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Abstract
Cellular automata are dynamical systems which consist of changing patterns of symbols on a

grid. The changes are locally determined, so that the symbol in a given position is determined by
the symbols surrounding that position in the previous state. Despite the simplicity of their defi-
nition, cellular automata may exhibit large-scale complex behavior. This large-scale complexity
arising from simple local behavior is of interest in modeling many complex phenomena, such as
biological systems and universal computers. In this paper, we consider one-dimensional additive
cellular automata with polynomial transition rules T , and investigate the line complexity sequence
aT (k), which gives the number of accessible blocks of length k for each k. We have previously
shown that for transition rules T (x) = 1+ x+ xn (n≥ 3) with coefficients taken modulo 2, and for
certain sequences sk which are dependent upon a real number x ∈ [1/2,1], the quotient aT (sk)/s2

k
converges to a piecewise quadratic function of x. Our development was based on recursive expres-
sions for the line complexity sequence. In this paper, we investigate these recursions for general
polynomials with coefficients modulo 2, and determine some characteristics of these polynomials
that enable a generalization of some of our previous arguments. In particular, we characterize the
polynomials for which certain associated maps are injective – an essential feature of these recur-
sions – and show that some intersections that arise in the derivation of such a recursion stabilize in
size for sufficiently large k in the case of general polynomial transition rules. We also view the re-
cursions described above in a more general context, introducing a notion of the order of a recursion
distinct from the order of the transition rule. We investigate the behavior of the line complexity
under powers, and show that the property of “having a recursion of some order” is preserved when
the transition rule is raised to a positive integer power.
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Figure 1: Constructing Pascal’s triangle modulo 2

1 Introduction
A cellular automaton is a discrete system which consists of patterns of symbols on a grid. These
patterns change in successive time intervals, and the changes are specified by a transition rule, in
such a way that the symbol in a particular location at a particular point in time is determined by
the surrounding symbols in the previous state.

In this paper, we shall focus on one-dimensional cellular automata. A particular state for such
an automaton is called a configuration, and may be expressed as a Laurent series

∞

∑
−∞

aixi,

where the superscripts correspond to the locations of the values ai. For example, the expression
x+3x3 +2x4 represents the string 01032.

Given a configuration ω , the transition rule T for a cellular automaton determines a new con-
figuration T ω in such a way that the value at a given index i in T ω is determined by values near i in
ω . An additive transition rule is specified by a Laurent polynomial and acts upon a configuration
by multiplication. In this paper, we will use as an alphabet the integers modulo some prime p. Thus
in this case the transition rule acts upon a configuration by multiplication, and the coefficients are
reduced modulo p. We illustrate this process by constructing Pascal’s triangle modulo 2 in Figure
1; we take p = 2, T (x) = 1+ x, and start with the initial state ω0 = 1.

A more complicated example is obtained by taking p = 2, ω0 = 1, T (x) = 1+ x2 + x4 + x5.
This automaton is illustrated in Figure 2.

Sequences of length k which appear in some configuration are called k-accessible blocks. For
example, the block 110011 appears in line 5 of the automaton shown in Figure 1, and is thus ac-
cessible. We will write aT (k) for the number of accessible blocks of length k for a given transition
rule T (it is implicitly assumed that the initial state has been specified). We define aT (0) = 1: the
empty string is always accessible. The sequence aT (k) for k ≥ 0 is called the line complexity of
the automaton.

Garbe [1] considered the transition rule T (x) = 1+ x with coefficients taken modulo general
primes p and the rule T (x) = 1+x+x2 with coefficients taken modulo small primes p, and investi-
gated the asymptotic behavior of subsequences of the quotient aT (k)/k2. In [2], we considered the
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Figure 2: The automaton obtained by iteratively multiplying ω0 = 1 by the rule T (x) = 1+ x2 +
x4 + x5, modulo 2.

case p= 2 and investigated the general class of transition rules of the form T (x) = 1+x+xn, where
n≥ 3. For certain sequences sk(x), where x ∈ [1/p,1], we showed that limk→∞ aT (sk(x))/sk(x)2 is
piecewise quadratic in x. Our argument was based upon iterating an abstract generating function
relation of the form

