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1 Abstract

The aim of this paper is to first introduce some of the properties of the set of
fixed points of a unipotent action on a flag variety. Then we go on to explain
a correspondence from the set of irreducible components of the flag variety and
a set of standard tableaux of a certain shape written about by N. Spaltenstein
[1]. From this correspondence we will describe how it is used to establish an
even more interesting correspondence between pairs of pairs of different fixed
points in the flag variety and pairs of standard tableaux through the use of the
Robinson-Schensted Correspondence as exposed in a paper by Robert Steinberg
[2]. All of this will be preceded by the necessary background on the Robinson-
Schensted Algorithm [3], basic representation theory of the symmetric group
[4], and the flag variety and actions on it by the general linear group.

2 Introduction

In the representation theory of Sn Young tableaux arise everywhere. Not only
are the irreducible representations of Sn indexed by Young diagrams of size n
but the dimension of a given irreducible is equal to the number of standard
tableaux of the shape of its index. Young tableaux are tied to vectors spaces
and the symmetric group in many fundamental ways and this paper will look at
how they relate to the flag variety through the Robinson-Schensted algorithm
(Here on referred to as the RSK algorithm).The motivation for studying this
relationship is to ultimately gain an understanding of the relationship between
springer fiber and the RSK algorithm which is the ultimate goal of my research.

The paper will be an expository paper of previous work done by N.Spaltenstein
(on the fixed point set of the flag variety under a unipotent action) and Robert
Steinberg(on the relation between the RSK algorithm and flag varieties).

The first section on the general representation theory of Sn we will give
a very basic description of these irreducible representations. Using the fact
that for a finite group G with irreducible representations Vi it is always true
that

∑
i dim(Vi)

2 =| G | we will get a counting formula that will motivate
looking into the RSK algorithm. The RSK algorithm gives a constructive way
to go from any element of the symmetric group to a pair of filled in standard
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young tableaux and back again. The ultimate goal is to explore the intimate
relationship between this construction and the flag variety.

After we make explicit the RSK construction we will describe flags and how
they can be acted on. In this section the basics of flags, flag varieties and actions
on flag varieties will be outlined. We will describe the borel subgroup of GLn
and their relation to the flag variety. In the next section we will particularly
concerned with what happens when a unipotent operator acts on the flag variety.
In this section we will describe the inductive argument that shows that any
fixed point of the flag manifold maps to a standard young tableaux. Given this
subjective map we will then investigate the fibers and make our correspondence
between irreducible components of the fixed point variety exact. The next
section will then tie this all back to the RSK algorithm and who the final
correspondence we want to establish.

3 Preliminaries

Here we will briefly define a few things we are going to use later in the paper.
P(V) denotes the projectivization of a vector space V which is the set of

lines through the origin in V . If V has dimension n then the projectivization of
V has dimension n− 1.

A partition λ = {λ1, λ2, ..., λp of n is a set of positive numbers such that
λi ≥ λi+1 and

p∑
i=1

λi = n

A young diagram of shape λ is a set of left justified boxes such that row i is
of length λi. For example when λ = 2, 2, 1 the a young diagram of shape λ is
the following:

A young tableaux of shape λ is the young diagram filled in with the numbers
1 through n where n =

∑p
i=1 λi.

So for young diagram shown above an example of a young tableaux of that
shape is:

1 4

2 5

3

A standard young tableaux is a tableaux where each row and column of the
tableaux has strictly increasing values. You can verify that the above example
is in fact a standard young tableaux.
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4 Basic representation Theory of Sn

Here we will describe what the irreducible representations of Sn are and what
the conclusions we can draw from them are.

For a given partition of size n, λ = {λ1, λ2, ...λp} we have a Young diagram
of shape λ, Yλ and we can fill in the diagram with numbers 1 through n from
left to right and top to bottom to produce a tableaux Tλ. The following are
examples of Yλ and Tλ for λ = {3, 2, 2, 1} :

and
1 2 3

4 5

6 7

8

Then we define two subgroups as follows: Pλ is the subgroup of Sn that
maps elements to other elements in the same row of Tλ and Qλ is the subgroup
of Sn that maps elements to other elements in the same column of Tλ. The
intersection of these two subgroups can easily be seen to consist only of the
identity element.

