of fibrant and cofibrant objects are central in the study the the homotopy

category of a given model structure. And in the Kan model structure we have that every simplicial

set is cofibrant, and the Kan complexes are the fibrant objects. Moreover Lemma (2.3.7) is central in

the proof that the Kan model structure on simplicial sets is Quillen equivalent to the standard model

structure on the category of topological spaces. That is, there exists an equivalence of categories in

their homotopy categories.

Definition 2.3.8. A (∞, 1) category is a simplicial set X such that every inner horn, i.e., horn Λnk
with 0 < k < n, has a filler.

Example 2.3.9. For any category C, its nerve NC is a (∞, 1) category. In fact, it is a (∞, 1) category

with the special property that every inner horn has an unique filler. Conversely, any (∞, 1) category

such that every inner horn has a unique filler is isomorphic to the nerve of a category.

We wont give formal proofs of these facts here, which can be found in [10] as Proposition 1.1.2.2,

but we will at least provide some intuition for why the nerve of a category has a unique filler for horns

Λ2
1 → NC. This horn is often represented by the following picture:

x1 x1

x0 x2 x0 x2

g gf f

g◦f
(53)

Here f, g ∈ NC1 are morphisms in C and x0, x1, x2 ∈ NC0 are objects in C. f ◦d1 = x0 and f ◦d0 = x1,

colloquially, x0 is the domain of f and x1 is its codomain, and similarly for g. The essential point

that this picture communicates is that if f and g are the generating 1-simplices of a horn Λ2
1 → NC,

then f and g are a composable pair of arrows in C. The statement that this horn can be filled then

simply expresses the fact that this pair necessarily has a composite g ◦ f . Composition is unique in

a category, so this horn can be filled uniquely. However in a (∞, 1) category, composition need not

be unique. This lack of uniqueness, reflects some of the philosophy of homotopy theory, which is that

morphisms are ”equal” only up to homotopy.

27



3 A Model Structure for Simplicial Presheaves

In this chapter we prove the existence of the main object of study of this paper – a certain model

structure on the category of simplicial presheaves. The category of simplicial presheaves is precisely the

category Fun(Cop, sSet), which we will denote by sPre(C). As you may expect, this is the homotopical

analog of the presheaf category Pre(C). From the previous chapter we know that there exists a model

structure on simplicial sets. It would then be reasonable to assume that we can assign a model

structure to sPre(C) by defining the weak equivalences to be morphisms F → G that are weak

equivalences when evaluated at each U of C. This is in fact correct, but we still need to specify the

fibrations and cofibrations, and prove that these determine a model structure. This will be the goal

of the first section.

Instead of describing why simplicial presheaves are important to this paper, I have decided that

it might be better to describe other applications of simplicial presheaves. In particular, I am going

to describe the application that got me interested in the subject. Simplicial presheaves, and more

importantly simplicial sheaves, are essential in assigning a homotopy theory to the category of algebraic

varieties, or more generally, to schemes. This homotopy theory, which is called motivic homotopy

theory is due to Fabien Morel and Vladimir Voevodsky [12]. The underlying idea is that it should

be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval

[0, 1], which is not an algebraic variety, with the affine line A1.

To explain how our study of simplicial presheaves fits into the study of motivic homotopy theory,

we must first describe the model structure assigned to this homotopy theory. For this, we must first

describe what a sheaf is. We start by presenting a discussion about sheaves and hoping that everything

else falls into place. The following discussion on sheaves is due to Daniel Dugger [2].

The presheaf functor gives a way of embedding any category into one that is cocomplete. But if

we apply this to the category of manifolds, for instance, what happens is that we lose the underlying

geometry which made manifolds interesting in the first place. The point is that the process of formally

adding all colimits also destroys most colimits we might have already had. The reason for this was

described in the introduction on the section on presheaves. Here we present the solution to this

problem, as promised before.

As an example, consider the category of manifolds and let M1 and M2 be two objects. These

objects already have a coproduct in our original category, namely the disjoint union M1 qM2. But if

we embed everything in the presheaf category then rM1 and rM2 (i.e. the new copies of M1 and M2)

now have a formal coproduct rM1 q rM2, and this is not the same as r(M1 qM2). To get a sense of

the difference, lets compute the set of maps from S0 into both objects. Mapping S0 into M1 qM2 is

equivalent to just picking two points on M1 qM2: they may both be on M1, both on M2, or one on

each. On the other hand, we may compute that

HomPre(Man)(rS
0, rM1 q rM2) = HomPre(Man)(rS

0, rM1)qHomPre(Man)(rS
0, rM2) (54)

= HomMan(S0,M1)qHomMan(S0,M2) (55)

Thus, mapping S0 into rM1 q rM2 is equivalent to giving either two points on M1 or two points on

M2. The difference is clear. It is clear that the original M1 qM2 is the right coproduct, it is the

coproduct which geometry gives us. However, in passing to the presheaf category we have exchanged

our interesting coproduct M1 qM2 for a formal and uninteresting one rM1 q rM2. The theory of

sheaves presents an elegant solution to this problem. This was developed by Grothendieck. The idea

28



is that we give ourselves a collection of cones {Dα → X} in C (where by cone we mean a diagram

with a terminal vertex) which we want to become colimit cones in our expanded category Ĉ. For

instance, the above example said that when we expand the category of manifolds we would still like

the following cone to be a colimit M1 →M1 qM2 ←M2.

Example 3.0.1. Consider again the category of manifolds. If {Uα} is an open cover of a manifold

M , then geometric considerations show that M can be built by gluing together all the Uα’s along

their intersections. In other words, the following is a coequalizer diagram∐
β,γ Uβ ∩ Uγ

∐
α Uα M (56)

where the two parallel arrows are induced by the inclusion of Uβ∩Uγ into Uβ and Uγ . The collection of

cones of the above form turns out to be sufficient for encoding the essential geometry in our category

of manifolds. Grothendieck realized that by generalizing the notion of ’cover’ one could utilize this

basic method to produce a sufficient collection of cones in other categories.

Definition 3.0.2. A Grothendieck topology on a category C is an assignment τ : ob(C) → Set such

that every element τ(X) is a subset of ob(C/X). In other words, to each object X we associate a

family of covers {Uα → X}. We require the following properties:

(i) If f : Y → X is an isomorphism then {Y → X} is a cover of X.

(ii) If {Uα → X} is a cover of X and {Vαβ → Uα} are covers of each Uα, then the collection of

composites Vαβ → X is a cover of X.

(iii) If f : Y → X and {Uα → X} is a cover, then each Y ×X Uα exists and {Y ×X Uα → Y } is a

cover.

A Grothendieck site is a small category equipped with a Grothendieck topology.

The main thing to keep in mind from this definition is that each cover {Uα → X} in a Grothendieck

topology gives rise to a cone ∐
β,γ Uβ ×X Uγ

∐
α Uα X (57)

and that these are the cones which we will want to become colimits. Denote the category of sheaves

on a Grothendieck site C by Shv(C). Before giving the definition of a sheaf, we introduce the following

terminology: given a cone Uα → X in a category C, and object Z ∈ C sees {Aα → X} as a colimit

if HomC(X,Z) = limα HomC(Aα, Z). Note that {Aα → X} is an actual colimit precisely when every

object Z sees {Aα → X} as a colimit.

Definition 3.0.3. When C is a category with a Grothendieck topology, a sheaf on C is a presheaf

F ∈ Pre(C) which sees all the distinguished cones as colimits. This means that for every cover

{Uα → X} the following is an equalizer diagram:

HomPre(C)(rX, F )
∏
α HomPre(C)(rUα, F )

∏
β,γ HomPre(C)(r(Uβ ×X Uγ), F ) (58)

Shv(C) is the full subcategory of Pre(C) whose objects are sheaves.
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An usual way to phrase the sheaf condition is to use the identification HomPre(C)(rX, F ) = F (X)

given by the Yoneda lemma, so that the diagram above becomes the following equalizer diagram

F (X)
∏
α F (Uα)

∏
β,γ F (Uβ ×X Uγ) (59)

But we think that the definition we have is a better fit for the discussion presented before. We finalize

our discussion on sheaves by presenting the following result

Proposition 3.0.4. Let C be a Grothendieck site. Then there exists a cocomplete category Shv(C) and

a functor r : C ↪→ Shv(C) such that r takes the distinguished cones of C to colimit cones in Shv(C).
Moreover, Shv(C) has the following universal property: If D is a cocomplete category and γ : C → calD

a map taking distinguished cones to colimits, then γ admits a colimit-preserving factorization

C Shv(C)

D

r

γ
(60)

Any two such factorizations admit a unique isomorphism between them.

We hope this discussion illustrates why it is more natural to study categories that have geometric

meaning, such as the category of manifolds, by using sheaves instead of presheaves. Although this has

been an interesting discussion, we still have not answered our question: why are simplicial presheaves

interesting? We are getting closer to answering this question.

We say that a simplicial presheaf is a simplicial sheaf if it satisfies the sheaf condition when

evaluated at every [n]. Morel and Voevodsky where able to assign an homotopy theory to the category

of smooth schemes (of finite type), over a base scheme S, endowed with the Nisnevick topology. They

achieved this by defining a model structure on sShv(Sm/S). The underlying idea is that it should

be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval

[0, 1], which is not an algebraic variety, with the affine line A1. We denote by sShv(Sm/S)A1 the

category sShv(Sm/S) endowed with this model structure. We call this model structure the motivic

model structure. The motivic model structure included among the weak equivalences the projection

maps X × A1 → X, such that A1 could replace the unit interval [0, 1].

Finally, we can provide at least a partial answer to the question. To understand the homotopy

category of sShv(Sm/S)A1 it is essential that one understands its fibrant and cofibrant objects in a

the motivic model structure. Unfortunately, in sShv(Sm/S)A1 , the fibrations are described as maps

that satisfy the right lifting property (as we will see later on) with respect to the trivial cofibrations.

On the other hand, there exists a model structure on sPre(Sm/S), in which we can give a complete

description of the fibrant objects, and which is Quillen equivalent to sShv(Sm/S)A1 . This allows us

obtain a better understanding of the homotopy category of sShv(Sm/S)A1 . Later in the paper we

will provide a discussion about how this Quillen equivalence is achieved.

As it is standard, we will provide a brief overview of the material covered in this chapter. In the

first section, we aim to prove the existence of a model structure on sPre(C). There are actually two

such model structures, but one enjoys a certain universal property, which we will discuss later on. The

goal of the next two sections is to prove the existence of a model structure on Fun(∆,M), where M
is a model category. This model structure, called the Reedy model structure, will prove very valuable

for computations on homotopy colimits.
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3.1 Diagram Categories

In this section, our goal is to prove that we can equip sPre(C) = Fun(Cop, sSet) with a model structure.

Indeed, there are two model structures we can assign to sPre(C), the projective and injective model

structure. The projective model structure on sPre(C) is the main object of study of this paper, as

we will see later on, this model structure enjoys a certain universal property. Hence the name of this

paper.

The author learned this material from:

• Lurie - Higher Topos Theory, A.2.8 [10]

Definition 3.1.1. Let C be a small category and let A be a model category. We well say that a

natural transformation α : F → G in Fun(C,A) is:

• an injective cofibration if the induced map F (C)→ G(C) is a cofibration in A for each C ∈ C.

• a projective fibration if the induced map F (C)→ G(C) is a fibration in A for each C ∈ C.

• a weak equivalence if the induced map F (C)→ G(C) is a weak equivalence in A for each C ∈ C.

• an injective fibration if it has the right lifting property with respect to every morphism β in

Fun(C,A) which is simultaneously a weak equivalence and an injective cofibration.

• a projective cofibration if it has the left lifting property with respect to every morphism β in

Fun(C,A) which is simultaneously a weak equivalence and a projective fibration.

Theorem 3.1.2. Let A be a combinatorial model category and let C be a small category. Then there

exist two combinatorial model structures on Fun(C,A):

• The projective model structure determined by the projective cofibrations, weak equivalences, and

projective fibrations.

• The injective model structure determined by the injective cofibrations, weak equivalences, and

injective fibrations.

We will need the following lemma, which is a key step in the proof of Theorem (3.1.2). Unfortu-

natelly, we will not provide the proof, we reference the reader to [10] Lemma A.3.3.3. We will only

need this result to proof that Fun(C,A) admits the injective model structure, since we will proof that

Fun(C,A) admits the projective model structure by hand.

Lemma 3.1.3. Let A be a presentable category and let C be a small category. Let S0 be a (small)

set of morphisms of A and let S0 be the weakly saturated class of morphisms generated by S0. Let S̃

be the collection of all morphisms F → G in Fun(C,A) with the following property: for every C ∈ C,

the map F (C) → G(C) belongs to S0. Then there exists a (small) set of morphisms S of Fun(C,A)

which generates S̃ as a weakly saturated class of morphisms.

Proof of Theorem (3.1.2). We will first proof the case of the projective model structure. For each

object C ∈ C and each A ∈ A, we define

FCA : C −→ A (61)
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by the formula

FCA (C ′) =
∐

α∈MapC(C,C′)

A (62)

We note that if i : A → A′ is a (trivial) cofibration in A, then the induced map FCA → FCA′ is a

projective (trivial) cofibration in Fun(C,A).

Let I0 be the set of generating cofibrations i : A → B for A and let I be the set of all induced

maps FCA → FCB (where C ranges over C). Let J0 be a set of generating trivial cofibrations for A

and define J likewise. It follows immediately from the definitions that a morphism in Fun(C,A) is a

projective fibration if and only if it has the right lifting property with respect to every morphism in

J , and a projective trivial fibration if and only if it has the right lifting property with respect to every

morphism in I. Let I and J be the weakly saturated classes of morphisms of Fun(C,A) generated by

I and J , respectively. Using the small object argument, we deduce the following:

(i) Every morphism f : X → Z in Fun(C,A) admits a factorization

X Y Z
f ′ f ′′

(63)

where f ′ ∈ I and f ′′ is a projective trivial fibration.