λ (z)φ(z) = R(z)+λ (zp)φ(zp),

where φ is a generating function for the line complexity sequence (possibly with shifted coeffi-
cients), R is a polynomial with R(1) = 0, and λ is the reciprocal of a power series whose coeffi-
cients are of the form γ(k) =Ck2 + f (k), with C > 0, f (0) = 1 and f (k) = o

(
k2

logp x

)
. We showed

that the asymptotic behavior of aT (sk(x))/sk(x)2 we observed may be derived entirely from these
functional relations; we derived these relations, in turn, from recursive expressions for the line
complexity sequence of a form which we will describe in Section 3. We proved these relations by
an argument involving the inclusion-exclusion principle; one important feature of these recursions
is that the size of the intersections is eventually constant.

In this paper, we examine these recursions for general polynomials, and determine some char-
acteristics of these polynomials that enable a generalization of some of our previous arguments. In
Section 2, we introduce some useful notation. In Section 3, we will describe the general structure
of the recursion relations, and we will see the importance of the injectivity of several transforma-
tions that we will introduce. In Section 4, we investigate the injectivity of these maps, and provide
a complete characterization of which polynomials induce injective maps on the whole space. In
Section 5, we investigate the asymptotic size of some intersections that arise in Section 3. In
Section 6, we examine some interesting consequences of introducing a notion of the order of a
recursion, and characterize the behavior of the line complexity sequence when the transition rule
is raised to a power.

2 Notation
In this section, we introduce some notation which we will use throughout the rest of the paper.

In the following, we will write Ap(I;T ) for the automaton generated by iteratively multiplying
I by T and reducing the coefficients modulo p. We will assume throughout that I,T ∈ (Z/p)[x].
We will write A (k) for the set of accessible blocks of length k associated to such an automaton.

We shall write 1201 = 1101 etc. in block notation; to distinguish this notation from operations
such as squaring, we shall write the latter with square brackets, e.g.

[(111)2] = (1+ x+ x2)2 = 10101,
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whereas
(111)2 = 111111.

If b = b0 · · ·bn, we will write b|i··· j = bi · · ·b j. At the end of a block, we employ the notation
0l to represent sufficiently many zeros to bring the total length of the block to l + 1; for example
10105 = 101000.

If f and g are polynomials, we will write ( f ,g) = 1 to indicate that f and g have no nontrivial
common factors.

3 Recursion Formulas for the Line Complexity Sequence
Our study of the asymptotic properties of the line complexity sequence is based upon recursion
formulas for aT (2k) and aT (2k + 1). These recursions hold for sufficiently large k, and their
structure is motivated by the following analysis. We shall focus on the recursion for aT (2k).

Consider an automaton A2(1;T ), where T is a polynomial of degree n, and some even row of
this automaton, say 2r. We see that this line of the automaton is of the form

T 2r(1) = T 2r = (T r)2. (1)

In view of the identity T (s2)≡ T (s)2 (mod 2), squaring a polynomial has the effect of inserting
zeros between the original coefficients; thus (in block notation) we have

[(x0x1x2)
2] = x00x10x2.

Since line 2r of the automaton is a square, we see that all accessible blocks of length 2k appearing
in this row must be of the form

x00x10 · · ·xk−10

or of the form
0x00x1 · · ·0xk−1.

Moreover, by the identity (1), it follows that x0x1 · · ·xk−1 must be accessible.
We introduce the sets

A1 = {x00x10 · · ·xk−10 : x0x1 · · ·xk−1 ∈A (k)}

and
A2 = {0x00x1 · · ·0xk−1 : x0x1 · · ·xk−1 ∈A (k)},

and the maps TAi : A (k)→ Ai defined by

TA1 : x0x1 · · ·xk−1 7→ x00x10 · · ·xk−10

and
TA2 : x0x1 · · ·xk−1 7→ 0x00x1 · · ·0xk−1.

