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Abstract

We provide an explicit proof of a recent result of Gaiotto [5] which gives an explicit for-
mula for a so-called “multiplication kernel” K3(x, y, z; t) intertwining the action of Hecke
operators and Gaudin operators in three sets of variables. This function K3 arises nat-
urally in the context of the analytic formulation of the geometric Langlands program in
the genus-zero case [2, 3, 4]. We also discuss how the kernel K3 relates to other objects
typically considered in the analytic Langlands program.

Contents

1 Introduction 2

2 Preliminaries 3

2.1 Quantum Hitchin Hamiltonians and the Gaudin System . . . . . . . . . . 3
2.2 Hecke Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The Gaiotto Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Proof of Gaiotto’s Formula 6

3.1 Outline of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Main Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 λ-Twisted Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Discussion 19

A Differentiating under the Integral Sign 20

B Integrals in the Sense of Tempered Distributions 22

1

http://arxiv.org/abs/2212.06932v1


1 Introduction

Recently, Etingof, Frenkel, and Kazhdan devised a version of the Langlands corre-

spondence in terms of functional analysis [2, 3, 4]. Taking a smooth irreducible projective

curve X over C, they formulated the geometric Langlands duality as a correspondence be-

tween the joint spectrum of global differential operators (quantum Hitchin Hamiltonians)

acting on a Hilbert space H of half-densities on BunG(X) and certain points in the variety

Op GL (X) of GL -opers over X (more precisely, the GL -opers with real monodromy) [2].

To generalize the problem to local fields F , integral Hecke operators were introduced in

[1]; these operators strongly commute with the quantum Hitchin Hamiltonians over C

and are defined over arbitrary local fields F . However, the joint spectrum of the Hecke

operators is still not well understood over arbitrary local fields.

To get a handle on the analytic Langlands program, it is thus important to investigate

the joint spectrum of the Hecke operators and the quantum Hitchin Hamiltonians. Gaiotto

recently made an intriguing claim in this direction in the genus-zero case with G = PGL2

[5]. In particular, taking F = C, X = P
1, and G = PGL2, Gaiotto described a kernel

K3(x, y, z; t) in three sets of variables intertwining the action of the quantum Hitchin

Hamiltonians Gi in genus zero (Gaudin operators):

Gx
iK3 = Gy

iK3 = Gz
iK3.

The precise definitions of the Gaudin operators will be given in Section 2. Gaiotto’s result

is stated below:

Theorem 1.1. Define a matrix Aij with entries as follows:

Aij =
(xi − xj)(yi − yj)(zi − zj)

ti − tj
, 0 ≤ i 6= j ≤ m

and Aii = 0. Then

K3(x, y, z; t) =
1

|detA|
satisfies the requisite intertwining property for the Gaudin operators.

Gaiotto gave an argument for his formula using physical insight. In this paper, we

furnish a full mathematical proof of Theorem 1.1 (and a generalization thereof) and discuss

its implications. The organization of this paper is as follows. In Section 2, we introduce

in further detail the relevant mathematical preliminaries needed to formulate Gaiotto’s

result precisely. In Section 3, we produce an explicit proof of Gaiotto’s result, inspired in

some part by the physical origin of the formula. We also prove a suitable generalization

of Gaiotto’s formula. In Section 4, we discuss the implications of our result and consider

further avenues for exploration.
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2 Preliminaries

2.1 Quantum Hitchin Hamiltonians and the Gaudin System

We will now review the relevant ingredients from the analytic Langlands program. Our

discussion follows the foundational work in [2, 3, 4].

The starting point consists of a reductive algebraic group G and an smooth irreducible

projective curve X over a local field F with a specified zero-dimensional subvariety S ⊂ X.

Let BunG(X,S) be the moduli stack of G-bundles over X with a specified reduction to a

Borel subgroup B ⊂ G at the subvariety S ⊂ X, and let Bun◦G(X,S) be the substack of

such stable G-bundles (defined precisely in Definition 2.1 of [3]).

