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Abstract

Let K be a global function field. Using Haar measures, we compute the densities of the
Kodiara types and Tamagawa numbers of elliptic curves over a completion of K. Also, we
prove results about the number of iterations of Tate’s algorithm that are completed when
the algorithm is used on an elliptic curve over a completion of K.

1 Introduction

Let p be a prime and ¢ = p™ for a positive integer n. Let K be a finite extension of Fy(t).
Define My as the set of places of K. Suppose P € M. Let Kp be the completion of K at
P and Rp be the valuation ring of Kp. Suppose FE is an elliptic curve over K with equation

E:y2+a1acy+a3y:m3+a2x2+a4x+a6

such that a1, as, az, aq, and ag are elements of K. E has a long Weierstrass form, and if
a1 = ag = az = 0, F has a short Weierstrass form. We study densities for elliptic curves
over K in long Weierstrass form.

As an elliptic curve over K p, E has a Kodaira type, which describes its geometry. Partic-
ularly, F has a Tamagawa number cp = [E(Kp) : Eo(Kp)] over Kp. A method to determine
the Kodaira type and Tamagawa number of an elliptic curve over Kp is Tate’s algorithm ([6],
[7]). The description of the algorithm in [6] is used in this paper to compute local densities.
Often, steps from this description of the algorithm are referred to.

The papers |2] and [3] discuss densities of Kodaira types and Tamagawa products for
elliptic curves over Q. In these papers, the densities at the nonarchimedean places of Q are
considered. In [2] and [3], the density is for elliptic curves in long and short Weierstrass forms,
respectively. Moreover, [1] discusses densities of Kodaira types and Tamagawa products for
elliptic curves over number fields in short Weierstrass form. Note that some of the methods
for computing local densities with Tate’s algorithm used in Section[d] Section[5] and Section|[6]
of this paper are similar to methods used in [1], 2], and [3].

Local densities over Kp can be obtained using the Haar measure. Let N be a positive
integer. Note that K g as an additive group is locally compact, and because of this, Haar’s
theorem can be used on KJ. Particularly, suppose pp is the Haar measure on K3 with
up(RY) = 1.

Let Gp be the set of curves y? + a1zy + asy = x> + asx? + asx + ag over Kp such that
ai,as,as,ay,as € Rp. Because the discriminant of an elliptic curve must be nonzero, not
all elements of Gp are elliptic curves. Also, note that Gp can be considered to be R%. The
local densities for Gp are obtained from the Haar measure on R?D.

Definition 1.1. For an elliptic curve E € Gp, let Mp(FE) be the number of iterations of
Tate’s algorithm that are completed when the algorithm is used on FE.



Suppose T is the set of Kodaira types. Let t be an element of T' and n be a positive
integer. Define dx (t,n; P) to be the Haar measure of the set of elliptic curves FE over Kp
with coefficients in Rp such that E has Kodaira type v and the Tamagawa number of F is
n. For k > 0, define dx (v, n, k; P) to be the Haar measure of the set of elliptic curves F over
Kp with coefficients in Rp such that F has Kodaira type v, the Tamagawa number of F is
n, and Mp(F) = k.

In this paper, we often consider the number of iterations that Tate’s algorithm completes
when the algorithm is used on an elliptic curve over Kp. Note that in order to study this
topic, Proposition [2.4] is useful. Next, we give an important result of the paper.

Theorem 1.2. For a Kodaira type t, positive integer n, and nonnegative integer k,

5K(tan7k;P): 6K(tan707p)

10k
P

We prove Theorem [I.2] by considering the cases p > 5, p = 3, and p = 2. Note that the
general method used to prove the theorem is to use translations. The proof of this result is
given in Section [7.1]

Organization. The paper is organized as follows. In Section [2| we introduce elliptic
curves and Tate’s algorithm. Next, in Section |3 for a nonempty finite subset S of My and
a positive integer N, we discuss how to obtain global densities for O[]\é g Afterwards, in
Section [] Section [5] and Section [6] we compute the local densities if the characteristic p
of K is at least 5, equal to 2, and equal to 3, respectively. Finally, in Section [7] we prove
additional results about local and global densities.

Notation. Suppose P is a place of K. Let the degree of P be [Rp/mpRp : F,]. Also, let
Qp = |Rp/mpRp|. Let mp be a uniformizer of P in K. Also, denote vp to be the valuation
vUrp over Kp; note that vp is also a valuation over K because K C Kp. Moreover for a
nonnegative integer k, let Lpj be a set of representatives of the cosets of Rp/ ﬂ%Rp such
that 0 € Lp’k.

Suppose S is a finite nonempty subset of Mg. We let Ok s be the set of + € K such
that if P € S¢ = Mg\S, vp(z) > 0. Also, let Ws be the set of curves y? + ayzy + azy =
23 + agr? + aqx + ag such that ay,as,as,a4,a6 € Ok s.

For d > 1, let T4 be the number of places of P with degree d. The zeta function of K is

Cx(s) = ﬁ <1 - L) 7Td~

d=1 q

Suppose D is a divisor of K. Define L(D) as the set of z € K such that z =0 or z # 0
and (z)+ D > 0.
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2 Elliptic Curves and Global Densities

Suppose P is a place of K. An elliptic curve E over Kp has an equation
E:y2+a1xy+a3y:x3+a2x2+a4x+a6

such that ai,as,as,a4,a6 € Kp. Additionally, using [6], for an elliptic curve E over Kp,
define

ba(E) = a% +4ag,by(E) = aras + 2a4,b6(F) = ag + 4ag,

2 2 2
bs(E) = ajag + 4dasas — ajasas + agas — aj.



Also, the discriminant of F is
A(E) = —by(E)?*bs(E) — 8by(E)? — 27b6(E)? 4 9bo(E)bs(E)bs(E).

Definition 2.1 ([7]). Elliptic curves E and F over K p are equivalent if there exists I, m,n,u €
Kp such that u # 0 and the equation for F' can be obtained from the equation for F by first
replacing x with v?x + n and y with u3y + lu?z + m and then dividing by u°.

Definition 2.2 (|7]). An elliptic curve E over Kp is minimal if the equation for FE has
coefficients in Rp and if there does not exist an elliptic curve F' over Kp such that the
equation for F' has coefficients in Rp, F is equivalent to E, and vp(A(F)) < vp(A(E)).

The following proposition generalizes Theorem 3.2 of |7] to nonminimal equivalent elliptic
curves. Note that the proposition is used later in the paper to compute local densities.

Proposition 2.3. Let F and F be elliptic curves over Kp that have equations with co-
efficients in Rp, are equivalent, and satisfy vp(A(F)) = vp(A(F)). Then, there exists
I,m,n,u € Rp such that vp(u) = 0 and the equation of F' can be obtained from the equa-
tion of E by first replacing = with u2x +n and y with 43y + lu?z +m and then dividing by

uS.

Proof. The proof of Theorem 3.2 of [7] can be used to prove this proposition. |

Proposition 2.4. Let k£ be a nonnegative integer. The elliptic curve E over Kp with
coefficients in Rp has Mp(E) > k if and only if [,m,n € Rp exist such that if x is replaced
by x + n and y is replaced by y + lx + m, the resulting elliptic curve

E':y? +ajwy + ahy = 2° + aba? + ayx + af
has a} =0 (mod 7% for i € {1,2,3,4,6}.

Proof. Suppose [, m, n exist. Then, MP(E) > k follows from replacing x with x +n and y
with y + lz 4+ m to get the curve E' : y? + ajay + ahy = 23 + aba? + aljx + af such that for
i€{1,2,3,4,6}, 7% divides a}. From Tate’s algorithm, we have that Mp(E) = Mp(E') > k.