(ii) Every morphisms f : X → Z in Fun(C,A) admits a factorization

X Y Z
f ′ f ′′

(64)

where f ′ ∈ J and f ′′ is a projective fibration.

(iii) The class I coincides with the class of projective cofibrations in A.

Furthermore, since the class of trivial projective cofibrations in Fun(C,A) is weakly saturated and

contains J , it contains J . This proves the existence of a functorial factorization in Fun(C,A).

The category Fun(C,A) inherits completeness and cocompleteness form from A as in the case of

the presheaf category. It is clear that weak equivalences, fibrations and cofibrations are closed under

retracts. The two-out-of-three property for weak equivalences follows trivially from the definition.

The thing left to check is that Fun(C,A) satisfies the lifting axioms. Consider the diagram

A X

C Y

i p (65)

in Fun(C,A), where i is a projective cofibration and p is a projective fibration. We wish to show

that there exists a dotted arrow as indicated provided that either i or p is a weak equivalence. If

p is a weak equivalence, then this follows immediately from the definition of a projective fibration.

Suppose instead that i is a trivial projective cofibration. We wish to show that i has the left lifting

property with respect to every projective fibration. It will suffice to show that every trivial projective

fibration belongs to J (this will also imply that J is a set of generating trivial projective cofibrations

for Fun(C,A), which shows that the projective model structure on Fun(C,A) is combinatorial, given

that Fun(C,A) is presentable). Suppose then that i is a trivial projective cofibration and choose a

factorization

A B Ci i′′ (66)
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where i′ ∈ J and i′′ is a projectove fibration. Then i′ is a weak equivalence, so that i′′ is a weak

equivalence by the two-out-of-three property. Consider the diagram

A B

C C

i′

i i′′ (67)

Since i is a cofibration, there exists a dotted arrow as indicated. This proves that i is a retract of

i′ and therefore belongs to J , as desired. Finally, we only need to proof that this projective model

structure on Fun(C,A) is combinatorial, for this, it suffices to show that Fun(C,A) is presentable. Let

{Aα} be the set of generators of A. We define

GCAα : C A (68)

by the formula

GCAα(C ′) =

Aα if C = C ′

∅ otherwise
(69)

The collection of this functors {GCAα} forms a set, and they generate Fun(C,A) under small colimits.

The rest of the properties of a presentable category are directly inherited from the presentability of

A.

We now prove the existence of the injective model structure on Fun(C,A). Here it is difficult

to proceed directly, so we will instead apply Theorem (2.2.4). It will suffice to check each of the

hypotheses in turn:

(1) The collection of injective cofibrations in Fun(C,A) is generated as a weakly saturated class by

some small set of morphisms. This follows from Lemma (3.1.3)

(2) The collection of trivial injective cofibrations in Fun(C,A) is weakly saturated: this follows imme-

diately from the fact that the class of trivial cofibrations is weakly saturated in A by hypothesis,

and from Lemma (3.1.3).

(3) The collection of weak equivalences in Fun(C,A) is an accessible subcategory of Fun(C,A)[1]: this

follows from the proof of Proposition 5.4.4.3 in [10] since the collection of weak equivalences in A

form an accessible subcategory of A[1]. We will not include the proof of this Proposition since it

requires techniques beyond the scope of this paper.

(4) The collection of weak equivalences in Fun(C,A) satisfy the two-out-of-three property: this follows

immediately from the fact that the weak equivalences in A satisfy the two-out-of-three property.

(5) Let f : X → Y be a morphism in A which has the right lifting property with respect to every

injective cofibration. In particular, f has the right lifting property with respect to each of the

morphisms in the class I defined above, so that f is a trivial projective fibration and, in particular,

a weak equivalence.

It follows that Fun(C,A) admits a combinatorial model structure defined as the injective model

structure as above.
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Remark 3.1.4. It follows from the proof of Theorem (3.1.2) that the class of projective cofibrations

is generated (as a weakly saturated class of morphisms) by the maps j : FCA → FCA′ , where C ∈ C
and A → A′ is a cofibration in A. We observe that j is an injective cofibration. It follows that

every projective cofibration is an injective cofibration; dually, every injective fibration is a projective

fibration.

Remark 3.1.5. In the situation of Theorem (3.1.2), if A is assumed to be right or left proper, then

Fun(C,A) is likewise right or left proper (with respect to either the projective or the injective model

structures). To see why this is true, in the injective model structure it is clear that if A is left proper,

then Fun(C,A) is left proper; and this also holds for the projective model structure because by the

previous remark, every projective cofibration is an injective cofibration. The claim follows similarly

for the case of right properness.

Remark 3.1.6. The construction of Theorem (3.1.2) is functorial in the following sense: given a

Quillen adjunction of combinatorial model categories F : A � B : G and a small category C,
composition with F and G determines a Quillen adjunction

F C : Fun(C,A) Fun(C,B) : GC (70)

(with respect to either the injective or the projective model structures). Moreover, if (F,G) is a

Quillen equivalence, then so is (F C , GC).

Moreover, because the projective and injective model structure on Fun(C,A) have the same weak

equivalence between then, the identity functor IdFun(C,A) is a Quillen equivalence between them.

Example 3.1.7. Our main example of a diagram category will be the simplicial presheaf category

Fun(Cop, sSet), which we will denote by sPre(C). By Theorem (3.1.2) this category admits the

projective and injective model structure. This category with the projective model structure is the

main object of study of this paper, since it enjoys a certain universal property as we will see below.
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3.2 Directed Categories

The following section serves mostly as a preface to the subsequent section, in which we prove the

existence of a model structure on Fun(∆,M), where M is a model category. The main goal of this

section is to provide a proof of Theorem (3.2.4).

The author learned most of the material, all but Lemma (3.2.6), in this section from

• Hovey - Model Categories, 5.1 [9]

Lemma (3.2.6) can be found in [10], in section A.2.9.

Recall that an ordinal is defined inductively as the totally ordered set of all smaller ordinals. If

λ is an ordinal, we often think of λ as a category where there is one map from α to β if and only if

α ≤ β.

Definition 3.2.1. Suppose J is a small category and λ is an ordinal.

(1) A functor J → λ is called a linear extension if the image of a nonidentity map is a nonidentity

map. We then refer to f(j) as the degree of j. Note that all nonidentity maps raise the degree.

(2) The small category J is a directed category if there is a linear extension C → λ for some ordinal

λ.

(3) Dually, J is an inverse category if there is a linear extension J op → λ for some ordinal λ.

Note that the dual of a direct category is an inverse category, and vice versa. In a directed

category or inverse category, there is a kind of induction procedure, controlled by the latching or

matching object that we now define.

Definition 3.2.2. Let J be a directed category, and let C be a category which admits small colimits,

and X : J → C a functors. For every object j ∈ J we define the latching space functor Lj(X) as

follows. Let Jj be the over category of j of all non-identity maps in J , and define Lj to be the

composite

Lj : Fun(J , C) Fun(Jj , C) Ccolim (71)

where the first arrow is the pullback of the canonical forgetful functor Jj → J . Note that we have

a canonical map Lj(X) → Xj . Similarly, if J is an inverse category and C has all small limits, we

define the matching space functor Mj(X) to be the composite

Mj : Fun(J , C) Fun(J j , C) Clim (72)

where J j is the under category of all non-identity maps in J , and the first arrow is the pullback of

the canonical forgetful functor J j → J . We have a canonical map Xj →Mj(X).

Example 3.2.3. Let X̃ : ∆op → Set be a simplicial set, and let J be the subcategory of ∆ with the

same objects as ∆, but the morphisms are the injective morphisms in ∆. Equivalently, the morphisms

in J are the morphisms in ∆ generated by the coface maps di : [n − 1] → [n]. Let X : J op → Set

be the induced functors from X̃. For every nonnegative integer n, the latching object LnX can be

identified with the collection of all degenerate simplices of X̃n.

We can use the latching object to define a model category structure on Fun(J , C) for a directed

category J and a model category C.
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Theorem 3.2.4. Given a model category C and a directed category J , there is a model structure on

Fun(J , C), defined by

(W) A map f : X → Y is a weak equivalence if and only if the map Xj → Yj is for all j.

(F) A map f : X → Y is a fibration if and only if the map Xj → Yj is for all j.

(C) A map f : X → Y is a cofibration if and only if the map the induced map Xj qLjX LjY → Yj

is a cofibration for all j.

(WC) A map f : X → Y is a trivial cofibration if and only if the map the induced map XjqLjXLjY →
Yj is a trivial cofibration for all j.

Dually, if J is an inverse category, then we have a model structure on Fun(J , C), defined by

(W) A map f : X → Y is a weak equivalence if and only if the map Xj → Yj is for all j.

(C) A map f : X → Y is a cofibration if and only if the map Xj → Yj is for all j.

(F) A map f : X → Y is a fibration if and only if the map the induced map Xj → Yj ×MjY MjX is

a fibration for all j.

(WF) A map f : X → Y is a trivial fibration if and only if the map the induced map Xj → Yj ×MjY

MjX is a trivial fibration for all j.

To proof Theorem (3.2.4), we first prove that the lifting axiom holds. We concentrate on the direct

category case, as the inverse category is dual.

Lemma 3.2.5. Suppose that J is a directed category, and C is a model category. Suppose that we

have a commutative square in Fun(J , C) as follows,

A X

B Y

f p (73)

where p is an objectwise fibration and where the map gj : Aj qLjA LjB → Bj is a cofibration for all

j ∈ J . Then, if either pj is a trivial fibration for all j or gj is a trivial cofibration for all j, there is

a lift B → X.

Proof. We will only proof the case when gi is a trivial cofibration, as the other case is similar. We will

show that the required lift exists using transfinite induction. There is a linear extension d : J → λ

for some ordinal λ, and for β ≤ λ, we define J<β to be the full subcategory of J consisting of all j

such that d(j) < β. Similarly, for Z ∈ Fun(J , C), we let Z<β be the restriction of Z to J<β . We will

construct a lift h<β in the diagram below,

A<β X<β

B<β Y<β

(74)

by transfinite induction on β, such that, for all α < β, the restriction of h<β to B<α is h<α. The case

β = 0 is trivial. If β is a limit ordinal and we have constructed h<α for all α < β, then we define h<β
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on J<β as the map induced by the h<α for α < β. That is given an j ∈ J with d(j) < β, there is an

α < β such that d(j) < α, so we define h<β on Xj to be h<α on Xj .

For the successor ordinal case, suppose we have defined h<β . Then, for each element j of degree

β, we have a commutative diagram as follows

Aj qLjA LjB Xj

Bj Yj

gj pj (75)

where the map LjB → Xj is defined using h<β . Since gj is a trivial cofibration, we can find a lift in

this diagram. Putting these together for the different j of degree β defines an extension h<β+1 of h<β

as required.

Lemma 3.2.6. Let J be a directed category , let C be a model category, and let A→ B be a morphisms

in Fun(J , C). Let J ⊂ J/j be a sieve: that is, J is a full subcategory of J/j with the property that if

i→ i′ is a morphism in J/j such that i′ ∈ J , then i ∈ J . Then

(a) If the map f satisfies condition (C) of Theorem (3.2.4) for every object i ∈ J , then the induced

map

χJ : colim(A|J) colim(B|J) (76)

is a cofibration in C

(b) If the map f satisfies condition (WC) of Theorem (3.2.4) for every object i ∈ J , then the map χJ

is a trivial cofibration in C.

We denote by A|J image of A under the pullback functor induced by J → J/j → J .

Proof. We will proof (a); the proof of (b) is identical. We see that the composition J → J → λ

induces a canonical degree map on J , this is the degree map we will use through. For every triple

δ ≤ γ ≤ β, let χδ,γ,β denote the induced map

colim(A|J<β)
∐

colim(A|J<δ) colim(B|J<δ) colim(A|J<β)
∐

colim(A|J<γ) colim(B|J<γ) (77)

We wish to prove that χ0,λ,λ is a cofibration. The proof uses induction on γ. If γ is a limit ordinal, then

we can write χδ,γ,β as the transfinite composition of the maps {χε,ε+1,β}δ≤ε<γ which are cofibrations

by the inductive hypothesis. We may therefore assume that γ = γ0 +1 is a successor ordinal. If δ = γ,

then χδ,γ,β is an isomorphism; otherwise, we have δ ≤ γ0. In this case, we have

χδ,γ,β = χγ0,γ,β ◦ χδ,γ0,β (78)

Using the inductive hypothesis, we can reduce to the case δ = γ0. The map χγ0,γ,β is a pushout of

the map χγ0,γ,γ . We are therefore reduced to proving that χγ0,γ,γ is a cofibration. But χγ0,γ,γ is a

pushout of the map ∐
d(j)=γ0

[
Aj
∐
LjA

LjB
] ∐

d(j)=γ0
Bj (79)

for j ∈ J . This map is a cofibration by virtue of our assumption that f satisfies (C). In particular we

have for any α that the following map is a cofibration

χ0,α,α : colim(A|J<α) colim(B|J<α) (80)

by setting α = λ we obtained the desired result.
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Proof of Theorem (3.2.4). It suffices to prove the case when J is direct, since the isomorphism

Fun(J op, C) ∼= Fun(J , Cop) converts the latching space to the matching space. The category Fun(J , C)
has all small colimits and limits, taken objectwise. The two-out-of-three axiom is clear.

For the moment, let us refer to a map A → B in Fun(J , C) which has the property that the

map Aj qLjA LjB → Bj is a trivial cofibration for all j as a good trivial cofibration. A good

trivial cofibration is certainly a cofibration, and we claim that it is also a weak equivalence. Indeed,

by Lemma (3.2.6), the map LjA → LjB is a trivial cofibration for all j. It follows that the map

Aj → Aj qLjA LjB is also a trivial cofibration. Hence the map Aj → Bj is a composition of two

trivial cofibrations, hence is also a trivial cofibration. Thus every good trivial cofibration is a trivial

cofibration. Later in the proof, we will show that the converse is also true.

