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Abstract

In this paper, we compute the signatures of the contravariant form
on Specht modules for the cyclotomic Hecke algebra and compute
the signature character of the contravariant form on the polynomial
representation of the rational Cherenik algebra associated toG(r, 1, n).
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1 Introduction

Let A be an algebra and V a left A-module which admits a non-degenerate
invariant Hermitian form. The problem of determining whether this form is
positive-definite is an important one in representation theory. This problem
has been explored for the rational Cherednik algebra by Etingof and Stoica
in [ES], and for the cycolotomic Hecke algebra by Stoica in [S]. In this paper,
we consider the more general problem of determining the signature of this
form. We define the signature of a form on a finite-dimensional vector space
as follows.

Definition. Let V be a finite-dimensional vector space with non-degenerate
Hermitian form 〈·, ·〉. Let {ei} be a basis for V which is orthogonal with
respect to this form. Then the signature s(V ) of V is the number of basis el-
ements with positive norm minus the number of basis elements with negative
norm.

Now for an infinite-dimensional vector space with a natural grading, we may
define the signature character as follows.

Definition. Let V be a vector space with non-degenerate Hermitian form
〈·, ·〉. Suppose there exists a grading V =

⊕∞
m=0 Vm so that Vm and Vn are

orthogonal when m 6= n. Then we may define the signature character

chs(V ) =
∞∑
w=0

tws(Vw)

of V with respect to this form.

In Section 2, we present the definition of the cyclotomic Hecke algebra,
as well as some preliminary theorems that will state what its irreducible
representations are and how to compute in them. In Section 3, we derive a
formula for the signature of all the irreducible representations of the Hecke
algebra. In Section 4, we present definitions and preliminaries for the rational
Cherednik algebra and its polynomial representation. Finally in Section 5,
we compute the signature character of this representation.

2 Preliminaries for the Hecke Algebra

Before we introduce the Hecke algebra, we first motivate its definition by
introducing complex reflection groups.
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Definition. Let h be a finite dimensional vector space over C. A reflection
of h is a unitary transformation s of h with rk(s− 1)|h = 1. If a finite group
W is generated by reflections of h, we say that W is a complex reflection
group acting on h.

Throughout this paper, we will be dealing with the complex reflection
group G(m, 1, n) = Sn n (Z/mZ)n. This group can also be expressed with
the following generators and relations.

Theorem 1 ([AK], Proposition 2.1). The complex reflection group G(m, 1, n)
is generated by s0, s1, . . . , sn−1 subject to

sr0 = 1

s2i = 1 for i > 0

sisj = sjsi if |i− j| > 1

sisi+1si = si+1sisi+1 for i > 0

s0s1s0s1 = s1s0s1s0.

This motivates the definition of the cyclotomic Hecke algebra as a defor-
mation of the above complex reflection group.

Definition. Let R be a commutative domain, with k its field of fractions, and
take q, q1, . . . , qm ∈ R×. The cyclotomic Hecke algebra HR,n = HR,n(q, q1, . . . , qm)
is defined as the unital associative R-algebra generated by the elements
T0, . . . , Tn−1 subject to

(T0 − q1) · · · (T0 − qm) = 0

(Ti − q)(Ti + 1) = 0 for i > 0

TiTj = TjTi if |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 for i > 0

T0T1T0T1 = T1T0T1T0.

Throughout this paper, we take R = C and we take q, q1, . . . , qm to have
norm 1 and be generic. (In particular, we require that qi

qj
qa 6= 1 for any i, j, a.)

We first introduce the notion of m-partitions and m-tableaux because the
irreducible representations of the Hecke algebra will be given by its actions
on the standard Young m-tableaux.
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Definition. An m-partition λ = (λ1, . . . , λm) of n is an ordered m-tuple so
that each λi is a partition of an integer |λi|, with

∑m
i=1 |λi| = n. We then

write λ `m n.

Definition. Let λ = (λ1, . . . , λm) `m n. The Young m-diagram [λ] of shape
λ is the m-tuple of Young diagrams ([λ1], . . . , [λm]). We call [λi] the compo-
nents of [λ]. A standard Young m-tableau of shape λ is an enumeration from
1 to n of the boxes of [λ] so that each row and each column of each compo-
nent is increasing. We denote the set of all standard Young m-tableaux of
shape λ by Std(λ) and its formal k-linear span by Vλ.