From these two subgroups one can define the Young projectors Aλ and Bλ
as follows:

Aλ =
∑

g∈Pλ
g

Bλ =
∑

g∈Qλ
(−1)gg

Both of these are defined in the algebra C[Sn]. From these two projectors
we define a third operator

Cλ = AλBλ

. Given that the only intersection of Pλ and Qλ is the identity, the map

π : Pλ ×Qλ → Sn, (p, q)→ pq

is injective we conclude that this operator Cλ is non zero.
We then consider the space

C[Sn]Cλ ⊂ C[Sn]

This space is denoted Vλ and under the action of left multiplication by elements
of Sn is an irreducible representation called a specht module. A proof of this
fact is found in Etingofs introduction to representation theory[4]. Given that
conjugacy classes of Sn can be indexed by cycle partitions of the numbers 1
through n we know that these are all the irreducible representations of Sn.

A natural question to ask is what is the dimension of Vλ. It turns out that
dimVλ is the number of standard tableaux of shape lambda. We will not go
into a proof of this here but a proof can be found in ”The Symmetric Group:
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Representations, Combinatorial Algorithms and Symmetric Functions” a book
by Bruce E. Sagan[3].

Given that ∑
λ
dim(Vλ)2 = n!

we can conclude that the set of pairs of standard tableaux of shape lambda has
the same order as Sn. It is only natural to try to find a bijection between the
two.

The RSK algorithm provides this bijection constructively.

5 The Robinson-Schensted Algorithm

We will explain the algorithm as described by Sagan. First we will provide a
map ρ from the symmetric group to pairs of standard tableaux.

From a permutation σ we construct a pair of standard tableau (P,Q) through
a sequence of partial tableaux pairs that converge on the final pair. A partial
tableaux in this case is tableaux filled in with some subset of the numbers 1
through n that has increasing rows and columns and whose shape is a set of
blocks that is a subset of the shape of P and Q. We call write the sequence as:

(P0, Q0), (P1, Q1), ..., (Pn, Qn) = (P,Q)

Pi is defined recursively from Pi−1 using an operation called insertion and
Qi is defined recursively from Qi−1 using an operation called placement. P0

and Q0 are empty. For a tableaux T we define shT to denote the shape of the
young diagram of T . Our operations insertion and placement are defined so
that shPi = shQi for all i.

Let us have a permutation

σ =

(
1 2 3 · · · n− 1 n
x1 x2 x3 · · · xn − 1 xn

)
We insert the xi in order to obtain P . So Pi always contains x1, x2, x3, ...xi.

Insertion works the following way:
When inserting xi+t into Pi either xi+1 is greater than any element in the

first row or we replace the smallest member of the first row greater than xi+1

with xi+1. Then with the replaced element we compare it to the second row
and if its greater than every element of the second row we place it at the end
and if its not we replace the smallest element greater than it in the second row
by it and prcede the same way starting with the third row and so on.

The following is a demonstration with

σ =

(
1 2 3 4 5 6 7 8
2 5 7 1 4 3 6 8

)
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2 → 2 5 → 2 5 7 → 1 5 7

2
→ 1 4 7

2 5
→ 1 3 7

2 4

5

→

1 3 6

2 4 7

5

→ 1 3 6 8

2 4 7

5

Now for Q at each step we place an element. This time we place the numbers
1 through n in chronological order. At step i we place the number i in the
box at which the ith insertion terminated in the partial P tableaux. We will
demonstrate the steps for constructing Q corresponding to the process for P
shown above. The sequence is the following:

1 → 1 2 → 1 2 3 → 1 2 3

4
→ 1 2 3

4 5
→ 1 2 3

4 5

6

→

1 2 3

4 5 7

6

→ 1 2 3 8

4 5 7

6

Note that both the insert a delete process preserve the property that the
tableaux at each step. This guarantees that we end up with a pair of fully
filled in standard tableaux. To prove that the map σ : Sn → (P,Q) is indeed a
bijection all we need is an inverse map from every ordered pair to an element
of Sn. This inverse is very intuitive as it is literally the process of insertion and
placement in reverse.

Suppose we have any ordered pair of standard tableaux (P,Q) we want to
map them back to an element of Sn that would be mapped to them under the
previously described insert and placement algorithm.