Next, we prove that if M p( ) >k, I, m, and n exist using induction on k. The base
case k = 0 is clear. Let a be a nonnegative integer and assume the result is true for k£ = a.
We prove the result is true for k = a + 1. Assume Mp(E) > a+ 1. Because Mp(E) > a,
[, m, and n exist such that if z is replaced with x 4+ n and y is replaced with y + lz + m,
the resulting curve E' : y? + ajxy + ahy = 2° + ahr? + ajx + afy has a; = 0 (mod 7%) for
i€{1,2,3,4,6}. Using Tate’s on E’, E' after a iterations will be

/
F:y2—|— my+ 3ay—33+ 2aac+ 4am+
T P P TP T

We have that F is E with z replaced with 7%z + n and y replaced with w3y + In%z + m
divided by %

Because Mp(E’) = Mp(E) > k+ 1, F will complete at least one more iteration. During
this iteration, suppose z is replaced with 4+ n’ and y is replaced with y + 1"z +m’. We have
that the resulting elliptic curve

F':y? +alzy + afy = 2® + af2® + afjz + af]
has a” =0 (mod 7%) for i € {1, 2 3,4,6}. Moreover, I’ is E with z replaced with m% a: +
n + 72'n’ and y replaced with w3y + (l +UrE) e +m + m/m + In'7% divided by mée
Becaube al! =0 (mod 7%) for i € {1,2,3,4,6}, we are done. I



Note that Tate’s algorithm cannot be used on a curve in G p with discriminant 0. However,
this is not considered in the calculations of local densities later in the paper. Suppose vt € T,
n is a positive integer, and k is a nonnegative integer. The set U of elliptic curves E € Gp
with Kodaira type t, Tamagawa number n, and M (E) = k is an open subset of Gp, because
if £ € U, if multiples of 7 are added to the coefficients of E for sufficiently positive large
integers M, the resulting curve will be an element of U. Particularly, the set of elliptic curves
is an open subset of Gp. In the next proposition, we prove that the Haar measure of this set
is 1; note that it follows that the Haar measure of the set of curves in Gp with discriminant
01is 0.

Proposition 2.5. The Haar measure of the set of elliptic curves is 1.

Proof. For a positive integer M, let Fj; be the set of subsets of Gp of the form (r; + wf\;/[)s
for r; € Lp s that are contained in the set of elliptic curves. For E : y? + ajzy + agy =
23+ ax2? + ayw +ag, we see that the number of solutions to A(E) =0 (mod 7¥) is O(QH).
Therefore, we have that |Ey| = Q3 — O(QEY). However, the Haar measure of the union

of the elements of ) is %ﬁ}@‘ =1-0 (%) The result follows from taking M — co. W

3 Global Densities

Next, global densities are established. Definitions and theorems from [4] are used in this
section.
Let S be a finite nonempty subset of M. Also, suppose N is a positive integer. Let
Div(S) be the set of divisors
Z TLPP

pPecS

such that for P € S, np is a nonnegative integer, and there exists P € S such that np > 0.
Suppose U C O%,& The upper density of U at S is

= . |[UNL(D
ds(U) = limsup —————,
s) Demv£> |L(D)IN

ol

~

and the lower density of U at S is

... [UNLD)N|
de(U) =1 f —
ds(U) = Jmint =7 5w
If ds(U) = dg(U), the density ds(U) of U at S exists, and equals ds(U) = dg(U).
Theorem 3.1 ([4], Theorem 2.1). For P € S, let Up C K& be a measurable set such
that pup(0Up) = 0. For a positive integer M, let Vs be the set of z € 0%75 such that
x € Up for some P € S¢ with degree at least M. Suppose limp; o0 ds(Vas) = 0. Let
P:ON g =25 Pla)={PeS°:aecUp}. Then:
1. ZPGSC wp(Up) is convergent.
2. For T c 257, v(T) := dg(P~Y(T)) exists. Also, v defines a measure on 25¢.

3. v is concentrated at finite subsets of S, and for a finite set T' of places in S,

v({T}) = T ner) [ (- peUe)).

PeT PeSC\T

Theorem 3.2 ([4], Theorem 2.2). Let f and g be polynomials in Ok g[z1,...,z4] that are
relatively prime. For M > 1, let Vi be the set of x € (9%75 such that f(z) = g(z) =0

(mod 7p) for some P € S¢ with degree at least M. Then, limps o0 ds(Vas) = 0.



In this paper, we consider global densities for elliptic curves over K with coefficients
in Ok,s in long Weierstrass form. We see that Ws can be considered to be O%,S, and
particularly, the global density definitions from above for O ¢ can be used on Wg. Similar
methods are used in [2] for elliptic curves over Q with coefficients in Z. Note that an elliptic
curve must have a nonzero discriminant, meaning that not all curves in Wy are elliptic curves.
However, for D € Div(S), the number of curves in Wg with discriminant 0 that are elements
of L(D)®, where Wy is considered to be O% g, is O(|L(D)[*). Particularly, if proportions
over elliptic curves in Wy is considered rather than the proportions over Wg, the density is
not changed.

Proposition is about the global density of nonminimal elliptic curves. Note that the
lemma is used to prove Theorem [7.2]

Proposition 3.3. For a positive integer M, let Vj; be the set of elliptic curves £ € Wy
such that there exists P € S with degree at least M such that Mp(E) > 1. Then,

Proof. We prove this with casework on the characteristic p of K. Suppose that E is an elliptic
curve in Gp with equation E : y?+a,zy+asy = x> +asx?+asx+ag for ay, as, as,aq, a6 € Rp
such that Mp(E) > 1.

Assume p > 5. We have that FE can be translated to the curve

b2 b4 bg b2b4 bG
y_er( B2 )x 864 21 4

. . s b3 b4 _ _ﬁ _bobs | bs —
Because Mp(E) > 1, using Proposition [2.4 —|— (mod 7p) and — g — % + F =

2 2
0 (mod 7p). Then, Theorem with f($1,$2,$3,$471'6) = —(wlté?) + Z1Zs£2%4 anq
(:v +4:vg) (m +4x2)(z123+2T4) + 3+4r6

9(x1, 22, T3, T4, T6) = oY proves the lemma for p > 5.
Next, assume p = 3. We have that E can be translated to the curve
bo b b
23,22 A8
y* =z + 17 24 B + 1
Using Proposition % =0 (mod 7p) from the coefficient of 22. Additionally, A(E) = 0
(mod 7p). Next, Theoremwith f(x1, 22,23, 24, 76) = — (23 +22) (23 26+ 2206 — T 10374+
2oz} — 23) + (w123 + 224)° and g(1, 22, 73, ¥4, 76) = 23 + 22 proves the lemma for p = 3.
Suppose p = 2. Using Proposition a1 =0 (mod 7p) from the coefficient of zy. Also,
A(E) =0 (mod mwp). Therefore, Theoremwith f(z1, 20,73, 24, 76) = 2} (2326 + 712374+
T27% + x3) + 25 + 2323 and g(x1, 22, 3,74, T6) = 1 proves the lemma for p = 2. |

4 Local Densities for p > 5

4.1 Setup

Suppose that the characteristic of K is p > 5. Let P be a place of K. We compute the local
densities over Kp of Kodaira types v and Tamagawa numbers n for elliptic curves in Gp.

Let Gg) be the set of curves
y2:$3+a4x+a6
over Kp such that a4,a6 € Rp. Note that Gggl) can be considered to be R%. Define

v:Gp — Gg) as the function such that if E is the curve in Gp with equation E : y? +
a1y + azy = 23 + azx? + ayx + ag, ©(F) is the curve

( Bb B bobs b
By sy (b2 ba) b5 baba be
w(B):y x+<48+2x864 21 T

If E is an elliptic curve, ¢(E) is an elliptic curve equivalent to E.



Lemma 4.1. If U is an open subset of GP , wp(p~1(U)) = pp(U).