Since fibrations and weak equivalences are defined objectwise it follows that they are closer under

retracts. To see that cofibrations and good trivial fibrations, note that if X is a retract of A, then

LjX is a retract of LjA for al j in J . From this, we can conclude that if X → Y is a retract of

A→ B, then Xj qLjX LjY → Yj is a retract of Aj qLjA LjB → Bj , it follows that cofibrations and

good trivial fibrations are close under retracts. Weak equivalences are closed under retracts because

they are defined objectwise and C is a model category.

Now we construct the functorial factorizations of maps A → B. For concreteness, we will do the

factorization into a good trivial cofibration followed by a fibration. The construction of the other

factorization is similar. Recall that we have a degree function d : J → λ. We construct compatible

functorial factorizations on Fun(J<β , C) by transfinite induction on β ≤ λ, where Jβ is the full

subcategory of all j such that d(j) < β. The base case of the induction is β = 1. Here we use

the functorial factorization in C to factor Aj → Bj for all j of degree 0. Now suppose we have

constructed a functorial factorization on Fun(J<β , C). We extend this to a functorial factorization

on Fun(J<β+1, C) as follows. Given a map A → B of diagrams, we have the functorial factorization

A<β → Z<β → B<β . Given an j of degree β, we then have a map Aj qLjA LjZ → Bj . To

complete the induction, we need to consider limit ordinals β. Suppose we have defined compatible

functorial factorizations on Fun(J<γ , C) for all γ < β. Then they clearly combine to define a functorial

factorization on Fun(J<β , C), as required.

To complete the proof, we must show that every trivial cofibration is a good trivial cofibration.

So suppose f : X → Y is any trivial cofibration. Then we can factor it as X → Z → Y , where g is a

good trivial cofibration and p is a (necessarily trivial) fibration. By lifting in the diagram

X Z

Y Y

g

f p (81)

we see that f is a retract of g. This implies that f is also a good trivial cofibration.
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3.3 Reedy Categories

In the following section, building on the material of the previous section, we will provide a proof about

the existence of a certain model structure on Fun(∆,M) where M is a model category. This model

structure will be called the Reedy model structure. Its main characteristic is that the nature of ∆

allows us to construct lifts of maps inductively. Moreover, as we will see, if M is a combinatorial

model category, the Reedy model structure on Fun(∆,M) lies between the projective and injective

model structure.

The Reedy model structure will prove to be extremely useful in this paper. In particular, it is a

central tool of the proof of the main Theorems in the section of Applications. Moreover, in the next

section, it will provide us with a great computational tool to compute the homotopical analogs of

colimits. But more on that later.

The author learned this material from the following sources:

• Hovey - Model Categories, 5.2 [9]

• Lurie - Higher Topos Theory, A.2.9 [10]

Definition 3.3.1. A Reedy category is a triple (J ,J+,J−) consisting of a small category J and two

subcategories J+, and J−, such that there exists a functor d : J → λ, called a degree function, for

some ordinal λ, such that every nonidentity map in J+ raises the degree, every nonidentity map in

J− lowers the degree, and every map f ∈ J can be factored uniquely as f = g ◦ h, where h ∈ J− and

g ∈ J+. In particular, J+ is a direct category and J− is an inverse category. By abuse of notation,

we often say J is a Reedy category, leaving the subcategories implicit.

Example 3.3.2. The category ∆ is a Reedy category with respect to the subcategories (∆+,∆−);

where a morphism f : [m] → [n] belongs to ∆+ if and only if it is injective, and it belongs to ∆− if

and only if it is surjective. Furthermore every morphisms can be factored uniquely as a morphisms

in ∆− followed by a morphisms in ∆+. It is these properties of ∆ which we abstract, to define the

notion of a Reedy category.

Remark 3.3.3. We have that ∆ is a Reedy category, as is ∆op. Indeed, given any Reedy category

J , the category J op is also a Reedy category, where (J op)− = (J+)op and (J op)+ = (J−)op.

Definition 3.3.4. Suppose C is a category with all small colimits and limits, and J is a Reedy

category. For each object j of J , we define the latching space functor Lj as the composite

Fun(J , C) Fun(J+, C) CLj
(82)

where the latter functors is the latching space functor Lj defined for directed categories in Definition

(3.2.2). Similarly, we define the matching space functor Mj as the composite

Fun(J , C) Fun(J−, C) CMj
(83)

where the latter functor is the matching space functor defined for inverse categories in Definition

(3.2.2). Note that we have natural transformations LjA→ Aj →MjA defined for A ∈ Fun(J , C).

Example 3.3.5. Let X : ∆op → Set be a simplicial set and regard ∆op as a Reedy category as above.

For every nonnegative integer n, the latching object LnX can be identified with the collection of all

degenerate simplices of X. In particular, the map Ln(X)→ Xn is always a monomorphism.
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More generally, we observe that a map of simplicial sets f : X → Y is a monomorphism if and

only if, for every n ≥ 0, the map

Xn

∐
LnX

LnY Yn (84)

is a monomorphisms of sets. The if direction is obvious. For the converse, let us suppose that f is a

monomorphism; we must show that if σ is an n-simplex of X such that f(σ) is degenerate, then σ is

already degenerate. If f(σ) is degenerate, then f(σ) = α∗f(σ) = f(α∗σ), where α : [n]→ [n] is a map

of linearly ordered sets other than the identity. Since f is a monomorphism, we deduce that σ = α∗σ,

so that σ is degenerate, as desired.

Remark 3.3.6. Let be a category with all small colimits and limits. Suppose J is a Reedy category,

with degree function d : J → λ. Define J<β , for an ordinal β ≤ λ, to be the full subcategory consisting

of all j with d(j) < β. Suppose we have a functor X : J<β → C. For any j with d(j) = β, we then

have a map LjX → MjX. We want to show that the extension of X to a functor X ′ : J<β+1 → C
is equivalent to a factorization LjX → X ′j →MjX for all j such that d(j) = β. Given a nonidentity

map i→ j, where d(i) and d(j) are both less or equal to β, there is a unique factorization i→ k → j,

where i→ k ∈ J+ and k → j ∈ J. It is then clear how to define the map X ′i → X ′j , as the composite

X ′i MiX Xk LjX X ′j (85)

Similarly, an extension of a morphisms X → Y of objects in Fun(J<β , C) is equivalent to maps

X ′j → Y ′j for d(j) = β such that the diagrams

LjX X ′j MjX

LjY Y ′j MjY

(86)

are commutative. The situation is even simpler with regard to limit ordinals. If β is a limit ordinal,

a functor X : J<β → C is equivalent to a collection of compatible functors X<γ : J<γ → C for

all γ < β, and a natural transformation X → Y is equivalent to a collection of compatible natural

transformations X<γ → Y<γ for all γ < β.

Theorem 3.3.7. Let J be a Reedy category and let C be a model category. Then there exists a model

structure on the category of functors Fun(J , C) with the following properties:

(C) A morphism X → Y in Fun(J , C) is a Reedy cofibration if and only if, for every object J ∈ J ,

the induced map Xj qLjX LjY → Yj is a cofibration in C.

(F) A morphism X → Y in Fun(J , C) is a Reedy fibration if and only if, for every object j ∈ J , the

induced map Xj → Yj ×MjY MjX is a fibration in C.

(W) A morphism X → Y in Fun(J , C) is a weak equivalence if and only if, for every j ∈ J , the map

Xj → Yj is a weak equivalence.

Moreover, a morphism f : X → Y in Fun(J , C) is a trivial cofibration if and only if the following

condition is satisfied:

(WC) For every object j ∈ J , the map Xj qLjX LjY → Yj is a trivial cofibration in C.
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Similarly, f is a fibration if and only if it satisfies the dual condition:

(WF) For every object j ∈ J , the map Xj → Yj ×MjY MjX is a trivial fibration in C.

Proof. The category Fun(J , C) inherits completeness and cocompleteness from C, by taking colimits

and limits objectwise. By definition, a map is a cofibration or weak equivalence if and only if it is so in

the model category Fun(J+, C) of Theorem (3.2.4). The two-out-of-three axiom for weak equivalences

follows immediately, and so does the retract axiom for weak equivalences and cofibration. Similarly,

a map is a fibration or weak equivalence if and only if it is so in the model category Fun(J−, C), it

follows immediately that fibrations are closed under retracts.

Now suppose we have a commutative square

A X

B Y

f

i p

g

(87)

where i is a cofibration, p is a fibration, and one of them is trivial. We must construct a lift. We

proceed by transfinite induction, by extending the lift J<β to J<β+1. The base case for β = 0 is

trivial. By Remark (3.3.6) and Lemma (3.2.5), we know that extending the lift from J<β to J<β+1

is equivalent to finding a lift of the diagram below,

Aj qLjA LjB Xj

Bj Yj ×MjY MjX

(88)

for each i of degree β. We can always find such a lift, since the left vertical map is a cofibration, the

right vertical map is a fibration, and one of them is a weak equivalence.

Finally, we only need to proof the functorial factorization. Given a map X → Y we first use the

functorial factorization in C to define Xj → Zj → Yj for all j of degree 0. The limit ordinal case

is clear as pointed out in Remark (3.3.6). For the successor ordinal case, suppose we have defined

a partial functorial factorization Xj → Zj → Yj for all j of degree < β. An extension of this is

equivalent to a functorial factorization of the map

Xj qLjX LjZ Yj ×MjY MjZ (89)

for all j of degree β, which we construct by using the functorial factorization in C.

Example 3.3.8. Let J be a Reedy category with J− = J and let C be a model category. Then we

can see that LjX = ∅ for all j ∈ J and all X ∈ Fun(J , C). It follows that Xj qLjX LjY = Xj , in

particular it follows that the cofibrations coincide with the injective cofibrations in Definition (3.1.1).

Since fibrations can be characterized as the morphisms with the right lifting property with respect

to trivial cofibrations, it follows that the Reedy model structure on Fun(J , C) coincides with the

injective model structure of Theorem (3.1.2). In particular, it means we can define a injective model

structure without the assumption that C is combinatorial, but instead we require J to be Reedy

category. Similarly, if J+ = J , then we can identify the Reedy model structure on Fun(J , C) with

the projective model structure of Theorem (3.1.2).

41



In the general case, we can regard the Reedy model structure on Fun(J , C) as a mixture of the

projective and injective model structures. More precisely, we have the following

(i) A morphisms F → G in Fun(J , C) satisfies condition (C) of Theorem (3.3.7) if and only if the

induced transformation F |J+ → G|J+ is a projective cofibration in Fun(J+, C).

(ii) A morphisms F → G in Fun(J , C) satisfies condition (F ) of Theorem (3.3.7) if and only if the

induced transformation F |J− → G|J− is a injective fibration in Fun(J−, C).

(iii) A morphisms F → G in Fun(J , C) satisfies condition (WC) of Theorem (3.3.7) if and only if

the induced transformation F |J+ → G|J+ is a projective trivial cofibration in Fun(J+, C).

(iv) A morphisms F → G in Fun(J , C) satisfies condition (WF ) of Theorem (3.3.7) if and only if

the induced transformation F |J− → G|J− is a injective trivial fibration in Fun(J−, C).

Remark 3.3.9. Let J be a Reedy category and A a combinatorial model category, so that the

injective and projective model structure on Fun(J ,A) we defined independently of Theorem (3.1.2).

The identity functor from Fun(J ,A) to itself can be regarded as a left Quillen equivalence from the

projective model structure to the Reedy model structure and form the Reedy model structure to the

injective model structure.

Example 3.3.10. Let C be the category of bisimplicial sets, which we will identify with Fun(∆op, sSet)

and endow it with the Reedy model structure. It follows from Example (3.3.5) that a monomorphism

f : X → Y of bisimplicial sets is a Reedy cofibration if and only if it is a monomorphism. Consequently,

the Reedy model structure on C coincided with the injective model structure on C.
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4 Homotopy Colimits

The author learned the following motivation for homotopy colimits from

• Dugger - Primer on Homotopy colimits [5]

The theory of homotopy colimits arises because of the following basic difficulty. Let I be a small

category, and consider two diagrams D,D′ : I → Top. If one has a natural transformation η : D → D′,

then there exists an induced map colimD → colimD′. If f is a natural weak equivalence, i.e., if D(i)→
D′(i) is a weak equivalence for all i ∈ I, it unfortunately does not follow that colimD → colimD′ is

also a weak equivalence. To see this, here is an example:

Example 4.0.1. Let I be the category · ← · → · and let D be the diagram

∗ Sn Dn+1 (90)

and let D′ be the diagram

∗ Sn ∗ (91)

Let η : D → D′ be the natural weak equivalence which is the identity on Sn and collapses Dn+1 to a

point. Then colimD ∼= Sn+1 and colimD′ ∼= ∗, so the induced map colimD → colimD′ is certainly

not a weak equivalence.

So the colimit functor does not preserve weak equivalences (one sometimes says that the colimit

functor is not homotopy invariant, which means the same thing). The concept of homotopy colimit

may be thought of as a correction to the colimit, modifying it so that it is homotopy invariant.

There is one simple example of a homotopy colimit that nearly everyone has seen: the mapping

cone. We generalize this slightly in the following example, which concerns homotopy pushouts.

Example 4.0.2. Consider a pushout diagram of spaces X A Y
f g

. Call this diagram D.