The process is exactly the reverse of what we just did. We look for the
block where n is placed in Q and we remove n from that spot. Now we go to
P and whatever number is in that corresponding spot we move it up to the
row above it and replace the greatest element smaller than it by it and then
take that element and have it replace the greatest element smaller than it in
the row above that and so on until we remove some number from the top row.
Then we go back to Q and remove n − 1 and go to P and do the same thing
as we described previously with the element in the corresponding block. At
each step we remove the largest number from Q and then go to the element of
P and replace the greatest element less than it in the previous row by it and
so on until we remove an number from the top row of P . This is literally the
reverse of insertion and placement. The ith number that is removed from the
top row is σ(n+ 1− i). In other words we place the numbers that leave the top
in permutation in reverse order.
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We will now demonstrate this by taking our pair of tableaux 1 3 6 8

2 4 7

5

, 1 2 3 8

4 5 7

6


and showing how to do two iterations of the process in broken down steps:

1 2 3 8

4 5 7

6

→ 1 2 3

4 5 7

6

and for P we get the following backwards insertion in the following steps.

1 3 6 8

2 4 7

5

→ 1 3 6

2 4 7

5

8 →

The next iteration for Q goes as follows:

1 2 3

4 5 7

6

→ 1 2 3

4 5

6

and for P we get the following backwards insertion:

1 3 6

2 4 7

5

→ 1 3 6

2 4

5

7 → 1 3 6

2 4

5

1 3 7

2 4

5

6 →
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So in the first iteration 8 is discarded from the first row and in the second
iteration 6 is discarded from the first row. So σ(8) = 8 and σ(7) = 6. This
matches up with our initial permutation.

So this process is our inverse and we have indeed established a bijection.

6 The Flag Variety and Unipotent Transforma-
tions

A flag is a sequence of vector spaces of increasing dimension incrementing by
one V = {V0, V1, ....Vn} such that Vi ⊂ Vi+1 for all i. V0 has no dimension and
Vn has dimension n. One can describe each space by an increasing set of basis
vectors that spans vector spaces of increasing dimension but multiple sets of
basis vectors can describe the same flag so we avoid this representation.

If we have a vector space V we can define a flag variety F (V ) which is the
set of all flags on this vector space such that Vn = V .

The the general linear group clearly acts on the flag variety since it preserves
dimension of vector spaces and preserves the subspace relationship between two
vector spaces.

A subgroup of GLn that is intimately connected to the flag variety is the
subgroup of invertible upper triangular matrices. We will denote this subgroup
by B . A Borel subgroup of of GLn is subgroup conjugate to B.

When taking one basis representation of a flag variety to another the trans-
formation will always be upper triangular. It turns out that the stabilizer of
the flag variety under the action of GLn is the set of upper triangular matrices
since they take any set of basis for a vector space in a flag variety to another
basis that spans the same space.

So if we let the flag variety be denoted by F = F(V ) then it it is clear that
that F is acted on transitively by GLn since one can construct an invertible
transformation that takes any set of basis vectors to any other set of basis
vectors. Thus it is clear that since stab(F) = B

F ' GL(V )/B

as algebraic varieties.
Now that we have some idea of the flag variety as an algebraic variety lets

look at actions on it. We the fixed point set of a unipotent transformation u.
We will describe how to construct correspondence as done by N.Spaltenstein in
[1].

Consider standard young tableaux of size n. We let σi be the column num-
ber of the number i in the tableaux. Given that the tableaux is standard the
sequence σ = σ1, σ2, ..., σn completely determines the tableaux.

We also introduce an order on the standard tableaux as follows: If for some
j(1 < j < n)σj < τj and σi = τi for all i > j then we say that σ < τ . This is a
total ordering on the standard young tableaux. Let the ordered set of standard
tableaux be T
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First we take our unipotent matrix u and put it in jordan normal form. To
u we can assign a partition of n, λ = {λ1, λ2, λ3, ..., λp} such that there are as
many partitions of length i as there are jordan blocks of size i in u. Let Ci
denote the length of column i.

We will denote the set of fixed points of u in the flag variety by Y = F(V )u.
We now have the definitions to define a surjective γ : Y → T . It is difficult to

make this map explicit straight away so we consider a flag F = (V0, V1, ...Vn =
V ) ∈ Y and the restriction of u to (V/V 1) which we will denote u1. Since F ∈ Y
we know that V1 is generated by an eigenvector of u (obviously of eigenvalue
1) and therefore u1 fixes F/V1 = (V1/V1, V2/V1, ..., V/V1). Clearly the young
diagram associated to u1 has is the same as the one associated to u minus some
corner corresponding to the jordan block that had a basis that spanned V1.
Then by induction on dimension we can assume that that we have a standard
tableaux σ1 of size n− 1 associated to F/V1. Then we know that the standard
tableaux for F is the same as this one with an n in the corner that is in the
young diagram of u and not in that of u1

So this establishes that γ is indeed a surjective map.
We can look at the fibers of a given tableaux in Y . We define

Yσ = γ−1(σ)

Obviously the Y σ’s partition Y . These Y σ as we will soon see correspond
exactly to the irreducible components of Y although they aren’t exactly irre-
ducible.