Proof. Let V be the set of y? = 2® + ajz + aj with a4 €ry+7mp' Rp and ag € 16 +7p Rp It

suffices to prove that up(¢=1(V)) = up(V) = m because all open subsets of G’P can

be written as a disjoint countable union of sets with the form of V. We want to find the set
of a1, as,as,a4,as € Rp such that ——2—1— b4 € r4+7rP4Rp and —% — b2b4 + bﬁ €rg —|—7rP6Rp
Let M = max(ng,ng). First, select a17a27a3 modulo 77 Each has Q P p0551ble residues.
Afterwards, a4 will have QM " residues modulo ﬂf\p/[ ; select the residue for a4. Finally, ag

has M " residues modulo 7. We see that if each of ay,as,as,as,as are taken modulo

7rP, the number of combinations of residues is Q5M ~maTme - Also, because al is modulo
for i €{1,2,3,4,6}, each combination of residues has a Haar measure of Q5 —=r. We are
done. |

4.2 Multiple Iterations
Let k£ be a nonnegative integer. Suppose Sy is the set of elliptic curves E € Gg) such that
Mp(E) > k.

Suppose F is an elliptic curve in Gg) with equation F : 42 = 2% + aqx + ag. Assume
E ¢ Si. Then, using Proposition I,m,n € Rp exist such that

l m\ > n \* aq n aG
24— | —(2+—) - v+ € Rp[z
(i) ~ (i)~ (v )~ s e oo

The coefficient of zy is 2—,£, giving that vp(l) > k, and the coefficient of ¥ is 28 giving that
Tp
vp(m) > 3k. Also, the coeﬁiment of x? 3”%1 , giving that vp(n) > 2k. From this, we have
P
that vp(as) > 4k and vp(ag) > 6k.
Define the function ¢y, : S, — So, y° = 2%+ agx +ag — y2 = 23+ =& M x+ %-. Note that
g

S C Sy C G’Sgl). From Proposition and Lemma , wp(Sp) = 1. Next, we show how we
can use ¢y to compute densities for Sj.

Lemma 4.2. If U is an open subset of GP , pp(dp N (U)) = ﬁ,up(U).
P

Proof. Let V be the set of y* = 2 + ajx + af with a) € rqy + 7' Rp and af € r6 + 73S Rp.
To prove the lemma, it suﬁices to prove that /Jp(glﬁ;l( ) =pp(V) = W We want

ng

to find a4, ag such that k €ry+ 5 Rp and 5 W € r¢ +mp' Rp. However, this is true if and

only if ay € THry + 77"4+4kR and ag € T%rg + ﬂ'””ﬁkR Moreover, because ,up(So) =1,
the density of curves y? = 23 + a4x + ag with discriminant 0 such that a4 € 7r Ky, + 7r"4+4k

and ag € T%re + 7r"6+6k is 0. Because of this, up(qsk (V) = M+71"6+10, completing the

Qp
proof. |

4.3 Density Calculations

Given a set A, the density of A means the Haar measure of A. In this subsection, we compute
the density of the set of minimal elliptic curves with a given Kodaira type and Tamagawa
the densities can be extended to all elliptic curves

the densities of a given Koidara type and Tamagawa

number over Gg). From Lemma
in Gggl). Moreover, from Lemma
number over Ggpl) and over G p are equal.

Suppose the discriminant is not divisible by mp. We compute the density of this by
considering a4 and ag modulo mp. Suppose a4 € 74 + TpRp and ag € r¢ + TpRp. We find
the number of pairs (r4,76) in Lp; such that (%4)3 + (%")2 =0 (mod 7p). If r4, = 0, 76 has



1 choice, and if —%4 is a square modulo 7p, r¢ has 2 choices. Otherwise, r¢ has 0 choices.
We see that the number of pairs (r4,76) is @p. Therefore, where each pair (r4,76) has a
density of Q2 , the density of the discriminant not being divisible by 7p is QQPgl. For this

case, Tate’s algorithm ends in step 1 and we get that dx (1o, 1,0; P) = Qgp .

Next, assume the discriminant is divisible by wp. Furthermore, suppose a4,a6 Z 0
(mod 7p). Because there are @Qp — 1 pairs (r4, ) modulo wp for this case, the total density
is Q52_1. Let o be the element of Lp; such that ay = —3a? (mod 7p) and ag = 203

(mod };rp). The singular point is («, 0) and in step 2, x is replaced with z + n where n = .
Because o £ 0 (mod 7p), Tate’s algorithm ends in step 2. The quadratic considered in step
2 is T? — 3a. We see that for QP2_1 values of «, this quadratic has roots in Rp/mpRp and
¢ =vp(A(E)). Otherwise, ¢ = 1 if vp(A(F)) is odd and ¢ = 2 if vp(A(E)) is even.

Let N be a positive integer. Suppose a4 € 74 + Wng and ag € 16 + WﬁRp. We find
the number of pairs (r4,7¢) in Lp; such that (%4)3 + (%6)2 =0 (mod 7¥) and 74,76 # 0.
QF —2Q§ -

Because there are nonzero residues that are squares modulo 7%, we have that
the number of pairs (r4,76) is QY — QN ', Therefore, the density of vp(A(E)) > N for
ag,a6 Z0 (mod 7p) is %

P

Suppose N is a positive integer. The density of vp(A(E)) = N is Qr—l _ ?2@121 =
P P
(Q@p-1)*

N+2

Wethereforehavethat5K(Il,1,0 P)= (QP 1’ ,0k(12,2,0; P) = @p—1)* ,and dx (I, N,0; P) =

Q4

dx(In,2 {7J —N+2,0;P) = (gézviz for N > 3 Moreover, we have that ¢ = 1 with density

(Q@p —1)% P—1 Qp—1?2 (Qp—1)(2Q% —1)
+; 21+3 - QQ:;’:(QP‘FU

and similarly, ¢ = 2 with density (Q;Q_l()gffgl) For N > 3, ¢ = N with density (QPNjf.
P

If vp(aq),vp(ag) > 1, the singular point is (0,0). The total density for this case is Q%

P

If vp(ag) = 1, the algorithm ends in step 3. For this, we get 0k (I1,1,0; P) = Q53

Assume that vp(ag) > 2. The total density for this is Q% If vp(ays) = 1, the algorithm
P

ends in step 4, and we get that dx (I11,2,0; P) = %}1
P

Next, suppose vp(as) > 2. The total density for this case is Q% If vp(ag) = 2, the

algorithm ends in step 5. We have that from this, dx (IV,1,0; P) = 0x(IV,3,0; P) = QZEQ L

Suppose vp(ag) > 3. The total density for this case is Q% In step 6, the polynomial
P
P(T) € (Rp/mpRp)[T] has coefficient of T? equal to 0. From adding multiples of 7%
to a4, the choices for the coefficient of T" are Lp;. Also, from adding multiples of W?;,
to ae, the choices for the constant term are Lp;. Then, we have that each polynomial
P(T) € (Rp/mpRp)[T)] with coefficient of T? equal to 0 corresponds to a density of Q% in
P

al.
Assume P(T) has distinct roots. The total number of P(T') for this case is Q% — Qp;
therefore, the total density for this case is Qg; L. We have that Tate’s algorithm ends in

g
step 6 here. The number of P(T') with 0, 1, and 3 roots in Rp/mpRp are % Q?’QQP
and M , respectively. With this, dx (I§,1,0; P) = %5?1, Ok (1§,2,0; P) = %‘5617 and
Sk (I5,4,0; P) = %.

Next, assume that P(T") has a double root and a simple root. For this case, the total

number of P(T') is @p — 1 and the total density is therefore Q(S;l. Suppose N is a positive
P




integer. We have that dx (I},2,0; P) = 0x(I%,4,0; P) = (§5N+3 . Moreover, ¢ =2 and ¢ =

4 both have densit,
are included in Section?ﬂl

Assume P(T) has a triple root. For this case, the total number of P(T) is 1 and the
total density is therefore Q7 . Because the coefficient of T2 in P(T) is 0, the triple root is 0.
I(gpvfl(ag) = 4, the algorithm ends in step 8. For this, dx (IV*,1,0; P) = §x(IV*,3,0; P) =

2Q% -
Next, assume that vp(ag) > 5. The total density for this case is Q% If vp(ays) = 3, the
P

algorithm ends in step 9 and 6 (I11*,2,0; P) = QQPg L
Suppose vp(aq) > 4. The total density for this case is

ends in step 10 and 0x (I7%,1,0; P) = Qé’lo .