The pushout of D is obtained by gluing X and Y together along the images of the space A: that is,

f(a) is glued to g(a) for every a ∈ A. The homotopy pushout, on the other hand, is constructed by

gluing together X and Y up to homotopy. Specifically, we form the following quotient space:

hocolimD =
[
X q (A× I)q Y

]
∼ (92)

where the equivalence relations has

(a, 0) ∼ f(a) and (a, 1) ∼ g(a) for all a ∈ A (93)

We can depict this space by the following picture:
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Consider the open cover {U, V } of hocolimD where U is the union of X with the image of A[0, 3/4],

and V is the union of Y with the image of A[1/4, 1]. Note that U deformation retracts down to X, V

deformation retracts down to Y , and that the map A→ U ∩ V given by a→ (a, 1/2) is a homotopy

equivalence. The Mayer-Vietoris sequence then gives a long exact sequence relating the homology of

hocolimD with H∗(X), H∗(Y ), and H∗(A). Similarly, the Van Kampen theorem shows (assuming

X,Y , and A are path-connected, for simplicity) that π1(hocolimD) is the pushout of the diagram of

groups π1(X)← π1(A)→ π1(Y ). The moral is that the space hocolimD is pretty easy to study using

the standard tools of algebraic topology, in contrast to colimD, which is much harder.

Before continuing with the next example, we should relate this past example to the mapping cones.

If f : A → X is a map, then the quotient X/f(A) is the pushout of ∗ ← A → X. The homotopy

pushout of ∗ ← A→ X, as defined above, is nothing other than the mapping cone of f .

Example 4.0.3. Consider the diagram of spaces

A X Y
f g

(94)

One way to construct the homotopy colimit in this case is as a double mapping cylinder as shown

below

This is the space [(A × I) q (X × I) q Y ]/ ∼ in which we have identified (a, 1) ∼ (f(a), 0) and

(x, 1) ∼ g(x), for all a ∈ A and x ∈ X. Note that this space deformation retracts to Y .

Now consider the following. For the colimit of a diagram D, every map f : Di → Dj in the

diagram tells us to glue a ∈ Di to f(a) ∈ Dj . In the homotopy colimit we are supposed to ’glue up to

homotopy’, and this is what we tried to do in the double mapping cylinder above. But note that we

have only done this for f and g, whereas there is a third map in our diagram – namely, the composite

g ◦ f . Maybe we should glue in a homotopy for that map, too.

This suggests that we should do the following. Start with A qX q Y and glue in a cylinder for

f, g, and g ◦ f . This gives us the following space, which well call W :
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Unfortunately, W is clearly not homotopy equivalent to Y , and therefore not homotopy equivalent

to our double mapping cylinder above. But we can fix this as follows. There is an evident map A×∂∆2

into W : we have an A× I occurring in the mapping cylinders for f and g ◦ f , forming two of the sides

of A × ∂∆2. The third side comes the composite A× I X × I W
g×Id

, where the second

map is the mapping cylinder for g. What we will do is take W and attach a copy of A×∆2 along the

image of A× ∂∆2; that is, we form the pushout,

A× ∂∆2 W

A×∆2 W ′

(95)

It is hard to draw a picture for W ′, but maybe we can try something like this:

This new space W ′ is homotopy equivalent to the double mapping cylinder we started with: the

cylinder corresponding to g◦f can be squeezed down into the double mapping cylinder, via the A×∆2

piece we just attached. So W ′ is another model for the homotopy colimit of our diagram.

The previous example suggests the following. Suppose given a small category I and a diagram

D : I → Top. To construct hocolimD we should start with qiD(i), and then for every map f : i→ j

in I we should glue in a cylinder D(i) ×∆1 corresponding to f . Then for every pair of composable

maps

i j k
f g

(96)
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in I we should glue in a copy of D(i)×∆2. Continuing the evident pattern, for every sequence of n

composable maps

i0 → i1 → i2 → · · · → in (97)

we should glue in a copy of D(i0)×∆n. Although this is not strictly true in the general case, in the

end of the chapter we will proof that in certain cases this construction yields the correct homotopy

colimit. The main reason why this does not work in general, is that not ever category has a notion of

a ∆n object, as the category Top has. And as we will see, this is all we need to identify the homotopy

colimit with the construction defined above.

Although the discussion presented here gives a very intuitive notion of what the homotopy colimit

of a certain diagram should be; in general, we can not provide such a construction for the homotopy

colimit of a diagram because not every category is endowed with a operation − ⊗ ∆n. To define

homotopy colimits as a standard homotopical generalization of the colimit, we have presented in the

first chapter a discussion on Kan extensions. We hope that this discussion motivates the definitions

of the homotopy Kan extension, and makes clear how to define an homotopy colimit from here. In

the last section, we present a discussion on computational tools used to compute homotopy colimits.

In particular, we will present a result that states that one can indeed compute a homotopy colimit

following the method described above in certain cases.
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4.1 Kan Extensions

Before continuing with the definition of homotopy colimit and homotopy limits, which will be the

first application of the injective and projective model structures defined above, we will take a small

detour and present the theory of Kan extension. This is because we will define homotopy colimits

as a special case of the homotopical analog of Kan extension, surprisingly named homotopical Kan

extensions. Our main goal of this section is to present alternate definitions of limits and colimits in

the language of Kan extensions, our hope is that this will provide the required motivation such that

the definition of homotopy colimits feels like the natural homotopical extension. We will conclude

the section with some applications of the theory of Kan extensions, since it provides clarity to many

concepts in mathematics, particularly, concepts that we will be using in this paper.

The author learned this material from:

• Riehl- Categorical Homotopy Theory, Chapter 1 [15]

• McLane - Categories for the Working Mathematician, Chapter 10 [11]

Definition 4.1.1. Given functors F : C → E and K : C → D, a left Kan extension of F along K is

a functor LanK F : D → E together with a natural transformation η : F ⇒ LanK F ◦K such that for

any other such pairs (G : D → E and γ : F ⇒ GK), we have that γ factors uniquely through η.

C E

D

F

K LanK F

η (98)

Dually, a right Kan extension of F along K is a functor RanK F : D → E together with a natural

transformation ε : RanK F ◦K ⇒ F such that for any (G : D → E and δ : G ◦K ⇒ F ), we have that

δ factors uniquely through ε.

C E

D

F

K RanK F

ε (99)

Remark 4.1.2. A left Kan extension of F : C → E along K : C → D is a representation for the

functor

HomFun(C,E)(F,− ◦K) : Fun(D, E) Set (100)

that sends a functor D → E to the set of natural transformations from F to its restriction along K.

By the Yoneda lemma, any pair (G, γ) as in Definition (4.1.1) defines a natural transformation

HomFun(D,E)(G,−) HomFun(C,E)(F,− ◦K)
γ

(101)

The universal property of the pair (LanK F, η) is equivalent to the assertion that the corresponding

map

HomFun(D,E)(LanK F,−) HomFun(C,E)(F,− ◦K)
η

(102)

is a natural isomorphism, i.e., that (LanK F, η) represents this functor.
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Extending this discussion, it follows that if for a fixed K, the left and right Kan extension of any

functor C → E exist, then these define left and right adjoints to the pullback functor K∗ : Fun(D, E)→
Fun(C, E). Particularly, we have the following isomorphisms:

HomFun(D,E)(LanK F,G) ∼= HomFun(C,E)(F,G ◦K) (103)

HomFun(C,E)(G ◦K,F ) ∼= HomFun(D,E)(G,RanK F ) (104)

or equivalently in diagram form

Fun(C, E) Fun(D, E) : K∗

LanK

RanK

⊥

⊥
(105)

The universal properties of Definition (4.1.1) are precicelly thos required to define the value at a

particular object F ∈ Fun(C, E) of a left and right adjoint to a specified functor, in this case K∗.

Example 4.1.3. We will develop the theory of colimits as a special case of Kan extensions. We will

not do the same for limits since it is a completely dual discussion. We hope this serves as motivation

to the definition of homotopy colimit presented in the following section. Let [∗] denote the final object

of Cat: that is, the category with one object and only the identity morphism. For any category C,
there is a unique functor Q : C → [∗]. If the left Kan extension of F : C → E along Q exists, it follows

that

HomFun([∗],E)(LanQ F,G) ∼= HomFun(C,E)(F,G ◦Q) (106)

Since Fun([∗], E) ∼= E and G(∗) ∈ E , we obtain the following identity

HomFun([∗],E)(LanQ F,G) ∼= HomE(LanQ F,G(∗)) (107)

By the universal property of colimF it follows that LanQ F ∼= colimF . Or we can represent it in

diagram form which makes it easier to visualize

C E

[∗]

F

Q LanQ F

η (108)

Were the pair (LanQ, η) satisfy the universal property of the colimit.

Finally we would like to to provide conditions under which we know the existence of Kan extensions,

and moreover we will provide a formula to compute said Kan extension. As a result, we will see that

the formula for the functor Re : Pre(C)→ D given at the end of the section of presheaves is a special

case of this more general framework. But first, we will need some definitions

Definition 4.1.4. The bifunctor −⊗− : C × Set :→ C is called tensor or copower. If S is a set and

c ∈ C then c ⊗ S is the S-indexed coproduct of copies of c. In particular this always exists if C is

cocomplete. Dually, the power or cotensor cS of c ∈ C by a set S is the S-indexed product of copies

of c, this also defines a bifunctor C × Setop → C that is contravariant in the indexing set.
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Definition 4.1.5. The integral
∫ C

is called a coend is the colimit of a particular diagram constructed

from a functor that is both covariant and contravariant in C. Given H : Cop×C → D the coend
∫ C

H

is the coequalizer of the diagram

∫ C
H = coeq

[∐
f∈mor C H(cod f, dom f)

∐
c∈C H(c, c)

]f∗

f∗
(109)

where the maps f∗ and f∗ are induced by a function f : c → c′ and are defined by f∗ : H(c′, c) →
H(c′, c′), and f∗ : H(c′, c)→ H(c, c). Dually, an end is a equalizer of the following diagram

∫
C H = eq

[∐
f∈mor C H(cod f, dom f)

∐
c∈C H(c, c)

]f∗

f∗
(110)

Remark 4.1.6. If H : Cop × C → D is constant in the first variable, then the coend
∫ C

H coincided

with the colimit of a functor H ′ : C → D that coincides with H in the second variable. Dually, if H

is constant in the first variable, then the end
∫
C H it coincides with the functor H ′ : C → D.

Example 4.1.7. Let C be a small category, and let D be a cocomplete category. Recall from the

section of Presheaves that for a functor Γ : C → D there exists an functor Re : Pre(C)→ D such that

the following diagram commutes

C Pre(C)

D

Y

Γ
Re

(111)

where for a presheaf F , the action of Re on F can be described as Re(F ) =
∫ C

F ⊗ Γ, this follows

directly from the definition of coend and the discussion at the end the the section of Presheaves. Where

F ⊗ Γ : Cop × C → D is a bifunctor with the desired properties, defined by the tensor F (c′) ⊗ Γ(c),

this makes sense since F (c′) is a set.

Theorem 4.1.8. When C is small, D is locally small, and E is cocomplete, the left Kan extension of

any functor F : C → E along any functor K : C → D is computed at d ∈ D by the colimit

LanK F (d) =

∫ C
HomD(K−, d)⊗ F (−) (112)

and in particular necessarily exists. Dually, if E is complete, the right Kan extension of any functor

F : C → E along any functor K : C → D is computed at d ∈ D by the limit

RanK F (d) =

∫
C
F (−)HomD(d,K−) (113)

and in particular necessarily exists.

Proof. Let L : D → E be the functor defined pointwise by
∫ C

HomD(K−, d) ⊗ F (−). It suffices to

show that for any functor G : D → E we have the following isomorphism

HomFun(C,E)(F,G ◦K) ∼= HomFun(D,E)(L,G) (114)

For this, we first note that for any two functors G,H : D ⇒ E we have the following identity

HomFun(D,E)(G,H) ∼=
∫
D

HomE(G−, H−) (115)
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this follows by construction. Now we can write the following succession of isomorphisms

HomFun(D,E)(L,G) ∼=
∫
D

HomE(L−, G−) (116)

∼=
∫
D

HomE

(∫ C
HomD(K−,−)⊗ F−, G−

)
(117)

∼=
∫
D

∫
C

HomE

(
HomD(K−,−)⊗ F−, G−

)
(118)

∼=
∫
C

∫
D

HomE

(
HomD(K−,−),HomE(F−, G−)

)
(119)

∼=
∫
C

HomFun(D,E)

(
HomD(K−,−),HomE(F−, G−)

)
(120)

∼=
∫
C

HomE(F−, G ◦K−) ∼= HomFun(C,E)(F,G ◦K) (121)

The first result regarding formula of left Kan extensions follows. We will not proof the dual result

about right Kan extensions since it follows by exactly the same logic.
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4.2 Homotopy Kan Extensions

In this section our goal is to define the homotopical analog of Kan extensions. The theory of homotopy

Kan extensions is the first application we see of the projective and injective model structures developed

in the previous chapter. Although the definition provided here might feel very different from the

intuition provided at the beginning of the chapter, we will see that it is the most natural definition

based on the discussion on the previous section.

The author learned this material from the material from:

• Lurie - Higher Topos Theory, A.2.8 [10]

It is important to note that our definition of homotopy Kan extension is slightly weaker than the one

provided in [10]. We feel that this definition is more natural and provides the flexibility needed so

that in the next chapter we can identify homotopy colimits with the construction presented in the

introduction of the chapter.

Let K : C → C′ be a functor between small categories and let A be a combinatorial model

category. Then composition with K yields a pullback functor K∗ : Fun(C′,A)→ Fun(C,A). Since A

is complete and cocomplete, by Theorem (4.1.8) there exists functors LanK Fun(C,A) → Fun(C′,A)

and RanK Fun(C,A) → Fun(C′,A). By Remark (4.1.2) it follows that LanK is a left adjoint to K∗,

and RanK is a right adjoint to K∗.