It is clear that the maps TAi are bijective, so that |A1|= |A2|= aT (k).
The accessible blocks in odd-numbered rows have a more complex structure. We first assume

that n is even, and consider a row 2r+1 of the automaton. We want to establish a correspondence
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between accessible blocks of length 2k in this row and accessible blocks of some smaller length in
row r. We will use the locally-determined nature of the automaton and the fact that all blocks in
row 2r+1 arise by applying the transition rule to row 2r.

To produce the accessible blocks of length 2k in row 2r+ 1, we start with a given accessible
block b of length k+ n

2 in line r. It follows that the block 0[b2]0 is a block of length 2k+ n+ 1
which appears in row 2r. (Moreover, as we saw in the case of the sets Ai, all such blocks are
produced in this way.) We now apply the transition rule to this block, obtaining a block of length
2k+2n+1 in row 2r+1 (the right side of the block must be padded with zeros to ensure this). We
now eliminate the n entries on either side of the resulting block, obtaining a block of length 2k+1.
This is necessary because in the context of the entire automaton, the block b does not determine
these n entries on either side. This leaves a block t of length 2k+1. Finally, define

TB1b = t0 · · · t2k−1

and
TB2b = t1 · · · t2k.

Briefly, we can write
TBib = T

(
0[b2]0

)
02k+2n|n+i−1···n+2k+i−1.

For example, consider the automaton A2(1,1+ x+ x2). We outline the above process in the
following schematic:

b 1011

0[b2]0 010001010

T (0[b2]0)02k+2n 01|︸ ︷︷ ︸
TB1b

1

TB2b︷ ︸︸ ︷
101101 |10

In the above example, we note that if there had been a 1 immediately to the left of the block
0[b2]0, the two leftmost entries of T (0[b2]0)02k+2n would be changed to 10. We thus see that these
two entries cannot be determined by b alone; this is why n entries must be deleted on either side of
T (0[b2]0)02k+2n.

We now define
B1 = TB1

(
A (k+ n

2)
)

and
B2 = TB2

(
A (k+ n

2)
)
.

Thus the maps TBi : A (k+ n
2)→ Bi are clearly surjective.

The case of odd n is similar, but with some modification. Namely, in this case, the map TB1

acts upon blocks in A (k+ n−1
2 ), and the map TB2 acts upon blocks in A (k+ n+1

2 ). The sets Bi are
defined in an analogous manner.

If we can show that the maps TBi are injective as well, by the inclusion-exclusion principle we
arrive at the following general recursion:
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aT (2k) = 2aT (k)+aT (k+
⌊n

2

⌋
)+aT (k+

⌊n+1
2

⌋
)

−|A1∩A2|− |A1∩B1|− |A1∩B2|− |A2∩B1|− |A2∩B2|− |B1∩B2|
+ |A1∩B1∩B2|+ |A2∩B1∩B2|+ |A1∩A2∩B1|+ |A1∩A2∩B2|
− |A1∩A2∩B1∩B2|.

We will investigate the injectivity of the maps TBi in the next section, and we will examine the
intersections in the subsequent section.

4 Injectivity
We will now characterize the polynomials for which the maps TBi are injective on the whole space;
for example, if n is even, we will characterize the polynomials for which the maps

TBi : (Z/2)k+ n
2 → (Z/2)2k

are injective; it follows that the maps

TBi : A (k+ n
2)→ Bi

are then bijective.
We will express the maps TBi in matrix form. The rule T can be written explicitly as

T (x) = c0 + c1x+ . . .+ cnxn.

If we wish to multiply this polynomial by another polynomial S(x) = d0 + d1x+ . . .+ dmxm, we
construct a matrix with m+1 columns, of the form

M =



c0
c1 c0
... c1

cn
... c0

cn
... c1

...
cn


.

(T S)(x) is then given by multiplying M by the coefficient vector (d0,d1, . . . ,dm), and expressing
the result in the basis (1,x,x2, . . . ,xn+m). Suppose n is even. The action of the map TB1 on a
(k+ n

2)-block can be described by the action of a matrix [TB1] on this block. We obtain the matrix
[TB1] from M by deleting columns 0,2,4, etc., and deleting the first and last n rows of the resulting
matrix.

