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Abstract

We provide an explicit proof of a recent result of Gaiotto [5] which gives an explicit for-
mula for a so-called “multiplication kernel” K3(z,y, z;t) intertwining the action of Hecke
operators and Gaudin operators in three sets of variables. This function K3 arises nat-
urally in the context of the analytic formulation of the geometric Langlands program in
the genus-zero case (2, 3, 4]. We also discuss how the kernel K3 relates to other objects
typically considered in the analytic Langlands program.

Contents
1 Introduction 2

2 Preliminaries 3
2.1  Quantum Hitchin Hamiltonians and the Gaudin System . . . ... .. .. 3
2.2 Hecke Operators . . . . . . . . . . 4
2.3 The Gaiotto Kernel . . . . . . . . . . ... ... 5

3 Proof of Gaiotto’s Formula 6
3.1 Outline of Proof . . . . . . . . . . .. 6
3.2 Main Proof . . . . . . ... 6
3.3 A-Twisted Generalization . . . . . . . . .. .. .. ... . 16

4 Discussion 19

A Differentiating under the Integral Sign 20
Integrals in the Sense of Tempered Distributions 22


http://arxiv.org/abs/2212.06932v1

1 Introduction

Recently, Etingof, Frenkel, and Kazhdan devised a version of the Langlands corre-
spondence in terms of functional analysis [2, 3, 4]. Taking a smooth irreducible projective
curve X over C, they formulated the geometric Langlands duality as a correspondence be-
tween the joint spectrum of global differential operators (quantum Hitchin Hamiltonians)
acting on a Hilbert space H of half-densities on Bung(X) and certain points in the variety
Opre(X) of “G-opers over X (more precisely, the “G-opers with real monodromy) [2].
To generalize the problem to local fields F', integral Hecke operators were introduced in
[1]; these operators strongly commute with the quantum Hitchin Hamiltonians over C
and are defined over arbitrary local fields . However, the joint spectrum of the Hecke
operators is still not well understood over arbitrary local fields.

To get a handle on the analytic Langlands program, it is thus important to investigate
the joint spectrum of the Hecke operators and the quantum Hitchin Hamiltonians. Gaiotto
recently made an intriguing claim in this direction in the genus-zero case with G = PG Lo
[5]. In particular, taking F = C, X = P!, and G = PGLsy, Gaiotto described a kernel
Ks(x,y, z;t) in three sets of variables intertwining the action of the quantum Hitchin

Hamiltonians G; in genus zero (Gaudin operators):
Gi K3 = G!K3 = G} K.

The precise definitions of the Gaudin operators will be given in Section 2. Gaiotto’s result
is stated below:

Theorem 1.1. Define a matriz A;; with entries as follows:

A = (xi — 25)(yi — y5) (2 — 7))
N ti—t;

L0<iZj<m

and Ay; = 0. Then

K3(z,y,z;t) = Tdet 4]

satisfies the requisite intertwining property for the Gaudin operators.

Gaiotto gave an argument for his formula using physical insight. In this paper, we
furnish a full mathematical proof of Theorem 1.1 (and a generalization thereof) and discuss
its implications. The organization of this paper is as follows. In Section 2, we introduce
in further detail the relevant mathematical preliminaries needed to formulate Gaiotto’s
result precisely. In Section 3, we produce an explicit proof of Gaiotto’s result, inspired in
some part by the physical origin of the formula. We also prove a suitable generalization
of Gaiotto’s formula. In Section 4, we discuss the implications of our result and consider

further avenues for exploration.



2 Preliminaries

2.1 Quantum Hitchin Hamiltonians and the Gaudin System

We will now review the relevant ingredients from the analytic Langlands program. Our
discussion follows the foundational work in |2, 3, 4].

The starting point consists of a reductive algebraic group GG and an smooth irreducible
projective curve X over a local field F' with a specified zero-dimensional subvariety S C X.
Let Bung(X, S) be the moduli stack of G-bundles over X with a specified reduction to a
Borel subgroup B C G at the subvariety S C X, and let Bung (X, S) be the substack of
such stable G-bundles (defined precisely in Definition 2.1 of [3]).

If |S| is sufficiently large, then Bung (X, S) is open and dense in Bung (X, S). If we take
G to be simple and simply-connected, and if X is a curve of genus g, then Bung, (X, S)
can be viewed as a smooth quasiprojective variety of dimension 3g — 3 + |S]| [3]. We
then define V5 (X, S) to be the space of smooth, compactly supported sections of the line
bundle of half-densities Q}13/u2n over Bung (X, S). Vi(X,S) admits an inner product:

(v, w) ::/ v-W.
Bung (X,S)

We then define Hi (X, S) to be the Hilbert space completion of V(X S) with respect to
().

Now, take F' = C. To make contact with the geometric Langlands program, we wish
to analyze the joint spectrum of a commutative algebra A of global differential operators
acting on Q]é/fn. Specifically, take Kpun to be the canonical line bundle on Bung (X, S).
Now, it is known that Kpu, has a unique square root Ké{fn up to isomorphism. The
commutative algebra D¢ of global holomorphic differential operators on K’ é{fn is generated
by the quantum Hitchin Hamiltonians, and their properties were first described in [10].
We may just as well consider the antiholomorphic operators D¢ acting on the conjugate

—1/2

Kl of KL/* Following [2], we define the commutative algebra A as follows:

Bun Bun-
A= D¢ &c Dg.

To understand the joint spectrum of A, we wish to study the action of holomorphic

]13/u2n = Kéﬁ@?gfn. To establish (over F' = C)

the analytic Langlands correspondence, it is thus essential to understand the joint spectra

differential operators on half-densities in {2

of the quantum Hitchin Hamiltonians. For general G and X, this is quite a difficult
problem; however, some progress has been made for the simplest non-abelian G. In [3, 5],
the specific case of G = PGLy over X = P! is considered, and this is the case we shall

focus on as well. In genus zero, we require |S| > 3 parabolic points for the moduli stack



Bung,(X,S) of stable G-bundles to be open and dense in Bung(X,S), and for |S| = 3,

this moduli stack consists of a single point. Thus, we henceforth take

S - {t()a"' 7tm+1}

where m > 2. Specifying a Borel reduction of G at S then amounts to giving each point
t; a parabolic structure, which is simply a choice of direction y; € P'. In fact, Bung (X, S)

is parametrized precisely by the y;. We have the following birational equivalence [3]:
Bung(X,S) — "L

The fact that Bung (X, S) has dimension (m — 1) can intuitively be seen by the fact that
we may translate by PG Lo to fix three of the parabolic structures at the marked points.
Given a choice of y;, the (holomorphic) quantum Hitchin Hamiltonians reduce to the

so-called Gaudin operators [10]:

1 1
G; = Z — [—(yz' —y;)20:0; + (yi — y;) (0 — 9) + 5|

where 0; = 0/dy;. It is easy to verify that the algebra of Gaudin operators is indeed
commutative: [G;,G;] = 0. Our problem is then to understand the joint spectrum of the

Gaudin system.

2.2 Hecke Operators

The original number-theoretic Langlands program for curves X over finite fields I, studies
the joint spectrum of commuting Hecke operators. The notion of Hecke operators have
a corresponding analog in the analytic Langlands program, where X is now a curve over
some local field £. When F = C or F' = R, the Hecke operators strongly commute with
the quantum Hitchin Hamiltonians, so the joint spectrum of the Hecke operators can
also be seen via Langlands duality to correspond to the “G-opers with real monodromy.
Understanding the spectra of the Hecke operators therefore gives us a grip on the geometric
Langlands program for non-archimedean local fields F', where we no longer have access
to the quantum Hitchin Hamiltonians.