If |S| is sufficiently large, then Bun◦G(X,S) is open and dense in BunG(X,S). If we take

G to be simple and simply-connected, and if X is a curve of genus g, then Bun◦G(X,S)

can be viewed as a smooth quasiprojective variety of dimension 3g − 3 + |S| [3]. We

then define VG(X,S) to be the space of smooth, compactly supported sections of the line

bundle of half-densities Ω
1/2
Bun over Bun◦G(X,S). VG(X,S) admits an inner product:

〈v,w〉 :=
∫

Bun◦G(X,S)
v · w.

We then define HG(X,S) to be the Hilbert space completion of VG(X,S) with respect to

〈·, ·〉.
Now, take F = C. To make contact with the geometric Langlands program, we wish

to analyze the joint spectrum of a commutative algebra A of global differential operators

acting on Ω
1/2
Bun. Specifically, take KBun to be the canonical line bundle on Bun◦G(X,S).

Now, it is known that KBun has a unique square root K
1/2
Bun up to isomorphism. The

commutative algebra DG of global holomorphic differential operators on K
1/2
Bun is generated

by the quantum Hitchin Hamiltonians, and their properties were first described in [10].

We may just as well consider the antiholomorphic operators DG acting on the conjugate

K
1/2
Bun of K

1/2
Bun. Following [2], we define the commutative algebra A as follows:

A = DG ⊗C DG.

To understand the joint spectrum of A, we wish to study the action of holomorphic

differential operators on half-densities in Ω
1/2
Bun = K

1/2
Bun⊗K

1/2
Bun. To establish (over F = C)

the analytic Langlands correspondence, it is thus essential to understand the joint spectra

of the quantum Hitchin Hamiltonians. For general G and X, this is quite a difficult

problem; however, some progress has been made for the simplest non-abelian G. In [3, 5],

the specific case of G = PGL2 over X = P
1 is considered, and this is the case we shall

focus on as well. In genus zero, we require |S| ≥ 3 parabolic points for the moduli stack
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Bun◦G(X,S) of stable G-bundles to be open and dense in BunG(X,S), and for |S| = 3,

this moduli stack consists of a single point. Thus, we henceforth take

S = {t0, · · · , tm+1}

where m ≥ 2. Specifying a Borel reduction of G at S then amounts to giving each point

ti a parabolic structure, which is simply a choice of direction yi ∈ P
1. In fact, Bun◦G(X,S)

is parametrized precisely by the yi. We have the following birational equivalence [3]:

Bun◦G(X,S)
∼−→ P

m−1.

The fact that Bun◦G(X,S) has dimension (m− 1) can intuitively be seen by the fact that

we may translate by PGL2 to fix three of the parabolic structures at the marked points.

Given a choice of yi, the (holomorphic) quantum Hitchin Hamiltonians reduce to the

so-called Gaudin operators [10]:

Gi =
∑

j 6=i

1

tj − ti

[

−(yi − yj)
2∂i∂j + (yi − yj)(∂i − ∂j) +

1

2

]

,

where ∂i ≡ ∂/∂yi. It is easy to verify that the algebra of Gaudin operators is indeed

commutative: [Gi, Gj ] = 0. Our problem is then to understand the joint spectrum of the

Gaudin system.

2.2 Hecke Operators

The original number-theoretic Langlands program for curves X over finite fields Fq studies

the joint spectrum of commuting Hecke operators. The notion of Hecke operators have

a corresponding analog in the analytic Langlands program, where X is now a curve over

some local field F . When F = C or F = R, the Hecke operators strongly commute with

the quantum Hitchin Hamiltonians, so the joint spectrum of the Hecke operators can

also be seen via Langlands duality to correspond to the GL -opers with real monodromy.

Understanding the spectra of the Hecke operators therefore gives us a grip on the geometric

Langlands program for non-archimedean local fields F , where we no longer have access

to the quantum Hitchin Hamiltonians.