To show this we define a map p : Y → P(V ) (P denoting the projectiviza-
tion) such that F → V1.

We also define a flag W = (W0,W1,W2, ...WC1
) ∈ F(Ker(u − 1)). The

C1 here is indeed also referring to the number of elements in the first column
which makes sense when we defines more general flag that this is one of. We
let Wdi = Ker(u− 1) ∩ Im(u− 1)i−1 for all i > 1. In this context our original
flag W = Wd1 . This means that Wdi is a vector space that is spanned by the
vectors that are in the kernel of u−1 in jordan blocks of dimension i or greater.
It makes perfect sense that its dimension is equal to the number of elements in
column i of our standard tableaux.

We present the following propositions without proof. A proof of them can
be found in [1].

1.
⋃
τ≥σ

Yτ

is closed in Y and Yσ is locally closed Y .

2.dimYσ =
∑

s≥1
ds(ds − 1)/2

3.For every σ ∈ S there is a partition of Yσ into spaces that are isomorphic to
affine spaces:
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(Xj)1<j<m

where ⋃
k≤j

Xk

is closed in Yσ(1 < j < m)
This shows that the Yσ are dense open subsets in the irreducible components

of Y . Due to these three propositions, in the zariski topology we have:
Yσ are the irreducible components.
This establishes a one to one correspondence between standard young tableaux

and the irreducible components of Y .

7 Robinson-Schensted Algorithim and Flag Va-
rieties

Here we will establish a geometric equivalence between pairs of young tableaux
and pairs of flag varieties through the RSK algorithm that isn’t at all obvious
on the surface.

The correspondence found in the previous section is made inductively and
not explicitly. Here we will give an explicit way of seeing it that is quite literally
the RSK algorithm.

This will be short exposition of the ideas expressed by Robert Stienberg in
[3].

We start by defining the notion of the ”relative position” of two flags F and
F ′. The relative position of these flags is a permutation:

w = w(F, F ′)

This permutation has the property that if F = (V0, V1, ...Vn) and F ′ =
(V ′0 , V

′
1 , ...V

′
n) (Vn = V ′n = V ) then there is a basis v1, ...vn of V where v1, v2, ...vi

is a basis of Vi and vw1
, vw2

, ..., vwj is a basis of V ′j for all i and j.
This both exists and is unique but is not proved in the paper and will not

be proved here.
Now there is also a permutation associated to any pair of standard tableaux

(P,Q) that can be found by doing the RSK algorithm backwards as was demon-
strated in the section on the RSK algorithm. we can write this permutation as
w(P,Q)

The correspondence we want to prove is that if we have a flag manifold F(V )
and a unipotent operator u of shape λ (this notion is defined in the previous
section and is based on its jordan decomposition) and two standard tableaux P
and Q corresponding to irreducible components of F(V ) C and C ′ respectively
by the correspondence outlined in the previous section then for any suitable (in
suitable dense and open subsets of their respective irreducible components) F
and F ′ in C and C ′ respectively:
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w(F, F ′) = w(P,Q)

The exact proof of this is very clear but complicated and can be found in [3]
but here we will give the intuition behind the proof and show the part where
RSK shows up obviously.

Most of the desired intuition comes from the following lemma:
Let F = (V0, V1, ...Vn) and F ′ = (V ′0 , V

′
1 , ...V

′
n) be the two flags we were

referring to earlier. We let F ′2 be a sub flag of F ′ terminating at V ′n−1. Let F2

be the flag on V ′n−1 such that if r is the smallest number such that Vr is not
a subspace of V ′n−1 then the subspaces in F2 are Wi = Vi ∩ V ′n−1 for all i not
equal to r. We label these subspaces 1 through n with r excluded. Given these
definitions the tableaux’s corresponding to F2 and F ′2 are obtained from F and
F ′ from the first round of the RSK algorithm.

This lemma combined with induction on the number of subspaces in the flag
clearly gives the intuition for our theorem since the tableaux for F ′ is going to
lack be the tableaux for F ′2 with n placed and the tableaux for F is the tableaux
for F2 with an insertion of r corresponding to the permutation.

The proof for this in the article is literally working the RSK algorithm back-
wards and can be found in [3].

This is the true nature of the correspondence between pairs of flags from
different irreducible components and pairs of standard tableaux corresponding
to them.
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