A full definition of Hecke operators is given in [4], but we are only concerned with
the case where X = P! and G = PGLs, so we will restrict our attention to the case of
rank-two vector bundles over X with marked points tg, - - - , t;, 1 with parabolic structures
Yo, ,Ym+1- Lhe Hecke operators form a commuting set of compact operators Hy for

each point t € X. Taking as usual t,,11 = oo and further setting y,,,4+1 = 00, there is an



explicit formula for the action of the Hecke operators (Proposition 3.9 of [3]):

1/2
llds]] to—t ty —t
m ¢ y Ty .
Fllizolls —will™ \s =0 S — Um

Over F' = C, the Hecke operators strongly commute with the Gaudin system, and the

m

H(t — ti)

=0

Ht¢(y07 T 7ym) =

joint spectrum of this commutative algebra of operators is simple [3].

2.3 The Gaiotto Kernel

It was Gaiotto and Witten 6] who first considered the symmetric multiplication kernel
Ks(x,y, z;t) in three sets of variables intertwining the action of the Gaudin and Hecke
operators over C. More precisely, if we let zo, - ,Zm, Y0, ,Ym, 20, ,2m be three
copies of variables, they were interested in a function K3(z,y,z;t) symmetric in x,y, z
satisfying

Gy K3(x,y,2t) = GY K3(x,y, ;1) = Gi K3(x,y, 23 );

Htx’K3(gj7y7 Z5 t) = H3K3(gj7y7 Z5 t) = HtZ’K3(x7y7 Z5 t)

Here G} and Hj} denote the Gaudin and Hecke operators, respectively, with respect to
the variables ug, - - - , uy, for u = z,y, 2.

The object K3 is of interest to us for several reasons. First of all, it furnishes a
“multiplication kernel” in the language of [9]. That is, it defines a commutative associative

product * on H. Specifically, if we define
(o)) = [ Ko, ,2) 7 (0)(=) Iyl =]
Bung (X,S)xBung (X,S)

then the product * is commutative (by virtue of the symmetry of K3 in z,y,2) and
associative (as shown in Section 4 of [5]).

Further, since K3 intertwines the action of the Gaudin and Hecke operators, it may
be shown that integral Gaiotto operators K, defined by integrating over the kernel K3
(for arbitrary x) commute with the Gaudin and Hecke operators. Explicitly, for f € H,
we find

(Kz0Gi)f = (Gio Ky)f;

(KyoHy)f = (Hpo Ky)f;

Thus, the Gaiotto operators K, diagonalize in the joint eigenbasis of the Gaudin operators.
An explicit computation of K3 would thus yield information about the joint spectrum of
the Gaudin and Hecke operators.

In his recent work [5], Gaiotto produced a simple explicit expression for the kernel K3



over I' = C. He defined the matrix A;; with entries as follows:

Aij = (@i — 25)(yi — yj)(2i — 2))

, 0<i4 i <m
P— <i#j<

and A;; = 0. Using arguments from conformal field theory, he gave the following formula,

stated above in Theorem 1.1:

Ks(x,y,z;t) = et Al
That the Gaiotto operators commute with the Hecke operators follows from the fact
that they commute with the Gaudin operators, since the joint spectrum is simple [3].
Gaiotto provided an explicit proof of his formula for four marked points ¢; and a numerical
verification for five points. In Section 3, we will provide a complete proof of Theorem
1.1. We will also provide a direct proof of the analogous intertwining formula for Hecke

operators in a following paper [8].

3 Proof of Gaiotto’s Formula

3.1 Outline of Proof

In this section, we will prove Theorem 1.1. Inspired by the physical argument, we write
K3 as a formal Gaussian integral and consider the action of the holomorphic Gaudin
operators by differentiating inside the integral. Care must be taken to ensure that the
differentiation under the integral sign is allowed and that the representation of K3 as a
Gaussian integral is valid. The resulting integral can be evaluated using Wick’s theorem.

When the dust clears, the resulting expression is symmetric in x,y, z.

3.2 Main Proof

To prove Gaiotto’s formula, we note that the determinant formula for K3 arises in
Gaiotto’s chiral algebra construction as the result of a Gaussian integral over formal
parameters A; [5]. To this end, we will perform some formal calculations involving Gaus-
sian integrals and relate these to what we wish to prove. To begin, notice that we may

write

1 1 1
T Jdet Al \detA Vet

The holomorphic Gaudin operators care only about the determinant of the holomorphic
—-1/2

K3(‘T7y7 th)

matrix A, so it suffices to represent (det A) as a Gaussian integral and consider the

action of the Gaudin operator on this piece. To begin, we quote two well-known elementary



results for real matrices:

Lemma 3.1 (Gaussian Integration). Let A be a real, symmetric positive-definite matriz.

We have (for suitable normalization of the Lebesque measure)
/ ema(wAW gy — (det A)~1/2,

Lemma 3.2 (Wick’s Theorem). Let A be a real, symmetric positive-definite matrixz as

above, and let B,C be symmetric matrices. Then the following relations hold:

/ (Bu, Au)e_%(“’A“)d"u = Tr(B)(det A)~V/2,

/ (Bu, Au)(Cu, Au)e 2 (AW gy = (Te(B)Tr(C) + 2Tr(BC))(det A)~1/2.

Proof. These results are classical and well-known. O

Now, x;,y;, zi, t;; 1 <1i < n be real variables, and define a symmetric matrix A by

2 — a2 v — ) (2 — 2
Ay = (zi )Y —y;)(zi ])7 i # s
ti—t;
and A; = 0, as in Gaiotto’s formula. The diagonal entries of a;; are defined to be zero.
This is obviously a real, symmetric matrix, but it is not necessarily positive-definite.
Nevertheless, we may still use the Gaussian integral representation and Lemma A.l to

compute the action of the Gaudin operators G¥ on (det A)~1/2:

Lemma 3.3. Let the matriz A and the Gaudin operators Gy be defined as above. The

following formula holds:

4GY(det A)TH2 = Y wm N [ =3 (4 = 95 (Te(Dpn AT (D AT+
S#T m#r pF#S

m(DTmA—lepA—l))) —OTr((Dym — Do) A™H|. (1)

Proof. Let Ej;; be the elementary matrix with a single 1 at the 7, j position, we may write

TL— T
Dym = _#(Ekm + Emk)v k 7& m;
m
Tp— (2)
Dii =Y "B + Em),
e —1
m#£k m



and in this case,

k,m=1

Now, define A by (3), leaving the Dy, to be arbitrary matrices. If A is positive-definite,
then Lemma 3.1 tells us that

n

(det A)_1/2 = / 6_%(u’Au)dnu — / 6_% Zk,m ykz’!?L(ukamu)dnu

Recall that the Gaudin operators have the form

1
Gy = g T [ = 5)°00, 4 (e — )0 — 05)]

where we neglect an overall constant (which acts manifestly symmetrically on the variables
T,y 7).
By Lemmas A.1 and A.2, we may safely consider the action of the Gaudin operator

under the integral sign. Differentiating under the integral sign, we find

AGY (det A)~V/? = /

1
d"u e—E(u,Au) [ Yr—Ys o
tr—ts

S#T

Z Zm( - Z(yr - ys)Zp(DrmU., U.)(Dspu, 11) - 2((Drm — Dsm)u7 u))]

m p

n

An application of Lemma 3.2 therefore yields

AGY(det A)~Y? = Z b Z Zm(— Z(yr — Ys)zp (Tr(DrmA_l)Tr(DspA_l)—i—

s#r p
2Tr(Dyn A Dy A™Y)) — 2Tr((Dyyy — D) A™H)).

This is a purely algebraic expression in matrices A. Since it holds over all positive-
definite matrices A, the equality holds for all matrices A. In particular, we may take the

Dy, as in Eqn. 2. This completes the proof. O

Now, define matrix elements b;; as follows:

bij == (A7),
so that (4 x (2 )
Z Yi — Yk (tzl — t:) i k bkj _ 5” (4)

ki



We may now massage (1) into a more convenient form.