If we define

C =

[
cn−1 cn−3 · · · c1 0
cn cn−2 · · · c2 c0

]
,
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Figure 3: The matrix [TB1]

we see that [TB1] is the 2k× (k+ n
2) matrix in Figure 3.

If n is odd, the form of the matrix is also given by Figure 3, but in this case we have

C =

[
cn−1 cn−3 · · · c0
cn cn−2 · · · c1

]
.

The matrix for TB1 of shape 2k× (k + bn
2c). The matrix for TB2 is constructed in an analogous

manner, and is of shape 2k× (k+ bn+1
2 c). A chart of the matrices for TB2 is given in Figure 4.

In the following, we assume that n ≥ 1. We say that a polynomial is suspicious if there exists
k≥ bn

2c for which either TB1 or TB2 is not injective (note that here the domains are (Z/2)k+ n
2 in the

even case, instead of A (k+ n
2)).

The reason for the assumption that k ≥ bn
2c is the following: if k < bn

2c, we have

rank[TB1]≤ 2k < k+
⌊n

2

⌋
,

so that TB1 is definitely not injective.
We write T (x) = c0 + c1x+ . . .+ cnxn (cn 6= 0) as before, and define

o(x) = cn−1 + cn−3x+ . . .+ c1x
n
2−1

e(x) = cn + cn−2x+ . . .+ c0x
n
2

if n is even, and

o(x) = cn + cn−2x+ . . .+ c1xb
n
2c

e(x) = cn−1 + cn−3x+ . . .+ c0xb
n
2c

if n is odd. We are now ready to present a characterization of the nonsuspicious polynomials.
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Figure 4: Matrices for the transformation TB2 .

Theorem 1. If n is even, then
i. TB1 is injective if and only if c0 6= 0 and (o,e) = 1, and
ii. TB2 is injective if and only if (o,e) = 1.

If n is odd, then
iii. TB1 is injective if and only if (o,e) = 1, and
iv. TB2 is injective if and only if c0 6= 0 and (o,e) = 1.

Corollary 1. T is nonsuspicious if and only if c0 6= 0 and (o,e) = 1.

Proof. Consider the map TB1 , and assume that n is even. We claim that for any k ≥ n
2 , TB1 is

injective if and only if TB1 is injective in the special case of k = n
2 . Sufficiency is clear; necessity

follows from the structure of the matrix [TB1], as in the following: we will write TB1[k =
n
2 ] for the

operator TB1 in the case where k = n
2 .

Suppose
TB1x = 0,

where x = x0x1 · · ·xk+ n
2−1 ∈ (Z/2)k+ n

2 . Since the submatrix which consists of the first n rows and
columns of TB1 is precisely [TB1][k =

n
2 ], we see that

x0 = x1 = · · ·= xn−1 = 0.

We now observe that the submatrix which consists of the entries in rows 2 through n+ 1 and
columns 1 through n is also precisely [TB1 ][k =

n
2 ], so that

x2 = · · ·= xn = xn+1 = 0.
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Continuing this process, we conclude that x = 0, so that TB1 is injective.
We have shown that it is sufficient to analyze the case of TB1[k =

n
2 ]. We now take the determi-

nant of [TB1][k =
n
2 ].

We use the fact that the determinant changes only in sign under row permutations. Thus,

det [TB1][k =
n
2 ] =±det



cn−1 cn−3 · · · c1
cn−1 cn−3 · · · c1

· · ·
cn−1 cn−3 · · · c1 0

cn cn−2 · · · c0
cn cn−2 · · · c0

· · ·
cn cn−2 · · · c0


.

By expansion along the last column, we conclude that

det [TB1][k =
n
2 ] =±c0 det



cn−1 cn−3 · · · c1
cn−1 cn−3 · · · c1

· · ·
cn−1 cn−3 · · · c1

cn cn−2 · · · c0
cn cn−2 · · · c0

· · ·
cn cn−2 · · · c0


.

The latter determinant is precisely the resultant of the polynomials o and e defined above. By
Corollary 1.8 in [3], the resultant of o and e is nonzero if and only if (o,e) = 1. We have thus
proved part i.