Proposition 4.2.1. Let A be a combinatorial model category and let K : C → C′ be a functor between

small categories. Then

(1) The pair (LanK ,K
∗) determined a Quillen adjunction between the projective model structures of

Fun(C,A) and Fun(C′,A)

(2) The pair (K∗,RanK) determined a Quillen adjunction between the injective model structures of

Fun(C,A) and Fun(C′,A)

Proof. This follows from the simple observation that K∗ preserves weak equivalences, projective fi-

brations and injective cofibrations.

Let A be a combinatorial model category and let K : C → C′ be a functor between small categories.

We wish to consider the left derived functor LLanK of the left Kan extension K∗ : Fun(C,A) →
Fun(C′,A). This derived functors is called the homotopy left Kan extension functors. The usual way

of defining the left derived functor involves choosing a cofibrant replacement functor Q : Fun(C,A)→
Fun(C,A) and setting LLanK = LanK ◦Q. But, since intrinsically homotopy Kan extensions, as

every homotopical universal construction, are supposed to be only defined up to weak equivalence, it

is sometimes useful to make the extra freedom of choosing any weakly equivalent object explicit by

the following definition. In particular, it the following definition takes care of the homotopy invariant

problem mentioned above in a very transparent way.

Definition 4.2.2. Let C be a small category, and A be a combinatorial model category. Let F ∈
Fun(C,A), and let G ∈ Fun(C′,A). We will say that G is a homotopy left Kan extension of F if for

some weak equivalence F ′ → F where F ′ is projectively cofibrant in Fun(C,A), the objects LanK F
′

and G of Fun(C′,A) are isomorphic in the homotopy category of Fun(C′,A). Since LanK preserves
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weak equivalences between projectively cofibrant objects, this condition is independent of the choice

of F ′.

Dually, let F ∈ Fun(C,A), we will say that G is a homotopy right Kan extension of F is for some

weak equivalence F → F ′ where F ′ is injectively fibrant in Fun(C,A), the objects RanK F
′ and G

of Fun(C′,A) are isomorphic in the homotopy category of Fun(C′,A). Since RanK preserves weak

equivalences between injectively fibrant objects, this condition is independent of the choice of F ′.

Remark 4.2.3. In the definition of homotopy left Kan extension, we can see it is unnecessary to pick

a projective cofibrant replacement F ′ → F , since F and F ′ will be in the same isomorphism class

in the homotopy category. There are two main reasons why we have chosen to add detail into the

definition of homotopy lefty Kan extension. The first reason, is that it becomes more transparent why

our definition and the usual definition as a left derived functor of the left Kan extension coincide. The

second reason is that it becomes clear why LanK is an homotopy invariant functor. Indeed, since LanK

is a left Quillen functor, it preserves trivial cofibrations, therefore it preserve weak equivalences between

cofibrant objects. Moreover, since the cofibrant replacement functor preserve weak equivalences, it

follows that LanK is in fact homotopy invariant.

Definition 4.2.4. Let [∗] denote the final object of Cat: that is, the category with one object and

only the identity morphisms. For any category C, there is a unique functor K : C → [∗]. If A is a

combinatorial model category, F : C → A functor and A ∈ A ∼= Fun([∗],A) is an object, then we will

say that K∗A is an homotopy colimit of F if A is an homotopy left Kan extension of F . Dually, K∗A

is an homotopy limit of F if A is an homotopy right Kan extension of F .

Remark 4.2.5. Recall that the colimit of a diagram J → C is only well defined up to isomorphisms, an

analogous is true for homotopy colimits. Homotopy colimits are only well defined up to isomorphism

in the homotopy category.
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4.3 Computational Techniques

The main goal of this section is to prove that in a particular setting the definition of homotopy colimit

and the construction presented in the introduction of the chapter coincide. This is Proposition (4.3.11),

and the result will be heavily used in the next chapter, in particular to show that every simplicial

presheaf is an homotopy colimit of representables. The section starts by presenting some categorical

definitions that the reader may not have seen before; but, we have assumed that the reader is familiar

with the definition of ”monoidal categories” and ”enriched categories”. The author decided to not

include these definitions because they can be easily found elsewhere, and it will distract us from our

goals. Good sources for this material are:

• Lurie - Higher Topos Theory, A.1.3 [10]

• Lurie - Higher Topos Theory, A.1.4 [10]

The author learned the material from the following resources:

• Lurie - Higher Topos Theory, A.2.9 [10]

• Lurie - Higher Topos Theory, A.3.1 [10]

We begin with some definitions that we will need.

Definition 4.3.1. Let A,B and C be model categories. We will say that a functor F : A× B → C is

a left Quillen bifunctor if the following conditions are satisfied:

(a) Let i : A→ A′ and j : B → B′ be cofibrations in A and B, respectively. Then the induced map

i ∧ j : F (A′, B)
∐
F (A,B) F (A,B′) F (A′, B′) (122)

is a cofibration in C. Moreover, if either i or j is a trivial cofibration, then i ∧ j is also a trivial

cofibration.

(b) The functor F preserves small colimits separately in each variable

Remark 4.3.2. Let ∅A be the initial object of A, and denote the initial object of B and C similarly.

We note that condition (b) implies that F (∅A, B) = F (A, ∅B) = ∅C .

Definition 4.3.3. A monoidal model category is a monoidal category C equipped with a model

structure, which satisfies the following conditions:

(i) The tensor product functor ⊗ : C × C → C is a left Quillen bifunctor

(ii) The unit object 1 ∈ C is cofibrant.

(iii) The monoidal model structure on C is closed.

Example 4.3.4. The category of simplicial sets sSets is a symmetric monoidal model category with

respect to the cartesian product and the Kan model structure defined in Proposition (2.3.4). A

complete proof can be found in [9] as Proposition 4.2.8. A more gentle proof can also be found in [8].

Definition 4.3.5. LetD be a monoidal model category. AD-enriched model category is anD-enriched

category C equipped with a model structure satisfying the following conditions:
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(1) The category C is tensored and cotensored over D.

(2) The tensor product ⊗ : C × D → C is a left Quillen bifunctor.

In the special case when D is the category of simplicial sets, we will simply refer to C as a simplicial

model category.

Remark 4.3.6. From the fact that C is tensored and cotensored over D, it follows that condition (2)

is equivalent to either of the following statements:

(2′) Given any cofibration i : C → C ′ in C and any fibration j : X → Y in C, the induced map

HomC(C
′, X)→ HomC(C,X)×HomC(C,Y ) HomC(C

′, Y ) (123)

is a fibration in D, which is trivial if either i or j is a weak equivalence.

(2′′) Given any cofibration i : D → D′ in D and any fibration j : X → Y in C, the induced map

XD′ → XC ×Y C Y C
′

(124)

is a fibration in C, which is trivial if either i or j is trivial.

Now we present the connection between the definition of homotopy colimits presented in the

previous section, and the discussion presented at the beginning of the chapter.

Suppose that we are given a bifunctor

⊗ : A× B C (125)

where C is a complete and cocomplete category. For any small category J , recall we can define the

coend functor
∫ J

Fun(J op,A) × Fun(J ,B) → C so that the integral
∫ J

F ⊗ G is defined to be the

coequalizer of the diagram ∐
j′→j F (j)⊗G(j′)

∐
j F (j)⊗G(j) (126)

We then have the following result:

Proposition 4.3.7. Let ⊗ : A × B → C be a left Quillen bifunctor and let J be a Reedy category.

Then the coend functor ∫ J
Fun(J op,A)× Fun(J ,B) −→ C (127)

is also a left Quillen bifunctor, where we regard Fun(J op,A) and Fun(J ,B) as endowed with the

Reedy model structure.

Proof. Let f : F → F ′ be a Reedy cofibration in Fun(J op,A) and g : G→ G′ a Reedy cofibration in

Fun(J ,B). Set

C =

∫ J
F ⊗G′

∐
∫ J F⊗G

∫ J
F ′ ⊗G (128)

and

C ′ =

∫ J
F ′ ⊗G′ (129)
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We wish to show that the induced map C → C ′ is a cofibration, which is trivial if either f or g are

trivial.

Choose a degree function d : J → λ. For β ≤ λ we define

Cβ =

∫ J<β
F<β ⊗G′<β

∐
∫ J<β F<β⊗G<β

∫ J<β
F ′<β ⊗G<β (130)

and

C ′β =

∫ J<β
F ′<β ⊗G′<β (131)

we wish to show that the map

C ∼= Cλ
∐
C0

C ′0 −→ Cλ
∐
Cλ

C ′λ
∼= C ′ (132)

is a cofibration (which is trivial if either f or g is trivial). We will prove more generally that for

δ ≤ γ ≤ β ≤ λ, the map

ηδ,γ,β : Cβ
∐
Cδ

C ′δ −→ Cβ
∐
Cγ

C ′γ (133)

is a cofibration (which is trivial if either f or g is trivial). The proof proceeds by induction on γ. If

γ is a limit ordinal, then ηδ,γ,β can be obtained as a transfinite composition of maps {ηε,ε+1,β}δ≤ε<γ ,

and the result follows form the inductive hypothesis. We may therefore assume that γ = γ0 + 1 is a

successor ordinal. Since ηδ,γ,β = ηγ0,γ,β ◦ ηδ,γ0,β we can use the inductive hypothesis to reduce to the

case where δ = γ0. Since ηδ,γ,β is a pushout of ηδ,γ,γ we can also assume that β = γ. In other words,

we are reduced to proving that the map

h : Cγ0+1

∐
Cγ0

C ′γ0
−→ C ′γ0

(134)

is a cofibration, which is trivial if either f or g is trivial. Let j be the an object if J such that

d(j) = γ0. From a pushout diagram

(F (j)qLjF LjF ′)⊗ (G(j)qLjG LjG′) (F (j)qLjF LjF ′)⊗G′(j)

F ′(j)⊗ (G(j)qLjG LjG′) Xj

(135)

We have an evident map h′j : Xj → F ′(j) ⊗ G′(j) which is a cofibrations (trivial is either f or

g is trivial) by virtue of our assumptions on f and g (together with the fact that ⊗ is a left Quillen

bifunctor). We conclude by observing that h is a pushout of qd(j)=γ0
h′j .

Remark 4.3.8. Proposition (4.3.7) has an analog for the model structure introduced in Theorem

(3.1.2). That is, suppose that A and B are combinatorial model categories and let J be an arbitrary

small category. Then any left Quillen bifunctor ⊗ : A× B → C induces a left Quillen bifunctor∫ J
Fun(J op,A)× Fun(J ,B) −→ C (136)

where we regard Fun(J op,A) as endowed with the injective model structure and Fun(J ,B) with the

projective model structure. To see this, we must show that for any injective cofibration f : F → F ′
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in Fun(J op,A) and any projective cofibration g : G→ G′ in Fun(J ,B), the induced map

h :

∫ J
F ⊗G′

∐
∫ J F⊗G

∫ J
F ′ ⊗G −→

∫ J
F ′ ⊗G′ (137)

is a cofibration in C which is trivial if either f or g is trivial. Without loss of generality, we may

suppose that g is a generating projective cofibration of the form GjB → G
j
B′ , associated to an object

j ∈ J and a cofibration B → B′ in B, which is trivial if g is trivial (see proof of Theorem (3.1.2) for

an explanation of this notation). Unwinding the definitions, we can see that∫ J
F ⊗ F ′ ∼= F (j)⊗B′ (138)

and more generally we can identify h with the map

F (j)⊗B′
∐

F (j)⊗B

F ′(j)⊗B −→ F ′(j)⊗B′ (139)

Since B → B′ is a cofibration in B and the map F (j) → F ′(j) is a cofibration in A, we deduce that

h is a cofibration in C (since ⊗ is left Quillen bifunctor) which is trivial if either i or h is trivial.

Example 4.3.9. Let A be a simplicial model category, so that we have the left Quillen bifunctor

⊗ : A× sSet −→ A (140)

The coend construction determines a left Quillen bifunctor∫ ∆op

Fun(∆,A)× Fun(∆op, sSet) −→ A (141)

where Fun(∆,A) and Fun(∆op, sSet) are both endowed with the Reedy model structure. In particular,

if we fix a cosimplicial object X• ∈ Fun(∆,A) which is Reedy cofibrant, then forming the coend agains

X• determines a left Quillen functor from the category of bisimplicial sets (with the Reedy model

structure, which coincides with the injective model structure by Example (3.3.10)) to A.

Example 4.3.10. Let A be a simplicial model category, so that we have a left Quillen bifunctor

⊗ : A× sSet −→ A (142)

and consider the coend functor∫ ∆

Fun(∆op,A)× Fun(∆, sSet) −→ A (143)

Let ∆• ∈ Fun(∆, sSet) denote the standard simplex (that is, the functor [n]→ ∆n) and let [∗] denote

the final object on Fun(∆, sSet) (that is, the constant functor given by [n] → ∆0. The unique map

∆• → [∗] is a weak equivalence, and ∆• is Reedy cofibrant, we may therefore regard ∆• as a cofibrant

replacement of the constant functor [∗].
The functor X• →

∫∆
X• ⊗ [∗] can be identified with the colimit functor Fun(∆op,A)→ A. This

is a left Quillen functor if Fun(∆, sSet) is endowed with the injective model structure but not the

Reedy model structure. However, the geometric realization functor X• → |X•| =
∫∆

X•⊗∆• is a left

Quillen functor with respect to the Reedy model structure.

56



Proposition 4.3.11. Let A be a combinatorial simplicial model category and let X• be a simplicial

object of A. There is a canonical map

γ : hocolimX• −→ |X•| (144)

in the homotopy category of A. This map is an isomorphism in the homotopy category if X• is Reedy

cofibrant.