Lemma 3.4. The following formula holds:

(det A)'/2GY(det A)7/? = Q=)
£

ty — s
where Q5 is defined by

—Ys 2 Zr—2Zm)(Zp—Zs )(Tr—Tm )(Ts—T
Qo= Y (e CopnlCrrn) Crmem) 28] by by + brasbrp + Brnpbsr)

m;énp;ﬁs
_ Z Ty — xm yr Ys (Zr Zm + Z (x.s_xp (yr Ys (Zs Zp)b
tr—tm ts—tp sp*
m#r S#p

Proof. We have

Ts — Tp
ts —t,

DA™ = —

so the (7, j)-th element of this matrix is

_ Ts — X
(DopA™ )i = —ﬁ(@sbm + dipbs;j)-
s —lp
Since Dy = — Zp?és Dy, we find
Tr(DypA™") = —2%%, s#
Ti— (5)
Tr(Dg A7l =2 Z ”bs,,

p#s

Note now that we may also write

Ts — Tp

Dy A™! = — (Esjbpj + Epjbsj).
j

s_tp

When r # m, s # p we have

(Tr — ) (s — Tp) Z(Esjbpj + Epjibsi) (Erkbmk + Emibrr) =

Dy A™ID, A7t =
" o (tr - 75m)(ts - tp) .k

(Tr — @) (x5 —
(tr — tm)(ts — tp)

Z 6]7” skbp]bmk + Epkamek) + 5]m( skbp]brk + EpkaJbrk)

Ty — Tm) (X5 — @
((t —t ;Et - tp§) Z(Esk(bprbmk + bpmbrk) + Epk(bsrbmk + bsmbri))
T m S k



We conclude that

TI‘(DrmA_lepA_l) = 2Frmsp7 r 7é m, S 7& p

where ( \( )
Ty — T ) (s — X
Frms — . m - P (bmsb r bm bsr)-
P (tr - tm)(ts - tp) ! P
In the case when » = m we use D,, = — Zm# D,y to get the same formula with
Frrsp = - Z (‘TT - xm)(xs - xp) (bmsbpr + bmpbsr)-

mr (tr - tm)(ts - tp)

Similarly, if p = s, we get

(zr — 2m) (x5 — p)
Frmss:_ msYpr mpUsr ).
;5 R To—— (Brsbpr + bmpbsr)

Finally,

(T — x) (75 — 1)
Frrss = msYpr mpUsr ).
L Tl gy )

This allows us to write the following:

Tr(Dyn A Tr(Dgy A1) + 2Tr( Dy A" Dy, A71) =

(2 — 2m)(T5 — )

)t 1)

(brmbsp + bmsbpr + bmpbsr) (6)

when m # r, p # s.
Let m # r, p # s. We have four contributions to the

(T — zm)(T5s — 1)
(tr — tm)(ts — tp)

(brmbsp + bmsbpr + bmpbsr)
term when we combine (1) and (6): —z,,2, as above, 2,25 when p = s, 2,2, when m =r

and —z,z; when p = s and r = m. Overall, this gives (v, — ys)2(2r — 2m)(2p — 2s)-

We similarly compute degree 1 pieces:

10



_ — X — X
_%ZZmTr(Drm_ smA szt _tm rm ert _tm rm
m

m#r
—x
szt—t sm+zzss msm:
m#s
(Zr - Zm)(xr $m - Zm Ts — xm)
o Z ty — tm brm + Z bsm
m#r T m#£s tm

Combining the above equations with (1) we get that

tr —ts

(det A)'/2GY(det A)7/? = Q=)
£

where €2,.¢ is defined by

Qs = Z (yr=ys)?(zr—2m) (zp—2s) (Tr—Tm) (s —Tp) (bmrbsp + bmsbrp + bmpbsr)

(tr—tm ) (ts —tp)

m#r,p#£s
Ty — -Tm y'r Ys (Zr Z’m (ZBS—(E (yT‘ Ys (ZS Z )
o Z tr—tm Z - ts—tp . bsp'
mzr S#p
This completes the proof. O

Now, decompose €2, = Qg«l) —l—Qg), where Qg«i) contains terms of degree 7 in the symbols

bmi. In particular,

2) _ (Yr—ys)*(zr—2m) (zp—2s) (@r —2m) (Ts —2p) .
0 = 3 el ) (4, 4 by + g

m#r,p#s
P Z (Tr=2m) (Yr—ys) (2r —2m) Z (xs—xp)(Yr—ys)(zs—2p)
0 = tr—tm brm + ts—tp bsp-
m#r SFEP

Our strategy will be to rearrange Qfg)

until we obtain an expression which can be shown
to be symmetric in y and z. Along the way, we will obtain additional degree-1 terms,
which we will denote by anl). Finally, we will demonstrate that anl) + 27(}) is symmetric
iny,z.

We begin by noticing that

(yr - ys)2 = (yr - ys)(yr - yp) + (yr - ys)(yp - ys)-

11



Moreover, we find that

v W ys)(zf - f)(:”s = 20) (b + Bonsbop + Brnpbar) = bron + Ssrbins + Gomabre.
P#S =P
We then see that

Z (Yr — Ys)(Yp — Ys)(2r — 2m) (2p — 25) (@ — Tm)(T5 — Tp)

(tr - 75m)(ts - t:n)

(bmr bsp+bms brp +bmp bsr) =

m;ér,p;és
Ty — @ — Zp — 2
Z (@, m)(Yr — Ys)(2r — 2m) By 4 - -+ 1= Egl)’l,
T ) 1)
where the terms - - - are manifestly symmetric in y, z.

The remaining degree-two piece looks as follows:

VP =3 3 W= 50— ) (5 — 2) (3 — 2 (@ — ) (s — )
SFET m#EAT, pF£r,S

1
me’bS bmsbr bm bST’ I
W — ton) (s — tp)(tr — ts)( vt p & bmpbsr)

so that
97(“2) _ Q/£2) + 27(}),1.

Note that the y, — y, term allows us to add a condition p # r without changing the sum.
Hence the summation is symmetric with respect to the exchange of summation indices
s <» p. Thus, we may symmetrize with respect to change s <+ p. Note that the numerator

is symmetric with respect to s <+ p. The denominator transforms as follows:

1
(b= ta) s — ) — 1)
1 1 1
2 [(tr’ — tm)(ts — tp)(tr’ —ts) i (tr - tM)(tp o tS)(tr B tp)
1 1 1 1] 1 1
T2ty — b)) (ts — tp) [tr —ty tr—ty] 2t — )t —ts)(tr — 1)

Now, we write

Yr — Up = (Yr — Um) + (Ym — Yp)-

and we notice that

Z (Yr — Ym)(2r — 2m)(2r — xm)(

t —t, bmrbsp + bmsbrp + bmpbsr) = bsp + 5rsbrp + 5rpbrs-

m#r

12



We see then that

% Z Z (yr - yS)(yT - ym)(zT - Zm)(zp - Zs)(xr - xm)(xs - ':Up)
SFET m#EAT, pF£r,S
1

bmrbs bmeT’ bm bST’
8 (tr—tm)(tr—tp)(tr—ts)( vt p & bmpbsr)
— _1 Z (‘TS - ‘Tp)(yT - ys)(zs - Zp) bsp 4= 2?(}),27
. (tr - tp)(tr’ - tS)
where the - - are terms manifestly symmetric in y, z.

The degree-two term that we are left with is then

2 1
VD =23 e = 9 — ) G — )2 — 20) (2 — ) (s — )
m,s,pF#r

! (Brrbsp + bnsbrp + bimpbar)

(tr — tm)(tr — ts)(tr — tp) 'mrYsp 'msYrp mpYsr
1
= 5 Z Armsp(bmrbsp + bmsb?‘p + bmprT)'
m,s,pF#r
so that

97(“2) _ Q/£2) + 27(“1),1 _ Quf}) + 27(“1),1 + 27(}),2‘

We note that the presence of terms z, — z; in the numerator allows us to safely drop the
condition p # s in the sums.
At this point, we are in a position to explicitly show the symmetry of the degree-two

piece in y, z.
Lemma 3.5. The quantity Q”g) is symmetric in y, z.

Proof. We begin by noting that the terms b,,,bsp 4 bysbrp +bmpbs, are invariant under any
cyclic permutation of the indices m, s, p. By a sum over cyclic permutations of m, s, p, we
see that for fixed m, s, p the coefficient on by,,bgp is %(Afmsp + Arspm + Arpms). We will
prove that A, + Arspm + Arpms is symmetric in y and z.