With density Qw, we have that vp(as) > 4 and vp(ag) > 6, meaning that the curve is

Q%‘ If vp(ag) = 5, the algorithm
P

not minimal. That is, the curve will complete iteration 1 and continue iteration 2. Note that
the density of nonminimal curves calculated from the algorithm matches Lemma

4.4 Subprocedure Density Calculations

We compute the subprocedure densities by studying the translation of z in Tate’s algo-
rithm. In the step 7 subprocedure, because initially the coefficient of y is 0, there will be no
translations of y.

Let X be the set of elliptic curves E € Gg) such that Mp(F) = 0 and Tate’s algorithm
enters the step 7 subprocedure when used on E. For E € X let L(E) be the number of
iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used on
E. For a nonnegative integer N, let X be the set of E € X such that L(E) > N.

Suppose N > 0 is even. Iteration N of the step 7 subprocedure is completed if and only
if n € Rp exists such that vp(n) = 1, vp(as +3n?) > Y and vp(n® + 3nas +ag) > N +4.

Suppose n = ny satisfies this condition. Suppose n = ng also satisfies this condition. We then
N+4

N
have that n? = n3 (mod Tp +6) ThlS gives that n, is equivalent to ny or —ng modulo 7 ?
However, because n? + nias = n3 + noaq (mod 75 +4), we have that vp(ny —ng) > N+4.
Moreover, if vp(n; —ng) > N;‘l, n = ny works also.
Next, suppose N > 0 is odd. Iteration IV of the subprocedure is completed if and only if

n € Rp exists such that vp(n) = 1, vp(ay + 3n?) > #, and vp(n® + nas + ag) > N + 4.
N+3
£,

Similarly, we have that if n = n; works, n = ny works if and only if vp(ny — ng) >
Suppose N > 0. Suppose n is an element of L, | g | such that vp(n) = 1. Let Y, y be
)

the set of curves a3 + 3nz? + a}z + af such that vp(a}) > [2F8| and vp(ag) > N +4. Note
that Y, 5 can be considered to be an open subset of R%.
For £ € Xy, let n(E) be the unique value of n € L, | 2| such that vp(n) = 1,
T2

vp(as +3n?) > L%L and vp(n3 +nay +ag) > N +4. Let O be the function such that if

E :y? = 2% + a4x + ag is an element of Xy, On(E) = (z + n(E))? + as(x + n(E)) + ag.

Lemma 4.3. Suppose N is a nonnegative integer and n is an element of L, Bk IfU is
T2

an open subset of Y;, n, up (05" (U)) = up(U).

Proof. Let V C Y, n be the set of E' : y? = 23 + 3nz? + ax + af such that ay € ry + 7' Rp

and ag € 16 + T3 Rp. Note that we have that vp(rs),ns > L%j and vp(rg),ng > N + 4.

It suffices to prove that pup (85" (V)) = up(V). Let M = max(ny,ng). Suppose E : y? =
o3 + asx + ag is an elliptic curve. We have that 6 (FE) € V if and only if

a4 + 3n? 67‘4—|—7r Rp,na4+a6—|—n 671' SRp.



Modulo ¥, there are Qg ~"™ choices for the residue of ay. After choosing ay modulo 7,

there are Qﬁ\,/[ "6 choices for the residue of ag modulo Wﬁ/f . Each of these combinations of

residues modulo 7 for a, and ag has a density of ﬁ in Gg). Note that the set of curves
P

in Gggl) with discriminant 0 is counted in these combinations, but the Haar measure of this

set is 0. The Haar measure of the Q% ~"4~"¢ combinations is W, which is pup(V). R
Let N be a positive integer. We compute the density of I5,. Let n be an element of

L, | 28| such that vp(n) = 1. We have that the Haar measure of the set of E € Y, n_1
T2

that do not complete iteration N is % With Lemma because there are
Qp °

N1
p— values of n, the density of I3 is N7_+72 From adding multiples of 7 T
Q 1@},2J lues of n, the d f I, (%PU N
P

to ag, ¢ = 2 and ¢ = 4 have equal density. Therefore,

(Qp —1)?
N+7 o
P

5K(I7V72,0;P) :5K(I1></7470;P) =

5 Local Densities for p =3

5.1 Setup

Suppose that the characteristic of K is p = 3. Let P be a place of K and G(P2) be the set of
curves
y2 =23+ a2x2 + aqx + ag

over Kp such that as, a4,a6 € Rp. Note that Gg) can be considered to be R?jg. For a curve
E in Gp with equation E : y2 + a12y + asy = 2> + asx? + aux + ag, let ©(E) be the curve
with equation
b b b
2_ 3,222 "4 76

Yy = —1—490 +2x+4.
If E is an elliptic curve, ¢(E) is an elliptic curve equivalent to E.
Lemma 5.1. If U is an open subset of Gg), wp(e 1 (U)) = pp(U).

Proof. This can be proved similarly as Lemma [1.1] [ |

5.2 Multiple Iterations

Let k be a nonnegative integer. Suppose Sy is the set of elliptic curves E € Gg) such that
Mp(E) > k.

Suppose E € S has equation E : 3?2 = 2% + ay2? + ayx + ag. From Proposition
l,m,n € Rp exist such that

+l+m2 +n3+a2 +n2+a4 NRNLI
—r+—| =+ — —— |z + —= — |+ —¢ —
YR T w2k ) T w2k ) TR a2k ) e

has coefficients in Rp. From the coefficient of zy, vp(l) > k, and from the coefficient of y,
vp(m) > 3k. Therefore, we have that

3 2
2 n a9 n Qa4 n ae
y=\rt ) TR\t k) Tom (T =R ) T ek
P P P P P P

has coefficients in Rp. Note that vp(az) > 2k also.



For an elliptic curve F € Gg) with equation E : y? = 23 + ap2? + a4z + ag, let A(F) be
the set of n € Rp such that

2 3 a2 o 2nas+ayg n2ay + nay + ag +n’
yr=a"+ a2kt T 7Ok
P Tp Tp

has coefficients in Rp. The next proposition is useful for computing local densities for
multiple iterations.

Proposition 5.2. Let E be an elliptic curve in Gg). FE € Sy, if and only if a unique element
n € Lpy, exists such that n € Ax(E).

Proof. Assume a unique element n € Lpy exists. Then, Ay(F) is nonempty, and using
Proposition 2.4} E € Sk.

Next, assume FE € Sk. From Proposition we have that Ag(FE) is nonempty. Let the
equation of E be E : y? = 23 + as2? + asx + ag for ag,a4,a6 € Rp.

Suppose n € Ay (E). From replacing  with  +n’ for n’ € Rp, we have that n+n'm
Ay (E). Therefore, n € Lp, exists such that n € Ag(E).

Next, we prove uniqueness. Assume ni,ns € Ax(E) N Lpy. Suppose az # 0. Let

I 2k c

a2 28 a6
,F’:y2 _—$3+7$2+7$+7.
2k 4k 6k

7TP 7TP 7TP

For 1 <4 < 2, let F; be F with x replaced by = + :g’,«. Note that Fy, Fy € Gg). Also,
Fy and F, are equivalent. Then, using Proposition the equation of Fj is the equation
of Fy with z replaced by u?z + n/ and y replaced by y = v?y and dividing by u® for some
n',u € Rp such that vp(u) = 0. Then, we see that u?> = 1 from the coefficient of z2, and
I = :—}2} Therefore, ny = ny (mod 72%) and ny = ny. Assume az = 0. Afterwards,

we have that ay = 0 (mod 7#) and (n1 — n2)3 + (n1 — n2)as = 0 (mod 7%F), giving that
n1 =ng (mod 7%F) and ny = na. [ |
For E € Sk, let n(E) be the unique n € Lpoy such that the curve y? = 23 + x +

2 . . .
2nagtaq 4 n “2+"7‘jg,f“5+" has coefficients in Rp. Define ¢ : S — Sp to be the functlon
P

Tp

such that if £ € Sy has equation F : y? = 23 + a2 + a4x + ag, ¢r(E) € Sy have equation