Proof. Let ∆• and [∗] be cosimplicial objects in sSet described in Example (4.3.10). Choose a weak

equivalence of simplicial objects X ′• → X•, where X ′• is projectively cofibrant. We then have

hocolimX• ∼= colimX ′•
∼=
∫ ∆

X ′• ⊗ [∗] (145)

And also the following diagram

∫∆
X ′• ⊗ [∗]

∫∆
X ′• ⊗∆•

∫∆
X• ⊗∆•α β

(146)

Since X ′• is projectively cofibrant, Remark (4.3.8) implies that the coend functor
∫∆

X ′•⊗− preserves

weak equivalences between injectively cofibrant cosimplicial objects of sSet; in particular α is a weak

equivalence in A. This gives the desired map γ in the homotopy category. Proposition (4.3.7) implies

that
∫∆− ⊗∆• preserves weak equivalences between Reedy cofibrant simplicial objects of A, which

proves that γ is an isomorphisms in the homotopy category if X• is Reedy cofibrant.

Example 4.3.12. In particular, if A is the category of simplicial sets sSets, then the map γ of

Proposition (4.3.11) is always a isomorphisms in the homotopy category; this follows from the fact

that every bisimplicial set is Reedy cofibrant, as mentioned in Example (3.3.10).

Moreover, if X• is a bisimplicial set, we claim |X•| ∼= diag(X•); where diag(X•) is the diagonal

simplicial set [n]→ Xn[n]. Too see this, we compute the geometric realization objectwise

Xk[k]⊗ [0→ 1→ · · · → k] = coeq
[∐

m→nXn[k]⊗∆m[k]
∐
nXn[k]⊗∆n[k]

]
(147)

Putting this together it follows that |X•| ∼= diag(X•). We have developed a simple computational

tool to compute homotopy colimits of diagrams in Fun(∆op, sSet).
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5 Applications

In the following chapter we will finally be able to use all of the machinery that we have developed so

far to prove the following results:

(1) Every simplicial presheaf is a homotopy colimit of representables with respect to the projective

model structure

(2) The category of simplicial presheaves of C endowed with the projective model structure is, in some

sense, the universal model category related to C.

These are, of course, analogous homotopical results to the ones mentioned in the section of

Presheaves. Motivated by (2), we will denote the category sPre(C) endowed with the projective

model structure by UC. In this chapter we will need the fact that UC is a simplicial model category,

but we will not prove this fact.

In the following introduction, we aim to continue our discussion about why simplicial presheaves

are interesting. For this, will aim to at least provide a partial answer to the question of how we can

use this notion of simplicial presheaves to study homotopy category of sShv(Sm/S)A1 . Recall that

there exists a model structure on sShv(Sm/S), where Sm/S denotes the category of smooth schemes

(of finite type), over a base scheme S, endowed with the Nisnevick topology. This model structure

is due to Morel and Voevodsky [12]. The underlying idea is that it should be possible to develop a

purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an

algebraic variety, with the affine line A1. We denote by sShv(Sm/S)A1 the category sShv(Sm/S)

endowed with this model structure. We call this model structure the motivic model structure. A first

answer is provided as a direct application of Theorem (5.2.9). This theorem states the following:

Theorem 5.0.1. Any functor γ : C →M from C into a model category M may be ’factored’ through

UC in the sense that there is a Quillen adjunction Re : UC �M : Sing and a natural weak equivalence

η : Re ◦ Y :→ γ:

C UC

M

Y

γ Reη (148)

Moreover, the category of such factorizations is contractible.

This theorem asserts that there will exist a Quillen adjunction U(Smk) � sShv(Sm/S)A1 . Al-

though this provides a way in which we can study sShv(Sm/S)A1 by comparing it to U(Sm/S), it

may feel like an unsatisfactory answer. Fortunately, there exists a procedure known as localization:

given a model category M and a set of maps S, one forms a new model structure S−1M in which

the elements of S have been added to the weak equivalences. Later in the paper, we will provide a

description of the set of morphisms S in U(Smk) that one should localize to obtain a Quillen equiv-

alence S−1U(Sm/S) � sShv(Sm/S)A1 . But for now, we will just state that it is possible to obtain

the desired Quillen equivalence and proceed by providing a brief discussion about the machinery of

localization.

Let C and C′ be two model categories with the same underlying category. We say that C′ is a

localization if the following conditions are satisfies:

(C) A morphisms f of C is a cofibration in C if and only if f if is a cofibration in C′.
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(W ) If a morphism f of C is a weak equivalence in C, then f is a weak equivalence in C′

It then also follows that

(F ) If a morphisms f of C is a fibration in C′, then f is a fibration in C.

Let C be a simplicial model category. Let hC be the homotopy category of C, obtained by first

passing to the full subcategory C◦ ⊂ C spanned by the fibrant-cofibrant objects and he passing to the

homotopy category of the simplicial category C◦. We see that hC has a natural enrichment over the

homotopy category hsSet: if X,Y ∈ hC are represented by fibrant-cofibrant objects X,Y ∈ C, then

we let

HomhC(X,Y ) =
[

HomC(X,Y )
]

(149)

Here [K] ∈ hsSet denotes the object of hsSet represented by a Kan complex K. Note that we are

using a different definition of homotopy category than the one presented before. We are denoting the

homotopy category by hC instead of Ho C. It is important to know that hC and Ho C are equivalent.

Let S be a collection of morphisms in hC. Then

(i) We will say that an object Z ∈ hC is S-local if, for every morphism f : X → Y in S, the induced

map

HomhC(Y,Z) −→ HomhC(X,Z) (150)

is an isomorphisms. We say that an object Z ∈ C is S-local if the image in hC is S-local

(ii) We will say that a morphism f : X → Y of hC is an S-equivalence if, for every S-local object

Z ∈ hC, the induced map

HomhC(Y, Z) −→ HomhC(X,Z) (151)

is an isomorphism. We say that a morphism f in C is an S-equivalence if its image in hC is an

S-equivalence.

If S is a collection of morphisms in C with image S in hC, we will apply the same terminology: an

object of C (or hC) is said to be S-local if it is S-local, and a morphism of C (or hC) is said to be an

S-equivalence if it is an S-equivalence.

Proposition 5.0.2. Let C be a left proper combinatorial simplicial model category and let S be a

(small) set of cofibrations in C. Let S−1C denote the same category, with the following distinguished

classes of morphisms:

(C) A morphisms g in S−1C is a cofibration if it is a cofibration when regarded as a morphisms in

C.

(W) A morphisms g in S−1C is a weak equivalence if it is an S-equivalence

Then

(1) The above definitions endow S−1C with the structure of a combinatorial simplicial model category

(2) The model category S−1C is left proper

(3) An object X ∈ C is fibrant in S−1C if and only if X is S-local and fibrant in C.
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Now that we have defined the process of localization, let’s go back to some claims we made before.

We have mentioned that there exists a model structure on sPre(Sm/S) that is Quillen equivalent to

sShv(Sm/S)A1 , and that the model structure on sPre(Sm/S) will help us understand the homotopy

category of sShv(Sm/S)A1 . In particular, we said that the disadvantage of the the model structure

sShv(Sm/S)A1 is that fibrations are characterized as morphisms which satisfy the right lifting property

with respect to the trivial cofibrations. Now, if we were able to find a set S of morphisms in U(Sm/S)

such that the localization S−1U(Sm/S) is Quillen equivalent to sShv(Sm/S)A1 we will get a much

better description of the fibrant objects in the homotopy category. The reason is that fibrations in

U(Sm/S) were described objectwise, and by Proposition (5.0.2) we know that the fibrant objects of

S−1U(Sm/S) are just the S-local objects that are fibrant objectwise.
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5.1 Homotopy Density Theorem

In this section we will prove that every simplicial presheaf is a homotopy colimit of representables. This

is the homotopical analog of the density theorem proved in the section on presheaves. Unfortunately,

the proof of this result will require us to be extremely careful with the notation we use, so we first

introduce some notation.

Recall that the category sPre(C) has as objects functors Cop → sSet and as morphisms natural

transformation between functors. By the tensor-hom adjunction and symmetry of the closed monoidal

structure on Cat we have the following equivalent formulation of sPre(C): The objects are functors

∆op → Pre(C) and the morphisms are the natural transformations between them. Although we can

not endowed this last formulation of the definition of sPre(C) with a model structure, at least with

the tools discussed in this paper, it will be useful to have it in mind for many purposes. To be

able to distinguish between this equivalent formulations of the definition of sPre(C) we introduce the

following notation: let F be a simplicial presheaf, we will denote by F ([n]) the presheaf obtained by

evaluating the functor F : ∆op → Pre(C) at [n]; similarly we will denote by F (U) the simplicial set we

obtained by evaluating the functor Cop → sSet at some U ∈ C. They should be easy to differentiate

since we will put use brackets [n] around the elements of ∆. To avoid ambiguity, we will say that a

simplicial presheaf is constant, if it is a constant functor Cop → sSet. And we will say that a simplicial

presheaf is discrete if it is a constant functor ∆op → Pre(C). The reason for this notation is that

a discrete simplicial presheaf when evaluated at some U ∈ C will yield a discrete simplicial set. We

can see that there is a canonical inclusion Pre(C) ↪→ sPre(C), by considering presheaves as discrete

simplicial presheaves.

In this section, we will use the notion of bisimplicial presheaves, as expected this is the category

biPre(C) := Fun(∆op, UC). We will denote a bisimplicial presheaf by F•, and by Fn the value that

that F• takes at [n]. And we will denote by rX• the representable bisimplicial presheaves, these are

the objects that are the image of the canonical inclusion sPre(C) ↪→ biPre(C), of the representables

objects in sPre(C).
The category biPre(C) can be endowed with the projective, injective, and Reedy model structure,

and unless stated otherwise, we will use the Reedy model structure. The reason is the following:

the main use that we will will have for this category is to proof that ever object in sPre(C) is a

homotopy colimit of representables of an object of biPre(C), and the main computational tool to

compute homotopy colimits will be Proposition (4.3.11). To be able to use Proposition (4.3.11), we

will need to be able to proof that certain bisimplicial presheaves are cofibrant, for this we will use the

fact that biPre(C) is a simplicial model category. Again, we will not proof this fact, but will be used

in this section.

The author learned this result from

• Dugger - Universal Homotopy Theories [4]

Although a great deal of detail has been added in this section, the bulk of the work should be credited

to him.

Definition 5.1.1. A simplicial presheaf F has free degeneracies if there exists a sub-simplicial presheaf

N ↪→ F such that the canonical map ∐
σ

N([σ])→ F ([k]) (152)
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is an isomorphism: here the variable σ rages over all surjective maps in ∆ of the form [k]→ [n], N([σ])

denotes a copy of N([n]), and the map N([σ]) → F ([k]) is the one induced by σ∗ : F ([n]) → F ([k]).

We say that N is a splitting of F .

Lemma 5.1.2. If F is a simplicial presheaf that has free degeneracies then F is the colimit of the

maps

sk0 F → sk1 F → sk2 → · · · (153)

where sk0 F = N([0]) and skn F is defined by the pushout square

N([n])⊗ ∂∆n skn−1 F

N([n])⊗∆n skn F

(154)

where we consider N([n]) as a discrete simplicial presheaf.

Proof. By considering the simplicial presheaves as functors Cop → sSet, we can compute the pushout

square for every object U ∈ C. It is clear from the fact that F has free degeneracies that skn F is

indeed the pushout of the diagram. In the same way, we can see that F is the sequential colimit of

the diagram sk0 F → sk1 F → · · · by computing the colimit objectwise.

Corollary 5.1.3. If F is a simplicial presheaf that has free degeneracies decomposition in which the

N([k]) are cofibrant in UC, as constant simplicial presheaves, then F is itself cofibrant.

Proof. The fact that N([k]) is cofibrant implies that N([k]) ⊗ ∂∆n → N([k]) ⊗ ∆n is a cofibration,

so the map skk−1 F → skk F is also a cofibration. Then F is a sequential colimit of cofibrations

beginning with ∅ → sk0 F , hence F is cofibrant.

Lemma 5.1.4. The representable simplicial presheaves rX are cofibrant in UC.

Proof. Recall that in the proof of the projective model structure in Theorem (3.1.2), we proved that

for any simplicial set K, and every X in C we have that FKX is cofibrant, this is because in the Kan

model structure every simplicial set is cofibrant. In particular, we have that

rX ∼= F∆0

X =
∐

α∈HomC(−,X)

∆0 (155)

The result follows.

Let F be an object in Pre(C). Define Q̃F to be the simplicial presheaf whose nth level is

(Q̃F )([n]) =
∐

rXn→···→rX0→F
rXn (156)

where the coproduct ranges over chains of composable maps in Pre(C). The face and degeneracy

maps are the obvious candidates. In particular, we can see that by the functoriality of the element

category, Definition (1.1.5), we can conclude that Q̃ is a functor Pre(C) → sPre(C). Here we are

using the subscript n on rXn for indexing, not as the value of a bisimplicial presheaf.

Proposition 5.1.5. The canonical map Q̃F → F is a weak equivalence in UC, when we consider F

as a constant simplicial presheaf. And Q̃F is cofibrant. In other words, Q̃F is a cofibrant replacement

for F .
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Proof. Recall that Q̃F → F is a weak equivalence if and only if, for each U ∈ C the map Q̃F (U) →
F (U) is a weak equivalence of simplicial sets. By construction we can see that for every n there exists

a lift

∂∆n Q̃F (U)

∆n F (U)

(157)

it follows that Q̃F (U)→ F (U) is a trivial fibration, it follows that Q̃F → F is a weak equivalence.

To see that Q̃ is cofibrant, first we observe that it has free degeneracies. Let N be the simplicial

presheaf whose nth level is

N([n]) =
∐

rXn→···→rX0→F
rXn (158)

in which no map rXk+1 → rXk is an identity map. When considering each Nn as a constant simplicial

presheaf, we can see that it is a coproduct of representables, therefore by Lemma(5.1.4) we have that

each Nn is cofibrant. By Corollary (5.1.3) it follows that Q̃F is cofibrant.