The proofs of the other assertions are similar; to prove part ii we use expansion in the first
column; the proof of part iii only requires interchanging rows, and to prove part iv we use expansion
in the first and last columns successively.

5 Intersections
In this section, we investigate the sizes of intersections of the sets A1, A2, B1, and B2. We will
consider the case where the elements are of even length, for specificity. We first note that the only
element of A1∩A2 is the zero string 02k. It follows that

Proposition 1. We have

|A1∩A2|= |A1∩A2∩B1|= |A1∩A2∩B2|= |A1∩A2∩B1∩B2|= 1.

We now turn to the intersection B1∩B2.

Theorem 2. If T is a general polynomial in (Z/2)[x], of degree n, we have

|B1∩B2| ≤ aT (n) (2)

and the size of B1∩B2 is independent of k for sufficiently large k.
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Proof. The proof of (2) will be based upon the following observation: All blocks in B1∩B2 are in
the kernel of the transformation

S =


cn cn−1 cn−2

cn cn−1
cn

. . .
c0

 .
To see this, suppose b = b0b1 · · ·b2k−1 ∈ B1 ∩B2. We assume for specificity that n is even.

Since b ∈ B1, we have b = TB1x for some x ∈ A (k + n
2). Consider the product STB1 . A direct

computation shows that the matrix [STB1] is given by


cn cn−1 · · · c0

cn cn−1 · · · c0
cn cn−1 · · · c0

· · ·
cn cn−1 · · · c0





cn−1 cn−3 · · · c1 0
cn cn−2 · · · c2 c0

cn−1 cn−3 · · · c1 0
cn cn−2 · · · c2 c0

· · ·
· · ·

cn−1 cn−3 · · · c1 0
cn cn−2 · · · c2 c0



=


0 · · ·
c2

n c2
n−1 · · · c2

0 0 · · · 0
0 · · ·
0 c2

n c2
n−1 · · · c2

0 0 · · · 0
· · ·
0 · · · 0 c2

n c2
n−1 · · · c2

0

=


0 · · ·
cn cn−1 · · · c0 0 · · · 0
0 · · ·
0 cn cn−1 · · · c0 0 · · · 0
· · ·
0 · · · 0 cn cn−1 · · · c0

 .
It follows that the ith coordinate of STB1x is 0 if i = 0,2, . . . is even.

The situation is precisely analogous for TB2; in this case we conclude that odd coordinates of
STB2y are zero for y ∈A (k+ n

2). It follows that Sb = 0, so that b ∈ kerS.
From this we see that cnb0+cn−1b1+ . . .+c0bn = 0, cnb1+cn−1b2+ . . .+c0bn+1 = 0, etc., so

that bn is determined by b0, b1, . . ., bn−1, bn+1 is determined by b1, b2, . . ., bn, etc. It follows that
b is determined entirely by b0b1 · · ·bn−1, which is clearly accessible; it follows that

|B1∩B2| ≤ aT (n).

We employ similar methods to conclude that the above holds for blocks of odd length. We have
thus proved (2).

Suppose n ≤ j < k. From the above we see that every block in B1 ∩B2 of length r ≥ n is
generated by a block of length n. The map that assigns to a block of length k the block of length j
with the same generator is injective, so that

|(B1∩B2)( j)| ≥ |(B1∩B2)(k)|.
In particular, the sequence |(B1 ∩B2)(k)| is nonincreasing for k ≥ n; since |(B1 ∩B2)(k)| ≥ 1, it
follows that the sequence is eventually constant.
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6 Powers of the Transition Rule
So far, our analysis has been based heavily upon the injectivity of the maps TBi . It turns out,
however, that some suspicious polynomials obey recursions similar to those described above. To
examine this phenomenon more closely, we introduce the order of a recursion.

Suppose p is prime. We say that the automaton Ap(I;T ) satisfies a recursion of order n if there
exist a constant C and integers n,K such that

aT (k) =
p−1

∑
j=0

p−1

∑
r=0

aT

(⌊
k+ jn+ r

p

⌋)
+C

for all k ≥ K.
In the modulo 2 case we considered above, the degree of the polynomial and the order of the

recursion were the same; in general this need not be the case.
In this section we will show that if the automaton Ap(c;T ) (with a constant initial state) satisfies

a recursion of order r, then Ap(c;T n) satisfies a recursion of order rps, where s is the largest integer
such that ps | n.