Define Hypsp(z) as follows:
Hypsp(@) = (2r — 2m) (25 — p).

We have
Hrspm(y)Hrmsp(x)Hrmsp(Z)

(tr - tm)(tr - tS)(tr - tp) '

Since the denominator is symmetric in m,p,s we should prove that the sum of cyclic

Armsp =

shifts of Hyspm (y)Hymsp(x)Hrmsp(2) in these three indices is symmetric with respect to

13



y, z. Explicitly, we wish to show that

HT’SPM(?J)HT’mSP(x)HrmszJ(Z) + HrmSp(y)HT’pmS(x)HT’pmS(Z) + HrpmS(y)Hmpm(x)HT’Spm(Z)

is symmetric in vy, 2.

We first note by direct computation that
Hymsp(®) + Hrspm(2) + Hrpms(2) = 0,
so we may replace Hyppms(x) with —Hppsp() — Hyspm/(2). We find that
HTSPm(y)HrmSP(x)HrmSp(z) + HrmSp(y)HrpmS(fﬂ)HrpmS(z) + HrpmS(y)HTSpm(fﬂ)Hmpm(z)
o,

sp?

where

Cr(}%sp = Hrmszi(x)(Hmpm(y)HT’mSp(Z) - Hrmszi(y)HrpmS(Z))Q

C7(‘12’r)l,sp = HT’Spm(x)(HTPMS(?J)HT’SPW(Z) - Hrmszi(y)HrpmS(Z))-

We will prove that the first cyclic shift C,(i)wp is symmetric in y, z; the proof that C,(gr),,sp

is symmetric in y, z is entirely analogous. We wish to show that

Hrspm(y)Hrmsp(z) - Hrmsp(y)Hrpms(Z) = Hrspm(Z)Hrmsp(y) - Hrmsp(z)Hrpms(y)'

Indeed, the leftmost and the rightmost term have sum

Hrmsp(z)(Hrspm(y) + Hrpms(y)) = _Hrmsp(Z)Hrmsp(y)'

The middle two terms have sum

Hrmsp(y)(Hrpms(Z) + Hrspm(z)) = _Hrmsp(y)Hrmsp(Z)a

hence the left-hand side is equal to the right-hand side. Thus, the first cyclic shift is

symmetric. The second cyclic shift is done similarly. We are therefore done. U

Now, we focus on the degree-one pieces.

)

Lemma 3.6. In particular, define by 29 the remaining terms of degree 1 after we have

transformed the degree-two piece as above:

Eg,l) — 27(}),1 + 27(}),2
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Then Qg«l) + Egl) s symmeltric in y, 2.

(1)

Proof. In particular, let us denote by X,/ the remaining terms of degree 1 after we have

(1)

transformed the degree-two piece as above. We have computed the terms of 3,/ already:

Eg,l) — 27(}),1 + 27(}),2

Ly — Tm )\Yr — Ys)\Zr — Zm 1 Ts — Tp)\Yr — Ys)\Zs — 2p
:Z( ()(y Ys)( ) Z( ()(y Ys)( )b

bty — tom)(tr — ts) brm = 3 ty —tp)(tr — ts) P

m,SFET p,SFT

)

On the other hand, the degree-one terms present in the original Qg are as follows:

(zr — T0) (Yr — ys) (20 — ~ xp —Ys)(2s — 2p)
G==> (tr — tm)(tr — ts) brm =+ Z t O (ts — tp) bsp-

m,SFET p,SFET

The combined degree-one term we require is Q( ) (1). The first terms of Qg«s) and E(l)

cancel, so we are left with

ol 4 x) = Z (s — xp)gr:tys))(zs — 2p) [ 1 1 1 _

D,SFET

= Z _xp —ys)(z S_Zp)(%r_ts_tp)b
sp-
—tp)(t — ts)(ts — 1) 8
Since b is symmetric under s <+ p for the summed indices s, p, we may symmetrize its
coefficient. We find that

(s — 2p)(Yr — Ys) (25 — 2p) 2 —t5s — 1p)
(tr — tp)(tr —ts)(ts —tp)

L(ws — xp)(Ys — Yp) (25 — 2p) (2, —ts5 — 1p)

2 (tr = tp)(tr — ts)(ts — tp)

But we now see that this summand is symmetric in g, z. Thus, the entirety of €2, is indeed

p s#T

symmetric in ¥, z, so Gf and GZ act identically. We are done. U

Now, we can put all of the pieces together. Recall that
Q, = 0@ + o0 =@ 4 (W 4+ n0),

By Lemmas 3.5 and 3.6, Q”ﬁz) and Qg«l) + 251) are each symmetric in y, z, so {2, must also

be. By Lemma 3.4, GY(det A)_1/2 is therefore symmetric in y, 2, so

GY(det A)~Y% = GZ(det A)~1/2,

15



exactly as we wanted to show. We are done.

3.3 M-Twisted Generalization

A natural generalization of our formula incorporates a so-called A-twist. In [2], A-twisted
versions of the Gaudin operators are defined:
Aidj

1
Gr=>" — [_(?Ji —5)°0:0; + (yi — y;)(Nidi — \;05) + N
i

In particular, we modify the Gaussian integral representation of K3 as follows to obtain
a kernel K3:

m

K3(x,y,2;t) = / d"ud™a [H |ui|_2()‘i+1)] (1. A)— (3. 0)
¢ 1=0

This integral can be sensibly defined in the sense of tempered distributions as per the
techniques in Appendices A and B. In particular, we show in B.9 that we may take the
action of the holomorphic Gaudin operator inside the integral sign. Now, let n; = —\; —1;
the action of the (nonconstant part of the) holomorphic Gaudin operator Gf‘ on the

holomorphic part of the above integral yields the following;:

G </ d™u [H u?] e(“’A“)> =
i=1

/dwlh]uylé;hfisp@#—yg%mx+@ﬁ—yg«mf%n@-mm~+m@ﬂemﬂw

n

/d”u [H uzll] e(wAw) o

i=1

Uy Ug Uy U

— 2$T—l’m Ts — Tp)(2r — 2m)(Zs — 2p
=[—Z 5 (4 — )2 )( >£ )( )

s mrpts (br = ta) (br = tm)(ts — tp)

(2 — T) (Yr — Ys) (20 — 2m)
+ ;(ns +1) 7% b — )0 — ) Uy Uy

— (np+1) Z Z (s — p) (Yr — ys)(2s — Zp)usup . (7)

SAT p#s (tr - tS)(ts - tp)

At this point, we wish to integrate the second and third sums by parts, which is legitimate

16



by Proposition B.11. In particular, we recognize that

Cdo
(ns + Duls = d—usu?ﬁl.

In integrating by parts, we integrate this term and differentiate the coefficient it multiplies

(including the exponential) as follows:

/udv — —/vdu.

Taking

u = (WA Z (@7 = 2m) (g — ys) (2r = zm)urum dv = (ng + 1)uy* - Hu?idum
m#r (tr o ts)(tr o tm) i#s

we find that

- n; (r — ) (Yr — Ys)(2r — 2m)
= - Cdug - (ng +1 rUm;
wdv il;llu, dug - (ng + )% o — 1) — ) Upll

_ - n; (2 — ) (s — wp)(yr —Ys)(Ys — yp)(zr’ — 2Zm)(2s — Zp)
—vdu = 21;[1% dus.mg:m# (ty — to)(tr — tm)(ts — t)

Thus, dropping boundary terms as per Proposition B.11, we may effectively replace the

second sum in brackets in (7) with

(zr — 20)(Yr — ys) (20 — 2m)
;(ns + 1)% = 1) — ) Upllyy, =

S Z — @) (Ts — 2p) (Yr — Ys) (s — Yp) (2r — 2m) (25 — 2p) (8)

UpUsgUmUy.
SFET MFAT,pFS (tr - ts)(tr — tm)(ts — tp) rWsmtp

By analogous reasoning,

nr—l-l ZZ ys)(zs_zp)usup e

i t — t $)(ts —tp)