Definition 5.1.6. We say that a bisimplicial presheaf F• ∈ Fun(∆op, sPre(C)), has free degeneracies,

if there exists a sub-bisimplicial presheaf N• ↪→ F• such that the canonical map

Nk Fk (159)

is a splitting of Fk, for each k. We call N• a splitting of F•

Definition 5.1.7. We say that the nth skeleton of a bisimplicial presheaf F•, is the simplicial object

in sPre(C) that takes values [k]→ skn Fk, and whose face and degeneracy maps are the once induced

by F•. We denote it by skn F•.

Lemma 5.1.8. If F• is a bisimplicial presheaf that has free degeneracies, then F• is the colimit of

maps

sk0 F• → sk1 F• → sk2 F• → · · · (160)

where sk0 F• = N•([0]) and skn F• is defined by the pushout square

N•([n])⊗ ∂∆n skn−1 F•

N•([n])⊗∆n skn F•

(161)

where N•([n]) is a functor ∆op → sPre(C) that takes values on discrete simplicial presheaves. Con-

cretely it is the functor [k] → Nk([n]), where we consider the presheaf Nk[n] as a discrete simplicial

presheaf.

Proof. By considering a bisimplicial presheaf as a functor ∆op → sPre(C), we can compute the

pushout square for every [n] ∈ ∆op, we can then see that the sknF• is indeed the pushout of the

diagram by invoking Lemma (5.1.2). In the same way we can see that F• is the colimit of the diagram

sk0 F• → sk1 F• → · · · by computing the colimit objectwise and invoking Lemma (5.1.2).

Corollary 5.1.9. If F• is a bisimplicial presheaf that has a free degeneracy decomposition, in which

N•([k]) is cofibrant in as a bisimplicial presheaf, then F• is itself cofibrant.
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Proof. The fact that N•([k]) is cofibrant implies that N•([k])⊗ ∂∆n → N•([k])⊗∆n is a cofibration,

so the map skk−1 F• → skk F• is also a cofibration. Then F• is a sequential colimit of cofibrations

beginning with ∅ → sk0 F•, hence F• is cofibrant.

Lemma 5.1.10. The representable bisimplicial presheaves rX• are cofibrant in biPre(C) with the

projective model structure, therefore it is also cofibrant with the Reedy model structure.

Proof. Recall that in the proof of the projective model structure in Theorem (3.1.2), we proved that

for any cofibrant simplicial presheaf G, and every [n] in ∆ we have that FG[n] is cofibrant. In particular,

we have that

rX• = FrX[0] =
∐

α∈Hom∆(−,[0])

rX (162)

this is true becuse [0] is the final object in ∆. Moreover in Lemma (5.1.4) we showed that rX is

cofibrant in UC, the result follows.

Let F be an object of sPre(C). Define QF• to be the bisimplicial presheaf obtained in the

following way: consider F• as a bisimplicial presheaf that takes values on discrete simplicial presheaves;

that is, F• maps [n] to F ([n]) considered as a discrete simplicial presheaf. Then, apply the functor

Q̃ : Pre(C)→ sPre(C) in each object [n]. This procedure defines a functor Q : sPre(C)→ biPre(C).

Proposition 5.1.11. The canonical map QF• → F• is a weak equivalence in biPre(C), and QF• is

cofibrant. In other words QF• is a cofibrant replacement for F•.

Proof. Recall that the weak equivalence in the Reedy model structure of biPre(C) is defined objectwise,

it follows form Proposition (5.1.5) that QF• → F• is a weak equivalence.

Let N• be the bisimplicial presheaf, such that Nk is the splitting defined above for QFk. It follows

by definition that N• is a splitting of QF•. By invoking Corollary (5.1.9), we see that it suffices to

show that N•([k]) is cofibrant as a bisimplicial presheaf. Consider Nn([k]) as a constant bisimplicial

presheaf, we can then construct N•([k]) inductively in the following way: Let sk0N•([k]) = N0([k]),

and define sknN•([k]) by the following pushout square

Nn([k])⊗ ∂∆n skn−1N•([k])

Nn([k])⊗∆n sknN•([k])

(163)

If every Nn([k]) is cofibrant in biPre(C), it follows that Nn([k])⊗∂∆n → Nn([k])⊗∆n is a cofibration,

by the simplicial model structure. Then skn−1N•([k]) → sknN•([k]) is a cofibration. Since N•([k])

can be considered as the sequential colimit of sk0N•([k]) → sk1N•([k]) → · · · , and ∅ → sk0N•([k])

is a cofibration, it follows that N•([k]) is cofibrant. Finally, we only need to proof that every Nn([k])

is cofibrant in biPre(C). We note that Nn([k]) is just a coproduct of representables, and we invoke

Lemma (5.1.10), the result follows.

Theorem 5.1.12. Every simplicial presheaf is a homotopy colimit of representables.

Proof. Let F be a simplicial presheaf, and let F• be the bisimplicial presheaf, that maps [k]→ F ([k])

where we consider F ([k]) as a discrete simplicial presheaf. Recall from Proposition (4.3.11), that for

a Reedy cofibrant bisimplicial presheaf QF• we have that: hocolimQF• and |QF•| are isomorphic in
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the homotopy category. It suffices to show that there exists a weak equivalence |QF•| → F , since QF•

only takes values on representable simplicial presheaves. By evaluating QF• at each object U ∈ C, we

obtain a bisimplicial set QF•(U); and by Example (4.3.12), we conclude that |QF•(U)| ∼= diagQF•(U).

By construction it follows that the canonical map diagQF•(U) → diagF•(U) ∼= F (U) is a weak

equivalence. Finally, we note that since the weak equivalences are defined objectwise, it follows that

|QF•| → F is a weak equivalence.
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5.2 Universal Property of Simplicial Presheaves

In these section we will finally prove the result regarding the universal property of the model category

UC. This is the result that I had in mind when I wrote the short story about the physicists and

the simplest physical theory. So I hope that after this chapter it becomes clear what I was trying to

transmit with that short story.

The author learned this material from:

• Dugger - Universal Homotopy Theories [4]

Although we have added a great deal of detail, the bulk of the work is due to him.

Let M be a model category, denote by cM the model category Fun(∆,M) endowed with the

Reedy model structure.

Definition 5.2.1. Let M and N be model categories, equipped with functors r : C → M and

γ : C → N , as shown in the diagram below:

C M

N

r

γ
(164)

We define a factorization of γ through M to be the following data:

(i) A Quillen adjunction L :M� N : R

(ii) A natural weak equivalence η : L ◦ r → γ

The factorization can be denoted by the triple (L,R, η). In this paper we will usually regard a Quillen

adjunction as a left Quillen functor L : M → N . This is equivalent to the existence of a Quillen

adjunction, but it makes the term ’factorization’ more appropriate. Therefore, we can also denote a

factorization by the pair (L, η), we will usually adopt this notation.

Definition 5.2.2. Define the category of factorizations FactM(γ) in the following way:

• Its objects are pairs (L, η) as above

• Its morphisms are natural transformations L→ L′ that make the following diagram commute

L ◦ r(X) L′ ◦ r(X)

γ(X)

η η′
(165)

Note that giving a natural transformation L → L′ is equivalent, via adjointness, to giving a natural

transformation R′ → R or to giving two maps L → L′ and R′ → R which are compatible with the

adjunction. So we could have adopted a more symmetric definition, but it would be equivalent to the

one above.

Definition 5.2.3. Let C be a category with a functor γ : C →M. A cosimplicial resolution of γ is:

(i) A functor Γ : C → cM such that Γ(X) is Reedy cofibrant
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(ii) A natural weak equivalence ε : Γ(X)→ X, by regarding X as a constant functor in cM.

The cosimplicial resolution can be denoted by the pair (Γ, ε).

Definition 5.2.4. Define the category of cosimplicial resolutions coRes(γ) in the following way:

• Its objects are pairs (Γ, ε) as above

• Its morphism are natural transformations Γ→ Γ′ that make the following diagram commute

Γ(X) Γ′(X)

X

ε ε′
(166)

where we regard X as a constant functor in cM.

Lemma 5.2.5. Let M be a cocomplete category. There exists a bifunctor∫ Cop

−⊗− : Fun(C, cM)× Fun(Cop, sSet) −→M (167)

such that for a fixed Γ ∈ Fun(C, cM), the induced functor
∫ Cop

Γ⊗− : sPre(C)→M is a left adjoint,

whose right adjoint is the functor m→ HomM(Γ−,m).

Proof. As the notation suggests, the bifunctor
∫ Cop

−⊗− is the coend of a certain bifunctor −⊗− :

cM⊗ sSet→M. We will begin by defining this bifunctor, and showing that for a fixed X ∈ cM the

induced functor X ⊗ − is a left adjoint. Recall from Theorem (1.1.7), that for a fixed X ∈ cM, we

obtain the following diagram

∆ sSet

M

Y

X
ReX (168)

So we define X⊗− : sSet→M to coincide the functor ReX . Therefore X⊗− is a left adjoint functor,

whose right adjoint is the functor m→ HomM(X−,m). Moreover, by the construction of ReX in the

proof of Theorem (1.1.7), we can conclude that it is natural in X, hence −⊗− : cM⊗ sSet→M is

the required bifunctor.

Then we can form the coend, and obtain the following bifunctor:∫ Cop

−⊗− : Fun(C, cM)× Fun(Cop, sSet) −→M (169)

We are only left to show that for a fixed Γ ∈ Fun(C, cM) the functor
∫ Cop

Γ⊗− : sPre(C)→M is a

left adjoint. For this, let F ∈ sPre(C), and U ∈ C, and consider the following sequence of identities:

HomM

(∫ Cop

Γ⊗ F,m
)

=

∫
Cop

HomM

(
Γ(U)⊗ F (U),m

)
(170)

=

∫
Cop

HomsSet

(
F (U),HomM(Γ(U)−,m)

)
(171)

= HomsPre(C)

(
F,HomM(Γ−,m)

)
(172)

This completes the proof.
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Proposition 5.2.6. Let C be a small category and let M be a model category. There exists a pair a

functors

F : FactUC(γ) −→ coRes(γ) (173)

G : coRes(γ) −→ FactUC(γ) (174)

Proof. First, we will define the functor F : FactUC(γ)→ coRes(γ). Suppose we are given a factoriza-

tion of γ : C → M through UC: so we have a Quillen pair Re : UC �M : Sing and a natural weak

equivalence Re(rX) → γ(X). Then for each X ∈ C we get a cosimplicial resolution of γ by taking

Γ(X) to be:

[n] Re(rX ⊗∆n) (175)

This is clearly functorial in X. We want to proof that Γ is a cosimplicial resolution of γ. It is clear that

Γ(X)→ Re(rX) is a weak equivalence that is natural in X; then all we need to do is proof that Γ(X) is

indeed cofibrant in the Reedy model structure of cM. Recall that LnΓ(X) ∼= colim∆+,n
Re(rX⊗∆j),

where the category ∆+,n is the subcategory of ∆ generated by the injective morphisms with codomain

n. Since Re is a left Quillen functor, it preserves colimits, hence LnΓ(X) ∼= Re(colim∆+,n
rX ⊗∆j).

Moreover, we know that −⊗− : sPre(C)×sSet→ sPre(C) is a left Quillen bifunctor, and in particular

is preserves colimits independently in each variable, it follows that LnΓ(X) ∼= Re(rX ⊗ ∂∆n). Since

rX is cofibrant in UC, we conclude that Re(rX ⊗ ∂∆n)→ Re(rX ⊗∆n) is a cofibration, hence Γ(X)

is Reedy cofibrant. This defines the functor F : FactUC(γ)→ coRes(γ).

Now, we will define the functor G : coRes(γ) → FactUC(γ). Suppose we start with a resolution

Γ : C → cM. Define the functors Re : UC �M : Sing by the formulas

Re(F ) =

∫ Cop

Γ⊗ F Sing(X) = HomM(Γ−, X) (176)

By Lemma (5.2.5) it follows this is an adjunction. Too see that it is a Quillen pair, we will first show

that the bifunctor − ⊗ − : cM× sSet → M satisfies the following condition: if f : A → B be a

cofibration in cM, and g : K → L is a cofibration in sSet, then (A⊗L)qA⊗K (B ⊗K)→ B ⊗L is a

cofibration in M. And it is a trivial cofibration if f is. It suffices to show for the case when g is one

of the generating cofibrations ∂∆n → ∆n. We claim that the map A⊗ ∂∆n → A⊗∆n is isomorphic

to LnA → An. This follows from the fact that A ⊗ − preserves colimits, and that A ⊗∆j
∼= Aj by

construction. Therefore, (A⊗∆n)qA⊗∂∆n (B⊗∂∆n)→ B⊗∆n is isomorphic to AnqLnALnB → Bn,

which is a (trivial) cofibration, since f is a (trivial) cofibration. By adjunction given a cofibration

f : A→ B in cM, and any (trivial) fibration i : X → Y in cM, we conclude that the map

HomM(B,X) −→ HomM(A,X)×HomM(A,Y ) HomM(B, Y ) (177)

is a (trivial) fibration of simplicial sets if i is. In particular, since Γ : Cop → cM takes values in

cofibrant objects, it follows that for a fixed U ∈ C the functor cM→ sSet defined by the rule X →
HomM(Γ(U), X) preserves (trivial) fibrations. Therefore, since UC has the projective model structure,

its (trivial) fibrations are defined objectwise, hence Sing : M → UC is preserves (trivial) fibrations.

It follows that Re : UC �M : Sing is a Quillen adjunction. Finally, we need to check that there is

a natural weak equivalence Re(rX) → γ(X). But recall from the definition that Re(rX) ∼= Γ(X)0,

and our cosimplicial resolution came with a weak natural weak equivalence Γ(X) → γ(X), when we

consider γ(X) as a constant functor cM. We have defined a functor G : coRes(γ)→ FactUC(γ).