2n(E)ay + E)?ay + n(E)ays + ag + n(E)?
bu(B) 1y = o+ 22 g2 4 Bt s () & n(B)as +as +n(E)°
7TP ’/TP T

Note that S C Sy C Gg). Also, using Proposition and Lemma , up(So) = 1. For
n € Lpy, suppose Sk, is the set of E € Sy, such that n(E) = n, and let ¢y, ,, be ¢y restricted
to Sk,n~

Lemma 5.3. If U is an open subset of Gg), pe (o, (U)) = ﬁﬂp(U).
P

Proof. Suppose n € Lpjy. We prove that for an open subset U of Gg), up(qﬁ,;}l(U)) =
@MP(U)- Let V be the set of y* = 2% + aba? 4+ ajx + af such that ay € ro + T Rp,
ay € ry + 15 Rp, and ag € rg + 7’ Rp. We compute the Haar measure of the set of

as,a4,a6 € Rp such that ZkETQ—‘y-ﬂ'PR mer + 7 Rp,and”a?'*'":we
= P

Te + TP Rp Let M = max(ng + 2k, ny + 4k, ng + 6k). There are Qg n2=2k ways to pick as
modulo 7. Afterwards, ay will have QM na=4k choices for the residue modulo M pick ag
modulo 7M. Next, ag has Q¥ ~"7%* choices for the residue modulo 7. Select the residue
for ag. The number of combinations of residues is QSM n2—na=ns—12k 414 each combination
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of residues has a Haar measure of QISBM. Also, because pup(Sp) = 1, the set of curves with
discriminant 0 counted in these combinations of residues has a Haar measure 0. Therefore,

up(cﬁ,;jl(V)) = m With this, up((/b,;il(U)) = @MP(U) for all open subsets U
P
of Gg).

Let U be an open subset of Gg) We have that ¢, ' (U) = LlneLP,qu,;L(U). Then,

1

pp(e (U) = Y up(d,U) = WMP(U)’
ne€Llp P
completing the proof. [ ]
5.3 Density Calculations for vp(as) =0
Suppose vp(az) = 0. The density for this over Gg) is % The discriminant is —a3ag +
2.2 3
asa; — ajy.

From adding multiples of mp to ag, the set of curves with discriminant not divisible
by mp has density %7;1)2 For this case, we have that ¢ = 1. Also, we add QP 1) to
0k (Io, 1,05 P). i

Assume the discriminant is divisible by wp. The algorithm ends in step 2. Because
vp(az) = 0, the coefficient of ag in the discriminant is not divisible by wp. Then, we see
that for N > 0, the density over Gg) of curves such that vp(az) = 0 and vp(A(E)) = N

(QQPNﬁ If ag = 2 (mod 7p) for 7, € Lp; such that ro # 0, T? + ay is irreducible over

Rp/mpRp for QP_l values of rs.
Using step 2 of Tate’s algorithm, we have that 0k (I1,1,0; P) = (QP 1) , 0k (12,2,0; P) =

(Qp—1) ,and 6x (In, N,0; P) = 6 (In,2 { | =N+2,0;P) = (QPNL)) forN > 3. Moreover,

Qp
¢ = 1 with density %
z

(Qp—1)*2
2312

and ¢ = 2 with density % For N>3,¢c=N
P

with density

5.4 Density Calculations for vp(as) > 1

Next, suppose vp(az) > 1. The density for this is Q%D and modulo 7wp, the discriminant is

3
_a4.
Assume the discriminant is not divisible by 7Tp This occurs if and only if a4 is not

divisible by wp, and the density of this case is Qr— . Adding this density to 05 (lo,1,0; P)

Q%
gives that 0 (Io,1,0; P) = Qégl
Next assume the discriminant is divisible by mp. The total density for these cases will
be —. Suppose oy is an element of Lp such that ag +af =0 (mod mp). A singular point

is (ozl,O). We have that z is replaced with = 4+ n where n = a;. The resulting curve has

equation

y? = (x4 n)> 4 ao(x +n)? + as(z +n) + ag.

We have that n2as + nas + ag + n® is not divisible by 77123
multiples of 7p to ag. Here, 0x (I1,1,0; P) = Q;:l.
Assume n2as + nay + ag + n® is divisible by 7%. The total density for this case is
Qp—1
Q%
ag —aympd for d € Lp;. If vp(2nas + aq) = 1, the algorithm ends in step 4. We then have

that 8 (I11,2,0; P) = QQP4 Qe-l

1
Q%
from replacing a4 with a4 + 7pd and ag with

The density of vp(2nas + a4) = 1 is

11



2

Assume 2nay + a4 is divisible by 7. The total density for this case is Q% We have
P

that vp(n2as + nays + ag +n?) = 2 with density Q5;1 from adding multiples of 7% to ag.

P
If this is true, the algorithm ends in step 5. Afterwards, we have that 0 (IV,1,0; P) =
S (1V,3,0; P) = Gt
5
Suppose Up(n2a2 + nas + ag + n3) > 3. The total density for this case is

L. In
step 6, there is no translation. Suppose ao is replaced by ag + di7wp, a4 is replacgéj with
a4 — 2cpdimp, and ag is replaced with ag + Ol%dlﬂ'P for di € Lp;;. Note that the previous
parts of the algorithm will not be changed. However, this changes the coefficient of 22 from
as to as + dimp, which changes the coefficient of T2 of P(T) in step 6. Next, replace ay
with ag + dom% and ag with ag — a;den® for dy € mp. Similarly, this does not change the
previous parts of the algorithm. However, dom? will be added to the coefficient of x, which
adds ds to the coefficient of T' of P(T). Afterwards, replace ag with ag + d37r§’:, fords € Lp;.
This adds d3 to the constant term P(T). With this, the choices for P(T) are the monic
polynomials with degree 3 in (Rp/mpRp)[T]; each choice for P(T) corresponds to a density
of é Moreover, the number of P(T) with a double root and triple root are Qp(Qp — 1)

and @ p, respectively.
Assume P(T') has distinct roots. We have that the algorithm ends in step 6, with
* -1 * — * 2-3Qp+2
0k (I5,1,0;P) = G5, 0 (I3, 2,0, P) = G5t and 8 (15,4, 0; P) = Lezgrt?,
Assume P(T) has a double root. For this case, Tate’s algorithm ends in step 7 and the to-
Q

tal density is 5;1 . For a positive integer N, we have that dx (I%,2,0; P) = dx(I%,4,0; P) =
P
(gggif Also, it can be proven that ¢ = 2 and ¢ = 4 both have density Qggil More details

are in Section
Now, assume P(T') has a triple root. The density for this case is Q% Let as be the
P
element of Lp; such that

nay + nay +ag +n® = —mHas  (mod 7p).

Then, for the translation in step 8, we let n = a3 +asmp. Suppose vp(n2a2 +na4+a6—|—n3) =

4. This occurs with density Qgé}:l by adding multiples of 71'%, to ag. In this case, Tate’s

algorithm ends in step 8, and dx (IV*,1,0; P) = 6 (IV*,3,0; P) = %’22;
Next, assume vp(n2a2 +nas+ag +n3) > 5. The total density for this case is

1
@.
replacing a4 with a4 + dﬂ'?g and ag with ag — (a1 + azﬂ'p)dﬂ'% for d € Lp;. This does not
change previous parts of the algorithm but adds drn? to the coefficient of z. Therefore,
vp(2nas + a4) = 3 with density Qr=1l For this, we have that Tate’s algorithm ends in step

Q%
9 and 05 (I11%,2,0; P) = Qggfl.
P

Consider

1

Suppose vp(2nas+ay) > 4. The total density of this case is From adding multiples of

@.

7% to ag, vp(n3+agn®+asn+ag) = 5 with density Qé’lzl. Also, if vp(n®+asn®+asntag) = 5,
P

the algorithm ends in step 10. This gives that dx (I1*,1,0; P) = Qr-L.

Qx

5.5 Subprocedure Density Calculations

Let X be the set of elliptic curves E € Gg) such that Mp(E) = 0 and Tate’s algorithm
enters the step 7 subprocedure when used on E. For E € X let L(E) be the number of
iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used on
E. For a nonnegative integer N, let Xy be the set of E € X such that L(FE) > N.