— ) (@5 — 2p) (Yr — Ys) Yr — Ym)(Zr — 2m) (25 — 2p)
gé:r m;ag;;ég (tr —ts)(tr — tm)(ts tp) UrtstmUp (9)

The term in (8) in now combines nicely with the first sum in brackets in (7):

— Z Z (t __:I;m))((t:ps—_t xl))zizr—_t Z)m)(zs = ZP) UpthsUmUp
s#Er m#Er,p#£s ' o ’

17
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(zr — 20)(Yr — ys) (20 — 2m) _
+§é:r(ns + 1)7%;71 (tr — ts)(tr — tm) UpUm =

-~ Z Z (@r — @) (@s — 2p) (Yr — Ys) (Yr — Yp) (2 — 2m) (25 — 2p)

U U g Uy, U -
(tr _tS)(tr _tm)(ts _tp) reem

SHET MFAT,pFS
Note that the term with r = p vanishes due to the factor of y, — ¥, in the numerator.
Thus, the summation indices s,p run over the same range. We may thus symmetrize
the coefficient of w,usu,u, in the indices s,p. Note that everything within the sum is

symmetric in s, p except for Wl(ts—tp) We find

1 1 B 1
(b=t — 1) | =ty —ta) (b —ta)(br — 1)

and we obtain

Uy U Uy U -

1 (xr — @) (s — 2p) (e — Ys) Wr — Yp) (2 — 2m) (26 — 2)
2 gé:rm;g,;;ér (tT’ - tS)(tT’ - tm)(tr - tp)

Now, write

Yr —Yp = Yr — Ym T Ym — Yp-

Focus on the piece corresponding to y,, — yp:

Up Uy U U -

1 Z (xr — ) (s — 2p) (Yr — Ys) (Ym — Yp) (2r — 2m) (25 — 2p)

2 (tr —ts)(tr — tm)(ts — tp)

m,87p;é7”

Using the notation of Sec. 3.2, the coefficient of u,u,usu, is given by

Hrspm(y)Hrmsp(x)Hrmsp(Z)
(tr - tm)(tr - tS)(tr - tp) '

Armsp =

We already showed that Hspm (y)Hrmsp(2) Hymsp(2) is symmetric in y, 2 when summed
over cyclic permutations of the indices s, m,p. The relevant computations are performed
in Sec. 3.2. The same computation follows through in this case, as the term w,u,usu, is
invariant under these cyclic permutations.

This leaves the following term:

U U Uy U -

_% Z Z (@ — 2m) (s — 2p) (Wr — Ys) (Y — Ym)(2r — 2m) (25 — 2p)

str matrptn (tr = to)(tr — tm)(tr — tp)

Adding this to the term in (9) gives

Z Z (xr'_xm)(xs_xp)(yr'_ys)(y'r _ym)(zr'_zm)(zs_zp) 1 1 1

(tr—ts)(tr —tm) to—tp  2t—1p
SFET MFET,pFET

Uy Ug U Up =
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_Z Z (@r—2m) (@5 —2p) (Yr —ys) (Yr —ym ) (2r —2m ) (2s —2p) (2tr —ts —tp)

(tr—ts)(tr—tp)(ts —tp) (tr—tm) Uy Us U Up-
S#Er m#AT, pFEr

Symmetrizing the coefficient of w,usumnu, in s and p, we obtain

__Z Z (@r—2m)(@s —2p) (Ys —Yp) (Yr —Ym ) (2r —2m ) (2s —2p) (2tr —ts—1tp)

(tr—ts) (tr—tp) (b —tp) (br —tm) UrthsUm Up,
SHET MFAT, pFET

which is symmetric in y, z. We are done.

4 Discussion

In summary, we have proved a conjectured formula for an intertwining kernel for the
quantum Hitchin Hamiltonians in genus zero (Gaudin operators) over C with |S| > 4
marked points. We have additionally demonstrated a natural generalization of our formula
to account for a possible “A-twisting.” With all of this in mind, we now assess the various
implications of our result.

First of all, it is of natural interest to consider the analytic geometric Langlands
program over fields other than C. The case of R is handled very similarly to C. Gaiotto
[5] produces a very similar formula for an intertwining kernel for the real Gaudin system

in three sets of variables:
1

V/]det A’

The argument from the previous section goes through essentially unchanged to demon-
—-1/2

K5 (2,y,2;t) =

strate this formula as well. We represent (det A) by a Gaussian integral, act on the
integral by the Gaudin operator, and apply Wick’s theorem. The resulting expression can
be massaged into a form which is manifestly symmetric in the z,y, z variables.

Over local fields, the story is more complicated. We no longer have at our disposal the
differential Gaudin operators, and to understand the spectrum of the Hecke operators, it
would thus be an important stop to construct a Gaiotto kernel over local fields F'. One

might naturally guess something of the following form:

O(det A)
KE(z,y, 2 —
3 (7,9, 2t) = [det A
where ||-|| denotes a (non-Archimedean) absolute value over F. Here we define 6(z) = 1

if x is a square in F' and 0(x) = 0 otherwise.
To show that K1 intertwines the Hecke operators over all fields F' is therefore an
important next step. We will show this with a calculation of the action of the Hecke

operators on K< in the upcoming work [8].
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A Differentiating under the Integral Sign

In this section, we want to prove that

aii /f(w,y)dyz/(%f(:v,y)dy

for sufficiently “good” functions f. This will allow us to make the analytic manipulations

we use in Section 3.2. We will also use the result of this section in the next Section B.

Since we are differentiating in one variable at a time, we will assume that x is just one
variable. Let n be a positive integer, and suppose f(z,y) is a smooth function defined on
U x R™, where U is an open subset of R. Let

g(x) = [ fl(=,y)dy,
-

where we assume that the right-hand side is absolutely convergent for all x € U. Let x*

be a point in U. Also denote 0, = 8%

Lemma A.1. 1. Suppose that there exists a neighborhood V' of x* and a function M (y)
with the following property: for all x € V we have |0y f(x,y)| + |02 f(x,y)| < M(y)
and [, M(y) < oco. Then g(z) has a deriwative at point a* that can be computed as

g'(x") = . O f(x™,y)dy.

2. Suppose that x € R™, U is an open subset of R™, f(xz,y) is a smooth function
defined on U x R™, g(x) is defined as above. Let x* be a point in U. Assume that
for any partial differential operator D in x with constant coefficients there exists a
neighborhood Vp of * and a function Mp(y) with the following property: for all
x € Vp we have |Df(xz,y)| < Mp(y) and [z, Mp(y) < oo. Then g(z) is smooth at
x* and Dg(z) can be computed as [p, D f(x*,y)dy.
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Proof. The second statement immediately follows from the first using induction on the
order of D.
By definition,
J(a%) = lim ~(g(a* + <) — g(a).

e—0¢€

We have

e +e)—gla) = [ (" )~ Fa )l dy =< [ 0.5 +alw) )y
Here, we have used mean value theorem, and we have let a be a map from R" to [0, ¢].

Thus,
1
Z(g(a” +ei) —g(a7)) = . 0o f (x" + wia(y),y)dy.

Using the mean value theorem again, we find that

Ouf(z* +aly),y)dy — | Ouf(a* y)dy =e [ 7 f(z* +b(y),y)dy,

R R® R

where b is another map from R” to [0,¢]. Using the condition in the statement of the
lemma we see that the expression on the right hand side is at most Ce, where C' is a

constant positive number. Hence it tends to zero when e tends to zero, and indeed
g'(z") = i Oz f (2", y)dy.

O

Lemma A.2. Let Dy, be fized matrices, A = > yrzmDim. Let U be the set of all x
such that the corresponding matrixz A is positive definite, x* be an element of U.

Then function f(x,u) = e 3(Auu) satisfies conditions of Lemma A.1 with y = u. In
particular, we can compute a partial differential operator D(v/det A) as Jzn D(e_%(A“’“))du

times a constant.