68



Lemma 5.2.7. For each n, there exists an adjunction

−⊗∆n : Pre(C) � sPre(C) : Evn (178)

where Evn(X) = HomsPre(C)(−⊗∆n, X) and Y ⊗∆n is the expected simplicial presheaf.

Proof. Let Γn be the functor C → sPre(C), that maps X → rX ⊗∆n. It follows by Theorem (1.1.7)

that there exists a left adjoint functor −⊗∆n : Pre(C)→ sPre(C). Moreover, we know that its right

adjoint is the functor X → HomsPre(C)(−⊗∆n, X).

Proposition 5.2.8. The functors F and G defined in the proof of Proposition (5.2.6), determines an

equivalence of categories

F : FactUC(γ) ' coRes(γ) : G (179)

Proof. First, we will show that given a object Re ∈ FactUC , there exists a natural isomorphism

Re ∼= G ◦ FRe. First, recall that FRe is the cosimplicial resolution defined by the rule

FRe(−) : [n] −→ Re(r −⊗∆n) (180)

and G ◦ FRe is the left Quillen functor determined by

G ◦ FRe(−) =

∫ Cop

FRe⊗− (181)

We claim that for any left Quillen functor Re : UC → M, its right adjoint is the functor m →
HomM(FRe−,m). Consider the following identity:

HomUC(F,HomM(FRe−,m)) ∼=
∫

∆

HomPre(C)(Fn,HomM(Re(−⊗∆n),m)) (182)

By Lemma (5.2.7) we know that Re(−⊗∆n) : Pre(C)→M is a left adjoint, and by Theorem (1.1.7),

we conclude that its right adjoint is m→ HomM(Re(−⊗∆n),m). It follows that∫
∆

HomPre(C)

(
Fn,HomM(Re(−⊗∆n),m)

)
∼=
∫

∆

HomM

(
Re(Fn ⊗∆n),m

)
(183)

∼= HomM

(
Re(F ),m

)
(184)

Then, by the definition of G : coRes(γ) → FactUC(γ), and from the fact that adjoint functors are

unique up unique isomorphism it follows that Re ∼= G ◦ FRe.
Next, we need to show that for a cosimplicial resolution Γ, there exists a natural isomorphism

Γ ∼= F ◦ GΓ. For this, we will only compute the values of GΓ at the functors rX ⊗ ∆n, the reason

is that this are the only values that matter to determine F ◦ GΓ. For this, consider the following

identities

GΓ =

∫ Cop

Γ⊗ (rX ⊗∆n) ∼=
∫ Cop ∐

rX(U)

Γ⊗∆n ∼=
∫ Cop

Γn ⊗ rX (185)

in the last term, we are considering Γn as a functor C → M and rX as an object of Pre(C). Then,

by Theorem (1.1.7) we conclude that

GΓ ∼=
∫ Cop

Γn ⊗ rX ∼= Γn(X) (186)

Then, the functor F ◦ GF is determined by the following rule

F ◦ GΓ : [n] −→ Γn(X) (187)

Hence Γ ∼= F ◦ GΓ. We have shown that there exists an equivalence of categories.
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Theorem 5.2.9. Any functor γ : C →M from C into a model category M may be ’factored’ through

UC in the sense that there is a Quillen adjunction Re : UC �M : Sing and a natural weak equivalence

η : Re ◦ Y :→ γ:

C UC

M

Y

γ Reη (188)

Moreover, the category of such factorizations is contractible. In other words: the category FactUC(γ)

is non empty and contractible.

Proof. To show that FactUC(γ) is non empty, by Proposition (5.2.8) it suffices to show that coRes(γ)

is non empty. From the functorial factorization axiom of cM it follows that coRes(γ) is non empty.

Similarly, to show that the nerve of the category FactUC(γ) denoted by N(FactUC(γ)) is contractible,

it suffices to show that N(coRes(γ)) is contractible. For this, denote by ΓF cosimplicial resolution of

γ obtained by using the functorial factorization axiom of cM. Therefore we have that ΓF (X)→ γ(X)

is a trivial fibration for every X ∈ C. Let Γ1 be another cosimplicial resolution of γ, then for each

morphism Γ1(X)→ γ(X) there exists a lift

∅ ΓF (X)

Γ1(X) γ(X)

(189)

this induces a lift in the category Fun(C, cM) as described in the following diagram

∅ ΓF

Γ1 γ

(190)

In particular, this induced a map in Γ1 → ΓF in coRes(γ). Next, for each map Γ1 → Γ2 in coRes(γ),

we have the following commutative diagram in Fun(C, cM):

∅ ΓF ∅

Γ1 γ Γ2

(191)

It follows that the morphism Γ1 → Γ2 extends to the following commutative diagram in coRes(γ)

Γ1

Γ2 ΓF

(192)

Since coRes(γ) is a category, its nerve is completely determined by its 2-skeleton. Hence, N(coRes(γ))

is contractible.
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6 Looking Forward

Recall that the category of simplicial sheaves on a Grothendieck site C is the full subcategory of

sPre(C), such that it satisfies the sheave condition when evaluated at each [n]. We denote this

category by sShv(C). Recall that there exists a model structure on sShv(Sm/S), where Sm/S denotes

the category of smooth schemes (of finite type), over a base scheme S, endowed with the Nisnevick

topology. This model structure is due to Morel and Voevodsky [12]. The underlying idea is that it

should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit

interval [0, 1], which is not an algebraic variety, with the affine line A1. We denote by sShv(Sm/S)A1

the category sShv(Sm/S) endowed with this model structure. We will call this model structure the

motivic model structure. Our goal in this section is to provide a more careful discussion regarding

how one can use the category sPre(Sm/S) to study sShv(Sm/S)A1 . For this, we first provide careful

definitions of the required model structures.

Simplicial sets have homotopy groups. If X is a simplicial set, and x is a vertex of X, then define

the homotopy groups of X at x by the following rule

πn(X,x) ∼= πn(|X|, x) (193)

A map of simplicial sets f : X → Y is a weak equivalence if and only if

(i) the function π0X → π0Y is a bijection

(ii) the maps πn(X,x)→ πn(Y, f(x)) are isomorphisms of groups for n ≥ 1 and all x ∈ X0.

Let C be a Grothendieck site, and X a simplicial presheaf on C. We can define a presheaf π0X

and a group valued presheaf πn(X,x) for all n ≥ 1 and all x ∈ X0. These constructions are clearly

functorial. Every U ∈ C determines a site C/U whose objects are all the morphisms V → U . And we

say that a family

Vi −→ V −→ U (194)

is a covering if and only if the family Vi → V covers V . Precomposition with the canonical functor

C/U → C determines a restricted simplicial presheaf X|U on C/U for every simplicial presheaf X on

C. In the same way as before define a presheaf π0(X|U ) and a group valued presheaf πn(X|U , x) for

all n and all x ∈ X0. These constructions are again functorial. Recall that the inclusion functor

Shv(C) ↪→ Pre(C) has a left adjoint L : Pre(C) → Shv(C) which is known in the literature as the

sheafification functor.

Definition 6.0.1. A morphism f : X → Y of simplicial presheaves is a local weak equivalence if and

only if

(i) the function L(π0X)→ L(π0Y ) is an isomorphisms of set valued sheaves.

(ii) the maps L(πn(X,x))→ L(πn(Y, f(x))) are isomorphisms of groups valued sheafs for n ≥ 1 and

all x ∈ X0.

It is important to note that every objectwise weak equivalence in sPre(C) is also a local weak

equivalence. Thus, in some sense, a map is a local weak equivalence if and only if it induces an

isomorphisms in all possible sheaves of homotopy groups at all base points.

We can now define the following model structures; although, we will not prove that the description

satisfies the model structure axioms.
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Definition 6.0.2. Define the local model structure on sPre(C), by the following maps

(W ) A morphisms f : X → Y of simplicial presheaves is a weak equivalence if f is a local weak

equivalence

(C) A morphisms f : X → Y of simplicial presheaves is a cofibration if it is an objectwise monomor-

phism

(F ) A morphisms f : X → Y of simplicial presheaves is a fibration if it has the right lifting property

with respect to the trivial cofibrations

Denote by sPre(C)local the category sPre(C) endowed with the local model structure.

Remark 6.0.3. The map induced by the unit X → L(X) is a local weak equivalence.

Remark 6.0.4. The canonical inclusion sShv(C) ↪→ sPre(C) defines a mode structure on sShv(C),
when we consider sPre(C) to be equipped with the local model structure. We denote by sShv(C)local,
the category sShv(C) with the model structure defined above.

It is important to note that sShv(Sm/S)local is not Quillen equivalent to sShv(Sm/S)A1 , but

they are closely related. In particular, Morel and Voevodsky [12] define the motivic model structure

to be the localization of sShv(Smk)local with respect to the projection maps X × A1 → X.

Our next goal is to find a set’s worth of morphisms H in UC, such that H−1UC � sPre(C)local
is a Quillen equivalence. If we are able to find such set of maps, then we will only have to localize

the projection maps X × A1 → X on H−1U(Sm/S) to obtain a Quillen equivalence U(Sm/S)A1 �

sShv(Sm/S)A1 . Where U(Sm/S)A1 denotes the localization of U(Sm/S), with respect to the hypo-

thetical set H described above, and the projection maps X×A→ X. Since fibrations in U(Sm/S) are

described objectwise, by Proposition (5.0.2) we will obtain a complete description of the fibrant objects

in U(Sm/S)A1 . This will provide us better understanding of the homotopy category of sShv(Sm/S)A1 .

It is worth mentioning that all the Quillen equivalences here are induced by the Quillen adjunction of

Theorem (5.2.9).

Now we will provide a description of which set of morphisms H one should localize to obtain a

Quillen equivalence H−1U(C) � sPre(C)local. Unfortunately, we will not provide a proof for any of

the claims we will make. We refer the reader to [6] for a more detailed exposition.

Definition 6.0.5. Let X belong to C and suppose that U is a simplicial presheaf, with and map

U → X, where we consider X as a discrete simplicial presheaf. This map is called a hypercover of X

if each Un is a coproduct of representables, and U → X is a trivial fibration in sPre(C)local.

Morally speaking, we want to localize the hypercovers in UC. But there is a small technical issue,

the class of all hypercovers need not be a set, so we cannot apply Proposition (5.0.2). There exists a

way around it, under a slight hypothesis, it is possible to prove that there exists a set H of hypercovers,

such that once we localize, every hypercover becomes a weak equivalence. We will not prove this fact.

We call a set of hypercovers H dense if it satisfies the property that: if we localize with respect to H

we localize with respect to all hypercovers.

Theorem 6.0.6. Let H be a dense set of hypercovers. Then the localization H−1U(C) exists and

coincides with sPre(C)local.
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It is proven in [6] that the Grothendieck site Sm/S has a dense set of hypercovers. We have

completed our promise to construct a localization of U(Sm/S) to obtain a category U(Sm/S)A1

which is Quillen equivalent to sShv(Sm/S)A1 . We said that this construction was useful because we

can get a complete description of the fibrant objects in U(Sm/S)A1 . By Proposition (5.0.2), we know

that the fibrant objects in U(Sm/S)A1 are the presheaves that are objectwise fibrant, and which are

local with respect to the hypercovers and to the projection maps X×A1 → X. But we can do better.

Definition 6.0.7. An objectwise fibrant simplicial presheaf F satisfies descent for a hypercover

U → X if the natural map from F (X) to the homotopy limit of the diagram∏
a F (Ua0 )

∏
a F (Ua1 ) · · · (195)

is a weal equivalence. Here the products range over the representable summands of each Un. If F is

not objectwise fibrant, we say that it satisfies descent is some objectwise fibrant replacement for F

does.

Corollary 6.0.8. Let H be a dense set of hypercovers. A simplicial presheaf F is fibrant in H−1U(C)
if and only if F is objectwise fibrant and satisfies descent for all hypercovers.

We have obtained an even better description of the fibrant objects in U(Sm/S)A1 . The fibrant

objects in U(Sm/S)A1 are the objectwise fibrant simplicial presheaves, which satisfy descent with

respect to all hypercovers, and which are local with respect to the projection maps X × A1 → X.

Finally, I would like to conclude this paper by presenting a more direct application of Theorem

(5.2.9). We consider model categories, which can be obtained – up to Quillen equivalence – by starting

with a universal model category UC and then localizing at some set of maps S. We say that these

model categories have small presentations, since the category C can be thought of as a category of

’generators’ and the set S as a collection of ’relations’.

Definition 6.0.9. Let M be a model category. A small presentation of M consists of the following

data

(i) a small category C

(ii) a choice of Quillen pair Re : UC �M : Sing

(iii) a set of maps S in UC

and we require the properties that

(1) The left derived functor of Re takes maps in S to weak equivalences

(2) The induced Quillen pair S−1U(C) �M is a Quillen equivalence.

Theorem 6.0.10. Any combinatorial model category has small presentations.

Corollary 6.0.11. Any combinatorial model category is Quillen equivalent to one which is both sim-

plicial and left proper.

Unfortunately, we will not provide a proof for these results. We refer the reader to [3], for a more

detailed exposition.
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Example 6.0.12. We usually think of simplicial sets as objects formally built from ∆. The obvious

map ∆ → Top gives rise to a Quillen pair Re : U(∆) � Top : Sing, but this is not a Quillen

equivalence. The first problem one encounters is that there is nothing in U(∆) saying that the objects

∆n are contractible. In fact this turns out to be the only problem. If we localize U(∆) at the set of

maps S = {∆n → ∗}, then our Quillen functors descend to a pair

Re : S−1U(∆) � Top : Sing (196)

It can be proven that this is a Quillen equivalence. So the homotopy theory of simplicial sets is the

universal homotopy theory built from ∆ in which the ∆n are contractible.
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