Assume N > 0 is even. Iteration N of the step 7 subprocedure is completed if and only if
n € Rp exists such that vp(as) = 1, vp(2nas + aqg) > X248, and vp(n® + nas + nas + ag) >
N + 4. Assume n = n; satisfies the condition. Suppose n = ny satisfies the condition also.

12



Because vp(az) =1, vp(ny — ng) > %. Next, assume vp(n; —ng) > %. We show that
n = ngy also satisfies the condition. Clearly, vp(2nsas + a4) > %. Moreover, we have that

1
n3as + naay = nias +niay + 5(712 —n1)((2n1as + aq) + (2ngas + aq)).

Therefore, vp(n3 + n3as + nsas + ag) > N + 4. We have that n = ns satisfies the condition
if and only if vp(n; —ng) > %.

Suppose N > 0 is odd. Iteration N of the step 7 subprocedure is completed if and only
if n € Rp exists such that vp(n2as + nag + ag +n3) > N + 4 and vp(2naz + as) > #
Assume n = n; satisfies the condition. Similarly to when N is even, we have that n = nq
also satisfies the condition if and only if vp(n; —ng) > M52,

Suppose N is a nonnegative integer. Let Y be the set of curves y? = 23 +abhz? +a)z +ag
with vp(ah) = 1, vp(a}) > |X28], and vp(af) > N +4. For E € Xy, let ny(E) be the
unique value of n in LP,\_%J from above. Suppose Oy (F), with 0y : Xy — Yn, is the
curve

On(E):y* = (x +ny(E))?® + as(x + nn(E))? + as(z + nn(E)) + ae.
N4
Lemma 5.4. If U is an open subset of Y, up(0x5'(U)) = QILD 2 Jup(U).

Proof. Suppose n € L 2R Let Xn,n be the set of E € Xy with ny(E) = n and On

be Oy restricted to Xy,,. Note that if E : y? = 23 + asx® + asx + ag is an element of XNons
On(E) = Oy n(E) is y? = 23 + agz? + (naz + as)x + naz + nay + ag + n. Particularly,

N+4
Onn(E) is invertible. We then have that up(HX,)ln(U)) = pp(U). Because there are QIL, el
values of n, the result follows. [ |

Suppose N is a positive integer. Using Lemma we can compute the density of the
curves E with Mp(E) = 0 that have type I§ and Tamagawa number 2 or 4. The Haar

2
measure of the curves in Yy_; that end in iteration NV is % With Lemma we
2

N+6+ I_i
P

have that dx (I%,2,0; P) = 65 (1%, 4,0; P) = @roD”

= ng”

6 Local Densities for p = 2

6.1 Setup

Suppose that the characteristic of K is p = 2. Let P be a place of K and Gg’) be the set of
curves
y? + a1y + asy = 2° + asx + ag

over Kp such that a1, as,a4,a6 € Rp. Note that Gg’) can be considered to be R}. For a
curve E € Gp with equation E : y? + a1xy + azy = 2 + azx? + ayx + ag, let p(E) be the
curve with equation

2 23

If E is an elliptic curve, ¢(FE) is an elliptic curve equivalent to E.
Lemma 6.1. If U is an open subset of GSS), wup(e~HU)) = pp(U).

Proof. This can be proved similarly as Lemma [ |
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6.2 Multiple Iterations

Let k£ be a nonnegative integer. Suppose Sy is the set of elliptic curves E € Gg) such that
Mp(E) > k.

For an elliptic curve F € Gg) with equation E : y? + alxy +azy = 23 + a4ac + ag, let
Ay(E) be the set of (I,m,n) € R such that if X =z + Zk and Y =y + k T+ Sk,

Y2+—XY+—Y X3——X —o € Rplz,yl.
T T T e

Proposition 6.2. Let E be an elliptic curve in Gg). FE € S if and only if a unique pair
(l, m) € Lpy x Lpgy exists such that (l,m, 12 4 all) € Ak(E)

Proof. Suppose a unique pair (I,m) satisfying the conditions exists. Because Ax(E) is
nonempty, E € Sy, from Proposition 2:4]

Assume E € Si. Then, using Proposition Ay (F) is nonempty. Let the equation of
E be E : y? + a1y + asy = 2> + aux + ag for aq,as, a4, a6 € Rp.

From replacing y with y + I’z for I € Rp, if (I,m,n) € Ax(E), (1 +1U'7h, m,n) € Ax(E).
Therefore, there exist | € Lpy and m,n € Rp such that (I,m,n) € Ai(E). Moreover, if
(I,m,n) € Ar(E), *+ai1l+n =0 (mod 7%). With this, from replacing = with x + %,

if (I,m,n) € Ak(E), (I,m+1(I? + a1l +n),1? + a1l) € Ar(E). Therefore, there exist [ € Lpy
and m € Rp such that (I,m,l? + a;l). Next, from replacing y with y + m’ for m’ € Rp,
there exists | € Lpy and m € Lpsy such that (I,m,[? + a1l) € Ax(E).

Next, we prove that (I,m) is unique. Assume that (I1,m1), (l2,m2) € Lpy X Lpa, and
(ll,ml, l% + alll), (lz,mg,lg + a1l2) € Ak(E) We prove that (ll, ml) = (lg,mQ).

Suppose a; # 0. Let I’ be the curve

a a a Qa
2 1 3 3 4 6
Fry'+ oyt gp =o'+ o+ 5

2
For 1 <14 <2, let F; be F with = replaced by = + L ;r;jl and y replaced by y + k x+ 5
P T

Note that Fy, Fp € Gg’). Also, F; and F; are equivalent. Then, using Prop081t10n let
the translation from the equation of Fl to the equation of F; replace = with u?z +n’ and y
with w3y +1'u?z +m/, where u,l’,m’,n’ € Rp and vp(u) = 0. The coefficient of zy after this
translation is %4 therefore, u =1 and a1 =0 (mod 7%). Afterwards, from the coefficient
of 22, 12 + alll + n'7r123k =13 + a1ly. Therefore, I; = I (mod 7r1’§,) and l; = l5. Particularly,
n' = 0. Following this, ms = my + m’ﬂ'l%k and m; = ms.

Assume a; = 0. We then have that az = 0 (mod 73F), and from the coefficient of z,
I} +asly =13 + azly (mod 7). From this, we clearly have that I; = lo. Afterwards, from
the constant terms, m% +asmq = m% + azmy (mod W?D) and my = mes. |

For E € Sy, let the unique pair (I,m) € Lpy x Lpai such that (I, m,[* + a1l) € Ap(E)
be (I(E),m(E)). Define ¢y : S — Sy to be the function such that if E € Sj has equation
E :y? + a1y + azy = 23 + aqx + ag, ¢ (E) has equation

a1 as Qa4 ag
E): Y 4 —XYV 4+ —Y=X34+ "X+ —,
or(E) o 3k =& mlk

with X = z + M and Y = y + T + n;(f). Note that Sy C GP , and from

Prop051t10n and Lemma 1} up(So) = 1 For le ka and m € Lpg3y, let Sk m be the
set of £ € S such that l(E) = | and m(E) = m. Assume that ¢y ., is ¢y restricted to
Sk,i,m-

l(E)
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Lemma 6.3. If U is an open subset of Gg), pp(opt(U)) = ﬁ,up(U).
P

Proof. Note that there are Q’fp values of [ and Q?}’;’“ values of m. Similarly, it suffices to prove
that for open subsets U of Gg), wp(dn i, ([0)) = ﬁ,up(U). Let V' be the set of curves
1 IS
v+ ajzy + ahy = 2% + ajx + af with a; € r; + 7y Rp for i € {1,3,4,6}. We find ¢>,:j’m(V).
Let M = max(n; + k,n3 + 3k, ng + 4k, ng + 6k). Note that a; € 7TPT1 + 7r”1Jr Rp, and there
are Qg ~™~F choices for the residue of a; modulo 7M. After choosing the residue of aj,
there are fo n3=3k choices for the residue of as. Continuing this process for a4 and ag and
adding over the Q7 pairs (I, m) gives the result. Similarly, the set of curves counted in these
combinations of residues with discriminant 0 has a Haar measure of 0. |

6.3 Density Calculations for vp(a;) =0

Suppose that vp(a;) = 0. This case has density QS L The discriminant is

402 4, 33
aj(alag + ajazas + a?) + a3 + adas.