Finally, we define some notation which will be necessary to state our main
preliminary theorem.

Definition. Let λ `m n and s ∈ Std(λ). For 1 ≤ i ≤ n, the content cs(i)
of i in s is the row index of i in its component of s minus the column index
of i in its component of s. For 1 ≤ a, b ≤ n, we define the axial distance
rs(a, b) = cs(a)− cs(b). We also denote the index of the component of i in s
by τs(i).

Theorem 2 ([AK], Theorems 3.7 and 3.10). HR,n is semisimple. Its irre-
ducible representations are exactly Vλ for all λ `m n, with the action of Ti
on s ∈ Std(λ) given by:

• T0s = qτs(1)s.

• For i > 0, if i and i+ 1 lie in the same row of the same component of
s, then Tis = qs.

• For i > 0, if i and i+ 1 lie in the same column of the same component
of s, then Tis = −s.

• For i > 0, if neither of the above hold, let t = (i, i+ 1)s be the standard
m-tableau gotten by swapping the positions of i and i+ 1 in s. Then

Tis = − 1− q
1− qτs(i)

qτs(i+1)
qr(i+1,i)

s+
q − qτs(i)

qτs(i+1)
qr(i+1,i)

1− qτs(i)
qτs(i+1)

qr(i+1,i)
t

Moreover, [S] (Proposition 3.2) defines a non-degenerate Hermitian form 〈·, ·〉
on Vλ which is HR,n-invariant (i.e. 〈v, w〉 = 〈Tiv, Tiw〉 for all 0 ≤ i ≤ n − 1
and v, w ∈ Vλ), and shows that s ∈ Std(λ) form an orthogonal basis with
respect to 〈·, ·〉. This will be the form with respect to which we compute the
signature.
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3 Signature for the Representations of the

Hecke Algebra

Now we move on to compute the signature of the representation. First we
derive a formula for how the norm of an element changes when we switch its
entries.

Proposition 1. Let s, t be standard m-tableaux of shape λ, with t = (i, i+1)s.
Then

〈t, t〉 = 2 · Re

[
1

q − qτs(i)
qτs(i+1)

qrs(i+1,i)

]
〈s, s〉.

Proof. For convenience, write a = τs(i), b = τs(i + 1), and r = rs(i + 1, i).
We have

Tis = − 1− q
1− qa

qb
qr
s+

q − qa
qb
qr

1− qa
qb
qr
t.

Since 〈·, ·〉 is HR,n-invariant, then

〈s, s〉 = 〈Tis, Tis〉 =

∣∣∣∣∣ 1− q
1− qa

qb
qr

∣∣∣∣∣
2

〈s, s〉+

∣∣∣∣∣q −
qa
qb
qr

1− qa
qb
qr

∣∣∣∣∣
2

〈t, t〉.

Rearranging, we get

〈t, t〉 =

∣∣∣1− qa
qb
qr
∣∣∣2 − |1− q|2∣∣∣q − qa
qb
qr
∣∣∣2 〈s, s〉 =

q + q̄ − qa
qb
qr − qa

qb
qr∣∣∣q − qa

qb
qr
∣∣∣2 〈s, s〉

=

(
1

q − qa
qb
qr

+
1

q − qa
qb
qr

)
= 2 · Re

[
1

q − qa
qb
qr

]
〈s, s〉.

We now establish a distinguished m-tableau whose norm we will use to
compute the norms of all other m-tableaux. In addition we define some
notation which will important for stating our result.

Definition. Consider the standard m-tableau t0 ∈ Std(λ) gotten by putting
the numbers λi−1 + 1, . . . , λi in the ith component (where λ0 = 0), and
arranging the numbers within each component in consecutive increasing order
across rows.
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Definition. For s ∈ Std(λ) and 1 ≤ i ≤ n, let js(i) denote the number lying
in the box of t0 corresponding to the box of s in which i lies. Then we say a
and b are inverted in s if (a− b)(js(a)− js(b)) < 0, and we write a↔

s
b.

Definition. For z ∈ C×, let {z} = Re z
|Re z| .

Now we prove the general signature formula for irreducible representations
of the Hecke algebra.