Proof. For any partial differential operator D with constant coefficients we have D f(x,u) =

L(Au,u)

p(z, u)e_z( , where p is a polynomial in x,u. In a neighborhood V of x* we can say
that p(x,u) < C1 + Cy |u|N, where Cy,C5y, N are constant positive numbers. Since any

two norms on R" are equivalent, we have that
(Au,u) > (u,u).

for any u. In fact, we can choose € > 0 such that the above equation holds true for all A
in a neighborhood V' 3 z*.
Consider M (u) = (Cy 4 Cy [u[Y)e =" We just showed that |Df(z,u)| < M(u) for
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x € V. We also see that [, M(u)du < oo. It follows that f(z,u) satisfies the conditions
of Lemma A.1. [

With the preceding two lemmas, we have established the validity of differentiating
sufficiently convergent real integrals. This finishes the details of the proof in Section 3.2.
In the next section, we will explain how to deal with the integrals arising in the proof of

the twisted Gaiotto formula in Section 3.3.

B Integrals in the Sense of Tempered Distributions

In this section, our goal will be to explain what to do with the integral containing

eAvwW)—=(Auwu) iy the definition of twisted kernel in Section 3.3. We wish to verify that

the manipulations applied in that section (e.g. differentiation under the integral sign,
integration by parts) are legitimate. In effect, we will formalize the details of the proof in
Sec. 3.3.

Our starting point is the following integral:

/dmxdmi [H |x2|s] e(x,Ax)—(x,Ax)’
1=1

where (x,y) = > ;" z;y; is a bilinear form, not sesquilinear. This integral is the primary
object of interest in Sec. 3.3, but a rigorous definition thereof is not immediately clear.
Moreover, our manipulations of differentiating this integral and integrating by parts are
not a priori justified. In order to rectify this situation, we will need to define this integral
using the notion of a Fourier transform of a tempered distribution.

Note that the results of this section are not new: distrubutions and operations on
them are known since the middle of twentieth century. We include proofs of these results
for reader’s convenience. It is possible that the properties of the integral used for Gaiotto
kernel are described somewhere in the mathematical analysis literature, but the authors
could not locate a source formalizing precisely the manipulations used in Sec. 3.3. For
this reason we (re)prove the results we need below.

We say that a smooth function f: R" — C is rapidly decreasing if for all n > 0
function |z|" f is bounded. Let & = S(R™) be the Schwartz space. It consists of smooth
functions f such that f and all its derivatives are rapidly decreasing. The Schwartz space
is a topological space with a family of seminorms || f||os = Sup,egn [2*DP f|. We further
define S(C™) via S(R?"). Define the space of tempered distributions to be continuous dual
S of S.

The Fourier transform F is an automorphism F : & — S defined in the usual way.

We can then define Fourier transform on S’ as a transpose operator. We now introduce
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some convenient notation. For functions f, g on R"™ define a bilinear pairing (f, g) via

(.9) = [ d'xf(x)9().

Again, this notation is slightly nonstandard, but it will be more convenient for us. We
embed LP(R™), 1 < p < oo into S'(R™) via f(g) = (f,g). In this way Fourier transform
on &' extends Fourier transform F: L' — L.

If Fourier transform of f can be computed as a well-behaved conditionally convergent

integral, the result will coincide with Ff:

Proposition B.1. Let f be a locally integrable function that belongs to S'(R™), and let
Ky C Ky C -+ be a sequence of compact sets with union R™. Suppose that

L(y) = | d"x fx)e™>)

is uniformly bounded in n,y and lim, o I,(y) ezists for all y and is uniform on compact

sets. Then the function

9(y) = lim In(y)

defined by this limit satisfies g € S'; moreover, g = Ff.

Proof. We have

(Ff.h) = (f, Fh) = / d"y £(y)Fhly) =

lim [ d™y f(y)Fh(y) = lim [ d"y f(y) [ /R dmxe“x’”h(x)] —

n—00
Kn Ky

lim dmxh(x)[ ; dmyei(x’y)f(y)] (10)

n—o0 R

In the last step, we used that f is locally integrable to apply Fubini’s theorem. Since
L(y) == [, x, 4"y ¢'5¥) f(y) is uniformly bounded, for any & > 0 there exists a compact
set K. such that the difference between

/ dmxh<x>[ dmye“w)f(y)}
R Kn

[ ameniz | ny o y)

is at most £/2 for any n. We may take K. so that it contains the ball with the radius %

and

centered at zero.
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Since the limit of [ d"x f (x)e’™Y) is uniform on compact sets we have

lim ” d"™x h(x) [/ n d™y e"(x’y)f(y)} = /Edmxh(x) [lim / d™y €Y f(y)

n—o0 n—oo
n

= d"x h(x)g(x).
K.

It follows that for large enough n the difference between

/Rdmxh(x) [/ n dmye"(x’y)f(y)} and /Edmxh(x)g(x)

is at most e. Using (10), we deduce that the difference between (Ff, h) and [, d™x h(x)g(x)
is at most ¢.

Note that g(x) is a bounded continuous function, hence it gives an element of " and
the integral [p,, d™x h(x)g(x) can be computed as the limit lim._q fKe d"xh(x)g(x) =
(Ff,h), hence g = Ff. O

Equipped with a definition of the Fourier transform on tempered distributions, we

may now define the integral over a tempered distribution:

Definition B.2. Let f be a tempered distribution such that Ff is represented by a

function continuous at zero. Then we define the integral of f as

/ dz f(x) .= Ff(0).
R

Thus, in order to define an integral

/dmxdmf [H |$Z|Sz] e(x,Ax)—(x,Ax)
1=1

in this sense, we should compute

F ([H \%’81] e(x,Ax)—(x,Ax)) ]

i=1

We will break up this computation into several steps. First we will compute Fe(:4%)—(¢4x)

in Lemma B.3. The function |z;|* gives an element of S’ only for Rs; > —2, but the cor-
responding distribution can be meromorphically continued to C\ —2Z~¢, and its Fourier
transform is known. A usual Fourier transform of a product of functions is a convolution
of Fourier transforms under some conditions. In our case, for certain values of s; we

can also make sense of the integral in the definition of convolution and the result is a
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smooth function. We prove that it gives a Fourier transform of the product and then use
meromorphic continuation to prove that Fourier transform is always given by a smooth
function, hence the integral is well-defined. Then we check that the integral satisfies the
properties we need: we can differentiate under integral sign and in certain cases we can
integrate by parts with no boundary term.

To simplify notation, define

E(x) = B(A,x) := e®A)=004%)  Nr(x) = M(sy, ..., 8n,X) = H ;] (11)
i=1
Lemma B.3. There exist fived complex numbers C,Co such that the following hold:
1. Feit® = C’le_iiyz;

2. Suppose that A is invertible complex matriz, z € C". Then

]:e(z,Az)—(z,Az) _ & e(w,Aflw)—(w,Aflw)‘

The second proposition can be rewritten as FE(A,x) = ﬁE(—A‘l,x).

Proof. Let us first prove the first statement. It is well-known that [ dz eie” ig conditionally

/ dr e — 0, / dz e — 0

as a — 00. It is also not hard to see that f; ¢i® dz is bounded for all a,b. Now, note that

convergent: We have

9
pirHizy _ e—%ez(gp—l—%) )
. 2 . . .
We deduce that ffn e Y is uniformly bounded. Moreover, for a compact set [—n,n],

" 2 " iy? w2 w? [7TE 2
dx ™ T = dre” Teot2)” = e_T/ dx e,
—-n —-n —n+3

Let S C [-N, N] be a compact set, y € S. Then

—n—i—% iz? > iz
dre™ + dre
) n+4

The right hand side tends to zero as n tends to infinity. Hence the limit

_iv?
= e 4

n .92 . 7 2
‘/ dop e HiTy e_yT
-n

n . . iy2
lim da ™Y = ¢~
n—oo |_
is uniform on compact sets. It follows that f(z) = ¢!®**) and K, = [-n,n|™ satisfy the
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conditions of Proposition B.1 and the limit is ¢g(y) is a constant times et (y),
. —1
For the second statement, make the coordinate change z — VA z. Tt then suffices
to show the result for A equal to the identity. Let z = (21,...,2p), 2j = x; + iy;. In this

case,

(z,2) — (2,2) = 2zZm]y] Z zj+y;)? — (x5 —y;)*
] 1

Now, let w = (w1, -+ ,wy,), where w; = a;j + ib;. Reasoning similarly to the proof of the
first statement, we find that

Fes g1 (@i+y;) —(xj—y;)* _ 026—% i1 (aj+b;)?—(a;—b;)?
_ 026—2i2ajbj _ Cze(w,w)—(w,w).

for some absolute constant C. This finishes the proof. O

Lemma B.4. Let s > -2, S = S(C), f € S. Then (Ju|®, f) is well-defined and gives

meromorphic function in s, holomorphic over s € C\ 2Z.