Note that by considering ag modulo mp, the discriminant is not divisible by mp with
(QP 1)

density

Qe D* to 6K(IO,1 0; P).

Assume the discriminant is divisible by 7p. Let (g, a2) be the singular point modulo
Tp; it can be proven that ai,a € Rp. Also, ay = —¢2 (mod 7p). In step 2, replace z by
x+mn and y by y+m with n = a7 and m = ay. Afterwards, the coefficient of xy is a1, which
is not divisible by wp. The algorithm then ends in step 2.

We see that the discriminant is linear in ag. Therefore, we have that vp(a;) = 0 and

vp(A(F)) = N with density (%}3@12)2 for N > 0. Note that the polynomial considered in
P

For this case, the algorithm ends in step 1 and ¢ = 1. Then, we add

step 2is T? + a1T + . Suppose a; = r; (mod 7p) and az = r3 (mod 7p) for 71,73 € Lp;

such that r; # 0. Given ry, T? + a;T + «; is irreducible over Rp/npRp for % values of

r3. Afterwards, using step 2 of Tate’s algorithm, we get that in this case, 0k (I1,1,0; P) =

<Qg;” 5k (I2,2,0; P) = <Qg4” , and &g (In, N,0; P) = 05 (In,2 | Y| = N +2,0,P) =

P

(3251@2 for N > 3. Moreover, ¢ = 1 with density %, ¢ = 2 with density
y

% and for N > 3, ¢ = N with density (QSNB .
P

6.4 Density Calculations for vp(a;) > 1

In this subsection, we assume that vp(a;) > 1. The density for this is Q—lP, and the discrim-

inant modulo 7p is a3.

Suppose vp(ag) = 0. The density for this case is 22

QQ
divisible by wp. Tate’s algorithm then ends in step 1, anil we add Q”f; to 0k (1o, 1,0; P).
We therefore have that dx (Ip,1,0; P) = QQPP L

Next, assume that vp(az) > 1. The total density for this is é The singular point
modulo 7p is (x,y) = (a1, a2) for ag,as € Lp; such that ay = o} (mod 7p) and ag = a3
(mod 7p). We replace x with  +n and y with y +m, where n = oy and m = as. The curve
is

. Here, the discriminant is not

(y+m)2 +ai(x+n)(y+m)+as(y+m)= (x+n)3 + aq(xz +n) + ag.

If 72 does not divide mna; +mas +nas + ag +m? +n3, the algorithm ends in step 3. By
adding multiples of mp to ag, this occurs with density Qst—l. We have that 0 (I1,1,0; P) =
P
Qp—

Qy
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Assume 77%3 divides mna; + mas + naq + ag + m? + n3. The total density for this case is

Q%. ‘We have that
P
bs = n(nai + az)® + (may + ag +n?)%

If bs is not divisible by 7%, the algorithm ends in step 4. By adding multiples of 7p to ay,
we have that dx (I11,2,0; P) = Qijl.
P
Assume that bg is divisible by 7%. The total density for this case is

1
Q4
1, the algorithm ends in step 5. Assume a4 =0 (mod 7p). Then, replage ag with a3 + drp
and a4 with a4 + Bdrp for 8,d € Lp; such that 82 = a1 (mod mp). This will not affect
previous parts of the algorithm; particularly, this will not change bg modulo 7%. However,
na; + ag will be increased by dmp. Therefore, we have that vp(na; + az) = 1 with density
Qr—l From this, g (IV,1,0; P) = 6x(IV,3,0; P) = 921,

. fvp(nay+as3) =

Q% 2Q%
Assume vp(na; + asz) > 2. The total density for this case is Q% Assume ag is the
P
element of Lp; such that n = a3 (mod 7p). Also, let ay be the element of Lp; such that

mna, + mas + nag + ag + m? +nd = aiﬂ% (mod 71‘;’3). After the transformation in step 6,

let the equation of the curve be

(y+ 1z +m)? +a1(x +n)(y +lz+m) +az(y + lz+m)
= (z+n)% +as(z +n) + ag.

Here, | = a3 and m = as + aymp. Suppose that in step 6, the polynomial P(T) €
(Rp/mpRp)[T] is P(T) = T3 + woT? + w1 T + wy.

Suppose ag =0 (mod 7p). Because 0 € Lp 1, we have that n =1 = 0, and ws = 0. Then,
we can replace a4 with a4 + dlw% for d; € Lp,1, and the previous parts of the algorithm will
not be changed. With this, the choices for w; modulo wp are the elements of Lp ;. Following
this, by replacing ag with ag + dgﬂ?jp for do € Lp,, the choices for wy modulo mp are the
elements of Lp;. We have that the number of P(T) with a double root and no roots are
Qp — 1 and 1, respectively. Moreover, we have that the number of P(T) with three distinct
% , Q%;Qp7

roots in Rp/mpRp with 0 roots, 1 root, and 3 roots in Rp/mpRp are and

2
M, respectively.

Suppose a4 Z 0 (mod 7p). Consider the translation of replacing a; with a; + di7p, a3
with as + ardimp, ag with ag + (ae + aymp)dimp, and ag with ag + aq(ae + aymp)dimp
for dy € Lp;. After this, the parts of the algorithm before step 6 do not change. In step
6, wo and wy do not change. However, ws increases by asd;. Because as # 0, the choices
for wy are the elements of Lp;. Next, replace ag with as + dgﬂ% for dy € Lp;. With this,
the choices for wg are also the elements of Lp;. The number of P(T") with a double root
and no roots are the same as above. Also, the number of P(T") with three distinct roots in
Rp/mpRp with 0 roots, 1 root, and 3 roots in Rp/mpRp are the same as above.

Suppose P(T) has distinct roots. For this case, the total density is QQPJ L and Tate’s
P

algorithm ends in step 6. We see that 0x (I},1,0; P) = %, O0r(1},2,0; P) = QQ‘Z?ZI, and
P P
Oxc(15,4,0; P) = L2,
Assume P(T) has a double root and a simple root. For this case, the total density is

Qp—1
Q%
and Tate’s algorithm ends in step 7. We have that for positive integers N, dx (I%,2,0; P) =

0 (I%,4,0;P) = (351}132. More details for calculating these densities are in Section
N

Next, suppose P(T) has a triple root. For this case, the density is

Q%, and the root of
7

P(T) is /w1 modulo 7p. If ay =0 (mod 7p), the triple root is 0 modulo 7wp. Let a5 be an
element of Lp; such that

(m+In)a; +laz +ag +n* = aZrp  (mod 73).
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Then, the translation in step 8 sets n to be n = a1 + as7p.

Suppose ay =0 (mod 7p). Replace a3 with a3 + dn% and ag with ag + (a2 + aymp)dns
for some d € Lp;. Then, note that the previous parts of the algorithm, including P(T'),
are unchanged. However, the coefficient of y increases by dr%. We have that for one value
of d, the coefficient of y is divisible by 7%. Next, suppose a4 #Z 0 (mod 7p). Replace a;
with a; + dn% and a4 with a4 + (a2 + aymp)dr? for some d € Lp;. The previous parts
of the algorithm, including P(T), are unchanged. However, the coefficient of y increases by
(1 +asmp)drs. Similarly, we have that for one value of d, the coefficient of y is divisible by
7%, From this, we get that the coefficient of y is not divisible by 7% and the algorithm ends
in step 8 with density ch;sp—l. We then have that 0 (IV*,1,0; P) = 0 (IV*,3,0; P) = Q;g?;.

Assume the coefficient of y is divisible by 7%. The total density of this case is QLB Let
P

o be the element of Lp; such that
mnay +magz + nag + ag + m? +n® = a%ﬁg (mod 71'}:’3).