Theorem 3. Taking the convention that 〈t0, t0〉 > 0, we have

s(Vλ) =
∑

s∈Std(λ)

∏
1≤a<b≤n
a↔
s
b

{
q −

qτs(a)
qτs(b)

qrs(b,a)
}
.

Proof. Since s ∈ Std(λ) form an orthogonal basis with respect to 〈·, ·〉, we
need only verify that the above product correctly gives the sign of the norm
of each s. It is clear that the product is empty for s = t0 and so correctly
gives positive sign. Now note that we can arrive at any standard m-tableau of
shape λ by applying transpositions (i, i+1) to t0 (such that each intermediate
m-tableau is also a standard). In particular, this means that we need only
show that if the above product gives the correct sign for the norm of s, it
does so for (i, i + 1)s as well. (Its validity for t0 then shows its validity for
all s.)

Now suppose the sign of 〈s, s〉 is as given by the above product. Note
that each pair of numbers not including i or i+ 1 is inverted in s if and only
if it is inverted in t = (i, i + 1)s. Moreover if some j was inverted with i in
s, then it will be inverted with i + 1 in t, and we get the same factor in the
product, and vice-versa for i + 1 and i. The only factor we gain/lose is the
factor from the inversion of i and i+ 1, which necessarily become inverted or
become not inverted in t. Therefore the product for t evaluates to{

q −
qτs(i)
qτs(i+1)

qrs(i+1,i)

}
{〈s, s〉}.

(This is true whether the factor is gained or lost because (±1)−1 = ±1).
Noting that {z−1} = {z}, we see that the product is equal to{

1

q − qτs(i)
qτs(i+1)

qrs(i+1,i)

}
{〈s, s〉} = {〈t, t〉}.
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Therefore the product correctly gives the sign of the norm of all elements,
and so the signature formula is correct.

4 Preliminaries for the Cherednik Algebra

Now we turn our attention to the rational Cherednik algebra. First we define
some notation which will be useful for the definition of the Cherednik algebra.

Definition. Let h be a finite dimensional vector space over C with a positive
definite Hermitian form (·, ·), and s a reflection of h. Let αs ∈ h∗ and α∨s ∈ h
be such that

sx = x− (x, α∨s )αs

for all x ∈ h∗.

Now we give the definition of the rational Cherednik algebra.

Definition. Let W be a complex reflection group acting on h, and S its set of
reflections. For κ ∈ C and W -invariant function c : S → C (i.e. c(g) = c(h)
if h = wgw−1 for w ∈ W ), the rational Cherednik algebra Hκ,c = Hκ,c(W, h)
is the quotient of the algebra CW n T (h⊕ h∗) by the relations

[x, x′] = 0, [y, y′] = 0, [y, x] = κ(y, x)−
∑
s∈S

cs(y, αs)(x, α
∨
s )s

for all x, x′ ∈ h∗, y, y′ ∈ h.

Throughout this paper, we will only consider the case W = G(m, 1, n).
Fix some orthonormal basis x1, . . . , xn of h∗. Then we have m conjugacy
classes of reflections – one containing all reflections which switch two basis
elements (whose corresponding value we denote by c0), and then for each
1 ≤ i ≤ m − 1, one conjugacy class containing all reflections which are
diagonal and multiply only one basis element by ζ im (whose corresponding
value we denote by ci). We take κ, c0, c1, . . . , cm−1 to be generic.

In this paper, we will consider only the polynomial representation V of
Hκ,c given by its action on T (h∗), where w ∈ W,x ∈ h∗, y ∈ h act by their
usual multiplication in Hκ,c but y ∈ h acts as 0 at the end of a word and
w ∈ W acts as 1 at the end of a word. Then a basis for V is given by all
monomials in x1, . . . , xn (as such, we sometimes write xµ = xµ11 · · ·xµnn for
µ ∈ Zn≥0).
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If y1, . . . , yn ∈ h is the dual basis of x1, . . . , xn, we can define a con-
travariant Hermitian form 〈·, ·〉 by requiring that xi and yi are adjoint and
the adjoint of w ∈ W is w−1 (along with the requirement that the form eval-
uated on degree zero monomials is just their product). Now we will present
a theorem which introduces operators and a basis which make computations
with this form simpler. First, we introduce some notation to simplify our
formulae.