Proof. Since Rs > —2, the function |u|® is locally integrable and has at most polynomial
growth at infinity. Thus, the function |u|® belongs in &’. It remains to show that (Ju|*, f)
is meromorphic with poles at 2Z.¢. Since f decays rapidly, we note that for any V C C,

/Cdudﬂ max 87 (lul® f)| = /(Cdudﬂ Igé%(!\u\slogj ul f|

The integral on the right hand side is always absolutely convergent for s > —2. We
conclude by lemma A.1 that (Ju|®, f) is infinitely differentiable in s (and thus holomorphic)
when fs > —2.

Now, notice that

2
Alul® = 0,0u(um)? = - |ul*>.

Suppose that s > 0. Let e > 0, K = {u | ¢ < |u| < e71}. Let us transform the following

integral using Green’s theorem:
| Aduf) dady.
K

The boundary term on the circle |u| = ¢! clearly tends to zero, so we look at boundary
term on the circle |u| = e. For any two smooth functions g, h on R?\ {0,0} with compact

support for large enough € we have

[ @ = [ g+ g haray = | gy~ hdo) ~ [ (gii+ gy,
|u|=¢ K
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When g = f, h = |u|®, both hg), and hgg’/ are continuous at zero, hence the boundary
term goes to zero.
When ¢g = |u|® and h = f the boundary term tends to zero when & tends to zero.

More explicitly, writing g = |u|® = (2% + yz)%, we have
gy =selul*™%, fy=sylul".

Hence,
hgydy — hg,dx = sh lul* "2 (zdy — ydz).

If we parametrize the boundary circle using x = rcos ¢, y = rsin¢ we get xdy — ydr =
r2d¢. Note that 72 [u|*"? = |u|®. The function h|u|*"? tends to zero when |u| tends to
zero, hence this boundary term tends to zero when ¢ — 0.

Thus, using Green’s theorem twice allows us to write (for fts > 0)

(02 ) = (Al £) = S5l A).

This allows us to define (|ul®, f) for s such that Rs > —4, s # —2. It also proves that
(lu|®, f) is holomorphic for Rs > —4 except at s = —2, where it has a pole of order 2.
Continuing in this way, we see that (|u|®, f) continues to a meromorphic function with

poles at —2,—4,... and so on. O

Lemma B.5. Let —2 < Rs < 0, |u]® € §'(C). Then the Fourier transform F |u|® € 8" is

given by locally integrable function C(s) |u|_s_2, where

C(s) = o=ip L (~3) .

The same formula holds if we meromorphically continue s onto s € C\ 27Z.

Proof. This formula is quoted in Gelfand-Shilov, p. 363, and the relevant function r* is
defined in Sec. 1.3.9, p. 71 of |7]. It follows from the computations on p. 73 that our
definition is the same; the proof is in Sec. 2.3.3, p. 192. O

Now we explicitly construct a Fourier transform of
n [ —
£x) = [H W] el )= )
i=1

in the case when all s; satisfy Rs; < —2.

How would we go about constructing this Fourier transform? A natural answer would
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be a convolution of

H C(si) |yil~>™* and Idfw ¥ ATIY)~(v.A™y)
in some sense. Below, we will define this convolution in such a way to get function smooth
in y, A and meromorphic in the s;.

Let f be a smooth function on C = R? bounded at infinity. Choose a partition of
unity 1 = py; 4+ p2, where p; has compact support and the support of ps does not contain
zero. For Rs < —2, we can define the integral of |u|® f(u) over C as follows. Let f; = fp;.
Then [ dudi |u|® fo(u) is convergent. We now deduce the following fact from the proof of
Lemma B.4: When the support of fi does not intersect with zero for any positive integer

m we have

/ dudu fi(x) |u]® = c(s,m)/ dudu (A™ f (u)) [u] 2™, (12)
C C

4m
$2(s+2)2---(s+2m —2)%

c(s,m) =

When the support of f contains zero, the left-hand side is not well-defined because s <

—2, but we can use the right-hand side as a definition:

/ dudu fi(u) |u]® := c(s,m)/ dudu (A™ f1(w)) [u] 2™, (13)
C C

where we choose m so that Rs+ 2m > —2. It follows from the computations with Green’s
theorem in the proof of Lemma B.4 that the result does not depend on the choice of m.
We also see that the result does not depend on the choice of pq, ps.

We can similarly define the integral over C" of f(x)[[;; |z;|** when Rs; < —2 for all

>t [ ow (@) il

kie{1,2}

7: Consider the sum

and for each term use (13) integrate over the pieces containing a factor of p;(z;).

Proposition B.6. Suppose that s1,--- ,s, € C such that Rs; > 0. Let
n
9(y) =/ d"xd"RE(-A" x4+ y) [ |2l 727,

where we can use the construction above because E(—A™',x 4 y) is smooth and has
absolute value one. Then g is smooth in'y, has { min; Rs; | — 10 partial derivatives in A,

is holomorphic in the s; € C\2Z. The partial derivatives in A belong to S'. Furthermore,

n

f[ (3, Ax)— (x, Ax) H' Z|Sz] = ot A] tA| <HC(SZ-)) 9(y)-
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Proof. Write partitions of unity 1 = pi(x;) + p2(x;) as before, where p; has compact
support and 0 ¢ supp(pz). Then, we may write

g(y) = Z H c(—2—si,m)/dmxdmi
ki€1,2 itk;=1
H’xi‘—2—si H ‘xi‘2m< H AZ:)
=1

i ki=1 i k=1

fx+y) ] ew m)]

i=1

where we take m large enough. We can apply Lemma A.1 for 0,,¢: if k; = 2 the

integral at infinity converges, while if k; = 1 the integral at zero converges if we take

1
(—2—5i)2(—s:)2(2m—4—s;

C\ 2Z. Hence g has a complex derivative with respect to s; ¢ C\ 2Z, so g is holomorphic

m large enough. Note that ¢(—2 — s;,m) =

E is holomorphic on

in this region. We also see that g has at most polynomial growth: the integrals at infinity
are bounded, the integrals are bounded by constant times max(1, |y|2nm).

Let us now try to differentiate g by y; or a;;. When we attempt to do this, we could
possibly obtain a divergence at infinity. When taking a derivative with respect to a;;, we
take at least L% min; Rs; | — 10 derivatives and the integral will still converge at infinity.
When differentiating we get terms in y of polynomial growth, hence the partial derivatives
of g also belong to &'

Let us now show that g(y) is smooth in y. To do this, replace p;(x;) to pi(z; +yi —y):
in a neighborhood of y;. The functions ps are chosen such that they still have support

that does not intersect with zero. We therefore find

9(y) = Z H C(—Z—Si,m)/dmxdmi

ki€1,2 k=1

[Tl 1 ‘xi’2m< 11 AZE)
i=1

i k=1 i k=1

Fe+y) [ pwilwi + i —y?)]

i=1
Shifting the integration variable x — x —y, we get

g(y) = Z H C(—Q—Si,m)/dmxdmi

ki€1,24: ki=1

n
[ a1 w1 o)
i=1

i k=1 i ki=1

F&) I owi (i — v )]
=1

The above expression has 2m — s; — 4 partial derivatives in y;: There are no issues at
infinity, and we get divergence at zero only when |z; — y;| has negative degree. Since we
can take any large enough m this proves that g is smooth in ;.