We will say that an automaton is trivial if its transition rule T has at most one nonzero coef-
ficient. Such rules can only translate the initial state or multiply it by a constant. The following
proposition shows that non-trivial automata use the entire alphabet available to them.

Proposition 2. Suppose p is prime. If the automaton Ap(I;T ) is non-trivial, then all the symbols
0,1, . . . , p−1 are accessible; that is, aT (1) = p.

Proof. Write T (x) = a0 + a1x+ . . .+ anxn. Since axT (x)(k) = aT (x)(k) for all k, we may assume
that a0 6= 0. We also suppose (since the automaton is nontrivial) that ad 6= 0 for some d > 0; we
choose d so as to be minimal. Then the coefficient of xd in the expansion of T r is rar−1

0 ad . Since

p is prime and a0 6= 0, we have ak(p−1)
0 ≡ 1 (mod p) (note that the multiplicative group (Z/p)×

of nonzero integers modulo p is cyclic, so a0 has a finite order which divides p−1). Thus, taking
r = k(p−1)+1, we see that rar−1

0 ad = (1+k(p−1))ak(p−1)
0 ad = (1+k(p−1))ad . Since (Z/p)+

(the additive group of integers modulo p) is of prime order, it is cyclic and is generated by every
nonzero element. Since ad, p−1 6= 0, we see that {(1+k(p−1))ad : k≥ 0}= (Z/p)+, so that the
coefficient of xd assumes all values in Z/p. This completes the proof.

Proposition 3. Suppose p is prime, c,d ∈ Z/p, and the automaton Ap(d,T ) is non-trivial. Then if
b ∈A (k), c ·b ∈A (k).

Note: in particular, if we consider the operation of multiplication by a constant as an action
of Z/p on A (k), then this proposition implies that all orbits of blocks in A (k) are contained in
A (k): we have

(Z/p)(A (k)) = A (k) (k ≥ 1).

Proof. Since Ap(d;T ) is non-trivial, Proposition 2 shows that c · d ∈ A (1). Suppose that c · d
appears in line r. We first note that T p(s) ≡ T (sp) (mod p) for any polynomial s, since p is
prime. Thus if j ≥ 1, line p jr includes the block 0 j(c · d)0 j. The block b appears in some line,
say r′. If j > (degT )r′, then lines 0,1, . . . ,r′ of the automaton, multiplied by c, appear in the lines
p jr, . . . , p jr+r′. In particular, we can take j = (degT )r′+1; then c ·b appears in row p(degT )r′+1r+
r′. This completes the proof.
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In the following theorem, we show that taking the transition rule to powers relatively prime to
the modulo does not change the collection of accessible blocks.

Theorem 3. Suppose that p is prime, (p,n) = 1, c∈Z/p, and suppose that Ap(c;T ) is non-trivial.
Let An(k) denote the set of accessible blocks of length k associated to Ap(c;T n). Then for all k,
we have

A1(k) = An(k),

and in particular,
aT (k) = aT n(k).

Proof. Since axT (x)(k) = aT (x)(k), we will assume that T has a nonzero constant coefficient. We
first note that line k of Ap(c;T n) is the same as line kn of Ap(c;T ), since at each stage Ap(c;T n)
applies the transition rule n times. From this it clearly follows that An(k) ⊆ A1(k) for all k. To
show that An(k)⊇A1(k), suppose that b is a block of length k in Ap(c;T ), appearing on some line
r. We will show that b appears on a line L ≡ 0 (mod n). This is clear if r ≡ 0 (mod n); we will
thus assume that r 6≡ 0 (mod n).