Definition. For µ ∈ Zn≥0 and 1 ≤ i ≤ n, let

vµ(i) = |{j < i | µj < µi}|+ |{j > i | µj ≤ µi}|+ 1.

Definition. Let di =
∑m−1

j=1 ζ
ij
mcj.

Definition. Let αa,b = aκ− brc0.

Theorem 4 ([G1], Theorem 6.1 and Corollary 6.2). There exist operators
σi,Φ,Ψ ∈ Hκ,c for 1 ≤ i ≤ n − 1 and polynomials fµ = xµ + o(xµ) ∈ V for
all µ ∈ Zn≥0 which satisfy

σifµ =


fsiµ, if µi 6= µi+1 (mod r) or µi < µi+1

0, if µi = µi+1

Cfsiµ, if µi = µi+1 (mod r) and µi > µi+1,

where
C =

ακ(µi−µi+1),vµ(i)−vµ(i+1)−1 · ακ(µi−µi+1),vµ(i)−vµ(i+1)+1

(ακ(µi−µi+1),vµ(i)−vµ(i+1))2
,

Φfµ = fφµ,

and

Ψfµ =

{
0, if µn = 0

(αµn,vµ(n)−1 − d0 + d−µn)fψµ, if µn 6= 0.

Here si acts on an n-tuple by exchanging the ith and (i+ 1)th entries, φ acts
by

φ(µ1, . . . , µn) = (µ2, . . . , µn, µ1 + 1),

and ψ acts by the inverse of φ.

Moreover in [G2] (Section 6), it is shown that the fµ’s form an orthogonal
basis with respect to 〈·, ·〉, the σi’s are self-adjoint, and Φ is adjoint to Ψ.
This will allow us to compute the signature character of V .
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5 Signature Character for the Polynomial Rep-

resentation

Now we present the formula for the norm of fµ, and as a corollary we derive
the formula for the signature character of V .

Theorem 5. Let µ ∈ Zn≥0. Fix some nondecreasing reordering of the entries
of µ. Let g(i) denote the index of µi in this reordering. Also let p(i, x) denote
the number of entries of µ which are greater than µi + x or which are equal
to µi + x and have index less than i. Then

〈fµ, fµ〉 =

(
n∏
i=1

µi∏
j=1

(αj,g(i)−1 − d0 + d−j)

)
·

(
∞∏
j=1

αjm,n
αjm,0

n∏
i=1

αjm,n−g(i)−p(i,jm)

αjm,n−g(i)−p(i,jm)+1

)
.

Proof. Because the operators σi are self-adjoint, then when λi 6≡ λi+1 (mod m),
we have

〈fλ, fλ〉 = 〈σifsiλ, fλ〉 = 〈fsiλ, σifλ〉 = 〈fsiλ, fsiλ〉,

and when λi ≡ λi+1 (mod m) with λi > λi+1

〈fλ, fλ〉 = 〈σifsiλ, fλ〉 = 〈fsiλ, σifλ〉

=
αλi−λi+1,vλ(i)−vλ(i+1)+1 · αλi−λi+1,vλ(i)−vλ(i+1)−1

(αλi−λi+1,vλ(i)−vλ(i+1))2
〈fsiλ, fsiλ〉.

Likewise since Φ and Ψ are adjoint, we have (for λn 6= 0)

〈fλ, fλ〉 = 〈Φfψλ, fλ〉 = 〈fψλ,Ψfλ〉 = (αλn,vλ(n)−1 − d0 + d−λn)〈fψλ, fψλ〉.

Now we describe a sequence of si and φ operations which will lead us
from the zero string 0n = (0, . . . , 0) to µ, and we will calculate the norm
of fµ by multiplying the factors we acquire when traversing the same se-
quence with σi and Φ operations acting on f0n . We begin by applying
φn to 0n, and repeat this µh(1) times so that we are left with the string
µnh(1) = (µh(1), . . . , µh(1)) (where h denotes the inverse of g). Now we apply