Now, take x — —x in the integral above and note that f(x —y) = f(y — x). We find
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that

g(x) = /dmxdmi fx—y) H |ag| 7275
For h € §, we have

= > ] esim / d"yd™y / d"xd"%

kie{1,2}i: k=1

[T T e (T )

i=1 i k=1

fx=y) ] ew (:vz')] h
i=1

Integrating over y, we get

si,m) [ d"yd™y | d"xd™X

ki 62{1:2} i: lk_[_l / /
[T IT bl ( TT az) [f(x ) Hpkxxi)] ()
i=1 1 i=1

i k=1 i ki=

= Z H c(si,m) / d"xd"x
H|$i|—2—si H g2 ( H Ag":) [(f* h)(X)HPkZ(ZEz)] .
=1 i k=1 i k=1 i=1

We now note that f * h = F~1(FfFh) is a rapidly decreasing function:

Lemma B.7. Suppose that f € S is a function such that f, Ff are bounded. Then for
any h € S we have fxh €S, fxh=F Y FfFh).

Proof. Function f * h(y) = [d"x f(z)h(y — x) is defined by an absolutely convergent
integral. It is also bounded, hence it belongs to §’. For g € S we use Fubini theorem to

obtain

(f+h, Fg) = / dydy fh(y)(Fg)(y) = / I xd" XAy &Y d"2d"% f(x)h(y—x)e' ¥ g(z)
— / d"xd"Xd"zd"Z f(x) Fh(z)e'™? g(z) = / d"xd"X f(x)F(Fh - g)(x)

= (f,F(Fh-g)) = (Ff,Fh-g) = (FfFh,g),

hence F(f « h) = FfFh as elements of S’. Since Ff is bounded and Fh € §’, their
product belongs to S, hence F(f * h) also belongs to S. Function f % h and F~1Fh give
the same element of &', hence f * h = F~LF(f x h) = FY(Ff{h) belongs to S. O
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Hence for each (kq,...,k,) we can integrate by parts using A;” for all j such that
k; = 2 to get

Z H c(si,m /dmxdmi
kie{1,2}i: ki=1
[T I e (11

i=1 i k=1 i k=

az) [(f n)) o <:cz->]
1 |

=1 =1 i=1 i

Now we can sum over all (ki,...,k,) to get

Z Hc (si,m /dm d™x
kie{1,2}i=1
| E e (HA?> X)Hpki(ﬂfi)] =
i=1 i=1 i i=1
Hc(si,m)/dmxdmin |$i|_2_8iH|xi|2m <HA;;>(f*h)(x) —
Pl , : :
ﬁ c(si,m (H\w,\zm 2=si [ h)( ) <H\x2] —2-si f*h)
=1

Hence, we have proven that

h) = (H i 727 f h) . (14)
i=1

Recall that M (x) = |z1|* - - |2,|*". We now compute F [E(A,x)M(x)]. We have

(F(E(A,x)M(x)),h) = (E(A,x)M (x),Fh) = (M(x), E(A,x)Fh).

By Lemma B.3, we find that

Cs

(M), B(A,2)F) = oy

(M(x), F(E(A™ ,z) % h)) = ——
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Finally, by Lemma B.5, we find that

T (MO 1) = et (f [1_11 W] g h)

Comparing this with (14), we get

O

Proposition B.8. Let sy, ..., s, € C\2Z, and recall that E(A,x)M (x) defines an element
of 8" as above. Then g(y) := F(E(A,x)M(x)) is given by a function smooth in'y and A
and holomorphic over s; € C\ 2Z.

Proof. We have (F(E(A,x)M(x),h) = (M(x), E(A,z)Fh). Thus,

(M(x), E(A,x)Fh) Hc (si,m <H|3:Z| si+2m HAm E(Ax ]:h)>

Note that for any partial differential operator D with constant coefficients we have
DE(x) = Pp(x,X)E(x), where Pp is a polynomial in x,Z. Hence for any partial differ-

ential operator D with constant coefficients we have

= > DiE(x)DyFh=E(x) Y Pi(x,X)DyFh.
D1,Do P1,D>

Here sum comes from the formula for the derivative of a product, P, = Pp, is a
polynomial such that D;F(x) = P E(x). Hence D(E(z)Fh) = E(z)DFh, where D
is a partial differential operator with polynomial coefficients. Since Fourier transform
interchanges  with 9, (up to a constant factor), we get DFh = F(Dh), where D is also
a partial differential operator with polynomial coefficients. When D = ] ; A", denote
the corresponding D by D,,

Hence, defining

n
_ H |xi|si+2m
)
=1
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we find that
[T etsi;m) < HM E(A, fh)) [ c(sism) (M (x), E(A, 2) FDpy h).
i=1 ]

We already know that
(Mm(x)7 E(Av X)]:h) = (gm(x)v h(X)),

where for m sufficiently large we may write

! i=1

as per Proposition B.6. Note that g,, is smooth in y, holomorophic on s; € C\ 2Z and
has at least m — c partial derivatives in a;; for some constant ¢ > 0 that does not depend
on m. We thus find

[H (s, m)] (M, (x), E(A, ) FD,,h)
i=1

= [HC(si,m)] (9m(¥), Dimh(y)) = | ][ e(si:m) | (Dgm(¥), h(¥)),

i=1 Li=1

hence

F(E(A,x)M [H )| Pgn(s)

for m large enough. The right-hand side is holomorphic for s; € C\ 2Z and smooth in y
and also has m — ¢ partial derivaties in a;;. Since the left-hand side does not depend on

m we deduce that is smooth in a;;. O

Proposition B.9. Let Dy be a differential operator in a;;. Then
Da(F(E(A,x)M(x))) = F(Da(E(A, x))M(x)).

Proof. Tt is enough to check that both sides give the same element of S’. It is not hard
to see that for any A* there exists a neighborhood U such that

max DyF(E(A,x)M(x))

is still an element of &’. Indeed, g(y) = F(E(A,x)M(x)) is smooth in A and y, so we
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may safely take D 4g(y). We find

Dag(y) = P(y,¥)9(y)

for some polynomial P; integrating Dag(y) against any test function h € S thus yields
an absolutely convergent integral.

Thus, we use Lemma A.1 to get
(DaA(F(E(A,x)M(x))),h) = Da(F(E(A,x)M(x)),h) = Da(E(A,x)M(x), Fh).

We then find
DA(E(A,x)M(x),Fh) = (Da(E(A,x))M(x),Fh).

The proposition follows. O

Corollary B.10. Let K = ¢(0) be the twisted Gaiotto kernel, Da be as above. Then

DK can be computed as an integral in the sense of tempered distributions
DsK = /d"xd"i(DA(E(A,x))M(x).

Proof. Note that
(DA(E(A,x))M (x) = P(x)E(A,x)M (x)

for some polynomial P(x,X) in x,X. This expression has a good Fourier transform in the

sense of tempered distributions. Thus, it is enough to set y = 0 in Proposition B.9. [

Proposition B.11. Let P(x,X) be a polynomial in x,X. Then, for any i we have
/ a"xd"xd, [Pl %)e A0 ()] = 0,
In particular, we can evaluate integrals of the form
/ d"xd"X P(x, i)e(x’Ax)_mM(x)

by parts without boundary terms.

Proof. We wish to compute these integrals in the sense of tempered distributions. Note

that g(y) is smooth in y, so we find that

/ d"xd"X P(x,X)eXAX)=54%) V() = P(dy, 0y)g(y),
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and the right hand side is a smooth function of y. We thus find that

/ d"xd"% 8, [P(x,i)e(x’Ax)‘(x’A")M (X)] =y;P(9y,05)9(y)| =0.
y=0

We are done. O

In summary, we have shown that we may sensibly define the following integral in the

sense of tempered distributions:

m

/dmxdmi [H ’x2’8] e(x,Ax)—(x,Ax).

i=1

We have then shown that we may safely differentiate under the integral sign and integrate
by parts as we have done in Sec. 3.3, justifying all of the algebraic manipulations in our

proof of the twisted Gaiotto formula.
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