As in the proof of Proposition 3, we have T (s)p ≡ T (sp) (mod p) for any polynomial s. Thus
if j ≥ 1 and T (x) = t0 + t1x+ . . .+ tnxn, line 1 of Ap(c;T ) is given by (c · t0) · · ·(c · tn), so that line
p j is given by (c · t0)0 j(c · t1)0 j · · ·0 j(c · tn). Thus, as in the proof of Proposition 3, if j > nr, lines
0, . . . ,r of the automaton Ap((c · t0);T ) appear in lines p j, . . . , p j + r of Ap(c;T ).

Since (p,n) = 1, we have pφ(n)≡ 1 (mod n) by the Euler-Fermat theorem. In particular, p is of
finite order m. Thus, there exists s1 such that ps1m ≡ 1 (mod n) and s1m > rn, so that t0 ·b appears
in line r+ ps1m and r+ ps1m ≡ r+1 (mod n). If r+1≡ 0 (mod n), then we have t0 ·b ∈An(k).

Otherwise, we repeat the above reasoning with r replaced by r + ps1m: we know that t0 · b
appears in row r+ ps1m+ p j if j > n(r+ ps1m). Thus there exists s2 such that ps2m≡ 1 (mod n) and
s2m > n(r+ ps1m). It follows that t0 ·b appears in row r+ ps1m + ps2m, and r+ ps1m + ps2m ≡ r+2
(mod n). If r + 2 ≡ 0 (mod n), then t0 · b ∈ An(k); otherwise, we proceed in this manner until
r+ i≡ 0 (mod n) for some i (Note that at most finitely many steps are necessary).

We have shown that t0 · b ∈ An(k). Since Z/p is a field, t0 has an inverse. By applying
Proposition 3 to the automaton Ap(c;T n), we see that t−1

0 · (t0 · b) ∈ An(k). We have shown that
A1(k) = An(k). The conclusion follows.

Theorem 4. Suppose p is prime and 0≤ r < p. Then we have

aT p(pk+ r) = (p− r)aT (k)+ raT (k+1)+1− p

for all k ≥ 1.

Proof. First, suppose that r≥ 1. We will use the notation An of Theorem 3. In view of the identity
T (sp)≡ T (s)p (mod p), we see that the accessible coefficient blocks of length pk+r must belong
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to one of the following sets:

A1 = {x00p−1x10p−1 · · ·xk−10p−1xk0r−1 : x0 · · ·xk ∈A1(k+1)}
A2 = {0x00p−1x10p−1 · · ·xk−10p−1xk0r−2 : x0 · · ·xk ∈A1(k+1)}
· · ·
Ar = {0r−1x00p−1x10p−1 · · ·xk−10p−1xk : x0 · · ·xk ∈A1(k+1)}

Ar+1 = {0rx00p−1x10p−1x20p−1 · · ·xk−10p−1 : x0 · · ·xk−1 ∈A1(k)}
· · ·
Ap = {0p−1x00p−1x10p−1x20p−1 · · ·xk−10r : x0 · · ·xk−1 ∈A1(k)}

Thus Ap(pk+ r) = A1 ∪ ·· · ∪Ap. Note that for i ≤ r the mappings mi : A1(k+ 1)→ Ai defined
by mi : x0 · · ·xk 7→ 0i−1x00p−1x10p−1 · · ·xk−10p−1xk0r−i are bijective, and the same is true of the
analogous mappings mi : A1(k)→ Ai (i > r). It follows that

|Ai|=

{
aT (k+1) i≤ r
aT (k) i > r.

Moreover, it is clear that all pairwise intersections of the sets Ai contain only the string 0pk+r. The
inclusion-exclusion principle thus gives

aT p(pk+ r) = |Ap(pk+ r)|= |A1|+ . . .+ |Ap|+ ∑
2≤|J|≤p

(−1)|J|−1
(

p
|J|

)
= (p− r)aT (k)+ raT (k+1)+ ∑

2≤|J|≤p

(−1)|J|−1
(

p
|J|

)

= (p− r)aT (k)+ raT (k+1)−
p

∑
i=2

(−1)i
(

p
i

)

= (p− r)aT (k)+ raT (k+1)+(1− p)−
p

∑
i=0

(−1)i
(

p
i

)
= (p− r)aT (k)+ raT (k+1)+(1− p)− (1+(−1))p

= (p− r)aT (k)+ raT (k+1)+(1− p).