Then, m is set to m = as + aymp + a(m% in step 9. If 77313 does not divide the z coefficient
of this curve, the algorithm ends in step 9. Consider the translation of replacing a4 with
as +dr} and ag with ag + (o +asmp)dn for d € Lp;. The previous parts of the algorithm
do not change, but the coefficient of z is increased by dr. Therefore, 3 does not divide
the z coefficient with density QQPil. We have that dx (I11*,2,0; P) = Qgg;l

Assume 7% divides the coefficient of z of the curve. The total density for this case is
If 7% does not divide mna; + mas + nay + ag +m? + n?, Tate’s algorithm ends in step

Q(gl;l from adding multiples of 7% to ag. We then have that
P

1
Qp’
10. This occurs with density

Sx(IT*,1,0; P) = Q@l.

6.5 Subprocedure Density Calculations

We calculate the density of Kodaira types v = I} for N > 1 and Tamagawa numbers
n = 2,4. Note that previously, the curve was reduced by removing as with a translation on
x to obtain Gg). However, here the density is calculated in Gp without the reduction. That
is, the density is calculated for curves in long Weierstrass form.

Let X be the set of elliptic curves F € Gp such that Mp(FE) = 0 and Tate’s algorithm
enters the step 7 subprocedure when used on E. For E € X, let L(E) be the number of
iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used on
E. For a nonnegative integer N, let Xy be the set of E € X such that L(E) > N.

We consider when N > 0 is even. Suppose N = 0. In iteration N = 0, there is a
translation. Note that the double root of P(T) is the squareroot of wy. Because of this, in
step 7, we add yomp to n and lyymp to m for some 9 € Lp; such that

(m + In)ay + las + ag +n? = 427%  (mod %)

Next, assume N > 2 is even. If iteration N of the step 7 subprocedure is reached and the
quadratic has a double root,

N +6

vp((m +In)a; + las + ay +n?) > 5

N2 N2
Also, we add yy7p> ton and Iyymp®  to m for some vy € Lp; such that

mnay + mas + nag + ag + m2 +n’ = (lag +azs +n+ 12)712\,7rg+2 (mod Wg+4).

Note that vp(lay + az +n +1%) = 1.
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Suppose N > 0 is odd. If iteration N of the step 7 subprocedure is reached and the

Nt3
quadratic has a double root, vp(na; + ag) > % Also, ynmp?  is added to m for some
YN € Lp; such that

N+3

mna; + mas + nag + ag + m2 +n® = ’YNTFP (mod 7TN+4)

Let N be a nonnegatlve integer. Let Yy be the set of curves y? + ajzy + ahy = x3 +
ahz? + ajx + af with vp(a]) > 1, vp(ah) = 1, vp(ay) > [MF2 ], vp(a)) > [FFC], and
vp(ag) > N + 4.

Suppose E € X and that the translations of Tate’s algorithm when it is used on E are
a1, g, a3, A4, Y0, Y1, - - IN- Let T(E) = (a1, ag, a3, 4,50, 71, - - -, YN )- Note that because
the characteristic of K is p = 2, T(E) is well defined. Also, let 05(E) : Xy — Yy be E with
x replaced by x + n and y replaced by y + lxz + m, where

5] 5] N
n=a + 7217713 Li=as,m=ay+amp+ a3 Z WQZW}QH + Z ’ygi+17r}+2
i=0 i=0 i=0

Lemma 6.4. If U is an open subset of Yy, up (05 (U)) = Q3P up(U).

Proof. Let a = (a1, ag, a3, 04,70, V1, - - -, YN )o<i<N. Assume that Xy , is the set of £ € Xy
such that T(E) = a. Let Oy 4 be Oy restricted to Xy ,. From a, we obtain I, m,n. We have
that if £ € Xn.q, Ona(E) is E' : y? + dizy + ayy = 23 + aya?® + ajjx + af, where

ay = ay,ah = lag 4+ as +n + 2, B—na1+a3,a4—(m+ln)a1+la3+a4—|—n

ag = mnay +masz + nayg + ag +m? +n®.

It is clear that 6y, is a bijection.

Let V be the set of E' € Yn such that a] € r; + 75 Rp for i € {1,2,3,4,6}. Let
M = max;e (1,23 4,6 m Similarly, we can consider combinations of residues of the a;, i €
{1,2,3,4,6}, modulo 7¥ to obtain that up(HNla( )) = up(V), with the set of curves with
discriminant 0 counted in the combinations of residues having a Haar measure of 0. Because
there are Qg +5 choices of a, the result follows. |

Suppose N is a positive integer. With Lemmal6.4] we can compute the density for curves
that enter step 7 in the first iteration and have type I,. We have that up(Yy_1) = %,
2

2
and the Haar measure in Gg’) of curves that have type Iy is then (QPN117) . Particularly,
P

Sk (I, 2,0; P) = 85 (I, 4,0; P) = (&2 )

2QN+7 .

7 Local and Global Density Results

In Section [ Section [5} and Section [6] we computed the local densities of Koidara types
and Tamagawa numbers for p > 5, p = 3, and p = 2, respectively. The methods we used
involved first removing some terms from the equations of elliptic curves with translations,
and then using translations to compute the local densities. Moreover, the local densities can
be expressed as rational functions. Let t be a Koidara type and n be a positive integer. There
exists a rational function f(x) such that dx(v,n; P) = f(Qp) for all P € Mg. Note that
f(x) is the same for all global function fields K. Additionally, in [3], the rational function
calculated for the local density of v and n for elliptic curves in short Weierstrass form over
Q, for primes r > 5 is f(x). In [1], the rational function calculated for the local density of
v and n for elliptic curves in short Weierstrass form over completions of a number field at
places that lie above a prime r > 5 is also f(x).
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Next, we will discuss some results about local and global density, including a proof of
Theorem Particularly, we compute the density of completing at most k£ > 0 iterations
of Tate’s algorithm.

7.1 Proof of Theorem [1.2

Let U and V be the sets of elliptic curves E € G p with Kodaira type v and Tamagawa number
n such that Mp(F) = 0 and Mp(FE) = k, respectively. We have that U and V are open sets.
Moreover, p(U) and ¢(V) are open sets. With this, we have that up(U) = pp(p(U)) and

up(V) = up(p(V)) for all characteristics p from Lemma Lemma and Lemma
Therefore, it suffices to prove that

up(p(V) = ;kww».

However, observe that ¢(U) = ¢5(¢(V)). The result then follows from Lemma[d.2} Lemmal5.3]
and Lemma [6.3]

7.2 Density for Multiple Iterations

Let k& be a nonnegative integer. For P € My, let U 1’% denote the set of elliptic curves FE
in Gp such that Mp(E) > k + 1. The following proposition is important for the proof of
Theorem

Proposition 7.1. For a nonnegative integer k and P € My, up(UE) = W
P

Proof. From Lemma [1.2] Lemma[5.3] and Lemmal[6.3| with k& + 1 as k and Gp as U, we have

that
1

1
k G _
/Lp(Up) = }DO(IﬁLl)MP( p) = }Do(k+1).

Theorem 7.2. Let U be the set of elliptic curves in Wy such that Mp(E) < k for all
P € S, Then,

1 Q}O(lc+1)

Proof. For a positive integer M, let Vs be the set of elliptic curves E € Wy such that there
exists P € S with degree at least M such that £ € UL. From Proposition we have
that limps o0 ds(Var) = 0. Therefore, we can use Theoremwith Uk as Up for P € S°.
The result follows from Proposition [ |

Example 7.3. We given an example of Theorem Let k be a nonnegative integer. Let
K =TF,(t). Suppose Py is the infinite place of Fy(t) and let S = {P}. Let U be the set
of elliptic curves in Wy such that Mp(E) < k for all P € S. From Theorem 5.9 of [5],

20k+19
q +

because the genus of K is 0, we have that (x(10(k+1)) = (IR (gTOFF 0T} Because P
has degree 1, from Theorem ds(U)=1- w++e~
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