φn−1 and then sn−1sn−2 . . . s1 so that we are left with the string (µh(1) +
1, . . . , µh(1) + 1, µh(1)). We repeat this µh(2) − µh(1) times to leave us with
(µh(2), . . . , µh(2), µh(1)). Next we will apply φn−2 followed by sn−2 . . . s1sn−1 . . . s2,
and repeat this µh(3)−µh(2) times to get the string (µh(3), . . . , µh(3), µh(2), µh(1)).
We continue in this way, incrementing n − i of the entries and passing the
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other i entries back to the front so that they are not incremented, until the
value of the n− i entries is µh(i), at which point we repeat for i+ 1. The one
exception is that for each pair i, j such that µi ≡ µj (mod m) with µi > µj
and i > j, we do not pass one entry of value µj through one entry of value
µi. Thus at the end of the process we have a string with all the entries of µ,
so that all entries with the same value modulo m appear in the string in the
same order as they appear in µ. We may then freely reorder the entries using
the si operations, without switching any entries µi ≡ µj (mod m), to arrive
at the string µ. The corresponding actions of σi will therefore contribute no
factors, so this final step does not change the norm.

Now we first analyze the factors acquired from the actions of Φ. The first
n times we apply it, we acquire the factors

∏n
i=1(α1,i−1 − d0 + d−1) because

λn = 1 (after the action) and while the first time, all j − 1 other entries in
λ are less than 1 (after the action), each successive time, one less entry is
strictly less than 1. Likewise the jth time we increment the entries, the factors
we acquire are

∏n
i=n−k+1(αj,i−1− d0 + d−j), where k is the number of entries

we increment. Note that the number of times i − 1 appears as the second
argument of α is µh(i) (in particular it appears for j = 1, . . . , µh(i)). Replacing
the indexing variable i by g(i), we find that the total factor acquired is

n∏
i=1

µi∏
j=1

(αj,g(i)−1 − d0 + d−j).

Now we analyze the factors acquired from the actions of σi. Unless λi ≡
λi+1 (mod m), we acquire no factor. Therefore we only acquire factors when
we pass an entry of value µi to the front at the (µi+jm)th step. In particular,
we acquire a factor for each (i, j, k) such that µk − µi ≥ jm (equality only
contributes a factor if k < i). For fixed i, j, the factors we acquire are

p(i,jm)∏
k=1

αjm,n−g(i)−kαjm,n−g(i)−k+2

(αjm,n−g(i)−k+1)2
=
αjm,n−g(i)−p(i,jm)αjm,n−g(i)+1

αjm,n−g(i)−p(i,jm)+1αjm,n−g(i)
.

Taking the product over all i, j we get

∞∏
j=1

n∏
i=1

αjm,n−g(i)−p(i,jm)αjm,n−g(i)+1

αjm,n−g(i)−p(i,jm)+1αjm,n−g(i)
=
∞∏
j=1

αjm,n
αjm,0

n∏
i=1

αjm,n−g(i)−p(i,jm)

αjm,n−g(i)−p(i,jm)+1

.

Combining these two factors and taking 〈f0n , f0n〉 = 1 proves the formula.
(Note that if µk − µi < jr for all i, k, then p(i, jm) = 0 for all i, and the jth
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term in this product will cancel out to leave 1. Since this is true for all j
sufficiently large, then all but finitely many of the terms in this product are
in fact 1.)

Corollary 1. The signature character of the polynomial representation is

∞∑
w=0

tw
∑
µ∈Zn≥0

|µ|=w

{
n∏
i=1

µi∏
j=1

(αj,g(i)−1 − d0 + d−j) ·
∞∏
j=1

αjm,n
αjm,0

n∏
i=1

αjm,n−g(i)−p(i,jm)

αjm,n−g(i)−p(i,jm)+1

}
.

6 Conclusion and Future Research

In this paper, we employed computational results from other works to calcu-
late the signature of all finite-dimensional irreducible representations of the
cyclotomic Hecke algebra and the signature character of the polynomial rep-
resentation of the rational Cherednik algebra. As future research, we would
certainly like to calculate the signature character of all irreducible representa-
tions of the rational Cherednik algebra, for which there already exist similar
computational tools. We would also like to see how our results behave when
we take assymptotic limits of the parameters. Finally, we would consider ex-
ploring how we might be able to undergo this Cherednik algebra calculation
in a basis which is preserved by the action of Sn (unlike the fµ’s that we
used).
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