The case r = 0 follows by precisely analogous reasoning – in particular, we can use the same sets
Ai as above, if we consider the symbol 0−1 as “backspace;” these sets then all have cardinality
aT (k). This completes the proof.

Corollary 2. If Ap(I;T ) satisfies a recursion of order n, then Ap(I;T p) satisfies a recursion of
order pn.

Proof. From the last theorem, we have

aT p(k) =
p−1

∑
i=0

aT

(⌊
k+ i

p

⌋)
+1− p for k ≥ p.
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If C and K are as in the definition above, then for k ≥ p(K +1) we have k ≥ p, bk+i
p c ≥ K, so

that

aT p(k) =
p−1

∑
i=0

p−1

∑
j=0

p−1

∑
r=0

aT


⌊

k+i
p

⌋
+ jn+ r

p

+Cp+1− p

=

p−1

∑
i=0

p−1

∑
j=0

p−1

∑
r=0

aT


⌊

k+ jpn+i
p

⌋
+ r

p

+Cp+1− p

=

p−1

∑
i=0

p−1

∑
j=0

[
aT p

(⌊
k+ jpn+ i

p

⌋)
− (1− p)

]
+Cp+1− p

=

p−1

∑
i=0

p−1

∑
j=0

aT p

(⌊
k+ jpn+ i

p

⌋)
+Cp+(1− p)(1− p2)

so that aT p satisfies a recursion of order pn. The conclusion follows.

We can now combine the above results to give the following:

Theorem 5. Suppose p is prime, c ∈ Z/p, and n ∈ Z+. Let s be the largest integer such that ps | n.
Then if Ap(c;T ) satisfies a recursion of order r, Ap(c;T n) satisfies a recursion of order rps.

Proof. Since s is maximal, we can write n = psm, where (p,m) = 1. It follows that aT n(k) =
aT ps (k) for all k, by Theorem 3, and repeated application of Corollary 2 shows that Ap

(
c;T ps)

satisfies a recursion of order rps. The conclusion follows.

7 Conclusion
We have investigated recursion formulas for the line complexity sequence where the number of
accessible blocks of length 2k is expressed in terms of the numbers of accessible blocks of several
different smaller lengths. These recursions are intimately connected with the sets Ai, Bi and the
maps TAi , TBi introduced above; in particular, we require these maps to be injective. The maps TAi

are always injective, but the same need not be true of the maps TBi . By closely analyzing the maps
TBi , we have precisely characterized the polynomials that are not suspicious, i.e. those for which
the maps TBi are injective on the whole space. We have also proved that for general polynomial
transition rules T , the intersection |B1∩B2| is of constant size for sufficiently large k.

We have also investigated the behavior of the line complexity sequence when the transition rule
is raised to different powers; by introducing a notion of the order of a recursion distinct from the
order of the transition rule, we have seen that if an automaton modulo p with a constant initial state
and a transition rule T satisfies a recursion of some order r, the automaton whose transition rule is
T n (for any n) satisfies a recursion of order rps, where s is the largest integer such that ps | n.

Our results suggest the following conjecture:

Conjecture 1. Suppose T is a polynomial transition rule that is not suspicious. Then for sufficiently
large k, we have

aT (2k) = 2aT (k)+aT (k+
⌊n

2

⌋
)+aT (k+

⌊n+1
2

⌋
)+C
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and
aT (2k+1) = aT (k)+aT (k+1)+aT (k+

⌊n+1
2

⌋
)+aT (k+

⌊n
2

⌋
+1)+C,

where C is a constant dependent only on T .

Indeed, we have seen that the size of the intersection B1 ∩B2 stabilizes for sufficiently large
k, even if T is suspicious. This raises the possibility that all intersections of Ai and Bi stabilize in
size, perhaps regardless of whether T is suspicious. This is the most immediate direction of further
research. Additional research directions include investigating the transformations TBi for blocks of
odd length, and considering automata with coefficients taken modulo p, to see if the behaviors that
arise in these situations are analogous to those we have observed in the present case.
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