A full definition of Hecke operators is given in [4], but we are only concerned with

the case where X = P
1 and G = PGL2, so we will restrict our attention to the case of

rank-two vector bundles over X with marked points t0, · · · , tm+1 with parabolic structures

y0, · · · , ym+1. The Hecke operators form a commuting set of compact operators Ht for

each point t ∈ X. Taking as usual tm+1 = ∞ and further setting ym+1 = ∞, there is an
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explicit formula for the action of the Hecke operators (Proposition 3.9 of [3]):

Htψ(y0, · · · , ym) =

∥

∥

∥

∥

∥

m
∏

i=0

(t− ti)

∥

∥

∥

∥

∥

1/2
∫

F

‖ds‖
∏m

i=0 ‖s− yi‖
ψ

(

t0 − t

s− y0
, · · · , tm − t

s− ym

)

.

Over F = C, the Hecke operators strongly commute with the Gaudin system, and the

joint spectrum of this commutative algebra of operators is simple [3].

2.3 The Gaiotto Kernel

It was Gaiotto and Witten [6] who first considered the symmetric multiplication kernel

K3(x, y, z; t) in three sets of variables intertwining the action of the Gaudin and Hecke

operators over C. More precisely, if we let x0, · · · , xm, y0, · · · , ym, z0, · · · , zm be three

copies of variables, they were interested in a function K3(x, y, z; t) symmetric in x, y, z

satisfying

Gx
iK3(x, y, z; t) = Gy

iK3(x, y, z; t) = Gz
iK3(x, y, z; t);

Hx
t′K3(x, y, z; t) = Hy

t′K3(x, y, z; t) = Hz
t′K3(x, y, z; t).

Here Gu
i and Hu

t′ denote the Gaudin and Hecke operators, respectively, with respect to

the variables u0, · · · , um for u = x, y, z.

The object K3 is of interest to us for several reasons. First of all, it furnishes a

“multiplication kernel” in the language of [9]. That is, it defines a commutative associative

product ∗ on H. Specifically, if we define

(f ∗ g)(x) =
∫

Bun◦G(X,S)×Bun◦

G(X,S)
K3(x, y, z)f(y)g(z) ‖dy‖ ‖dz‖ ,

then the product ∗ is commutative (by virtue of the symmetry of K3 in x, y, z) and

associative (as shown in Section 4 of [5]).

Further, since K3 intertwines the action of the Gaudin and Hecke operators, it may

be shown that integral Gaiotto operators Kx defined by integrating over the kernel K3

(for arbitrary x) commute with the Gaudin and Hecke operators. Explicitly, for f ∈ H,

we find

(Kx ◦Gi)f = (Gi ◦Kx)f ;

(Kx ◦Ht)f = (Ht ◦Kx)f ;

Thus, the Gaiotto operatorsKx diagonalize in the joint eigenbasis of the Gaudin operators.

An explicit computation of K3 would thus yield information about the joint spectrum of

the Gaudin and Hecke operators.

In his recent work [5], Gaiotto produced a simple explicit expression for the kernel K3
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over F = C. He defined the matrix Aij with entries as follows:

Aij =
(xi − xj)(yi − yj)(zi − zj)

ti − tj
, 0 ≤ i 6= j ≤ m

and Aii = 0. Using arguments from conformal field theory, he gave the following formula,

stated above in Theorem 1.1:

K3(x, y, z; t) =
1

|detA| .

That the Gaiotto operators commute with the Hecke operators follows from the fact

that they commute with the Gaudin operators, since the joint spectrum is simple [3].

Gaiotto provided an explicit proof of his formula for four marked points ti and a numerical

verification for five points. In Section 3, we will provide a complete proof of Theorem

1.1. We will also provide a direct proof of the analogous intertwining formula for Hecke

operators in a following paper [8].

3 Proof of Gaiotto’s Formula

3.1 Outline of Proof

In this section, we will prove Theorem 1.1. Inspired by the physical argument, we write

K3 as a formal Gaussian integral and consider the action of the holomorphic Gaudin

operators by differentiating inside the integral. Care must be taken to ensure that the

differentiation under the integral sign is allowed and that the representation of K3 as a

Gaussian integral is valid. The resulting integral can be evaluated using Wick’s theorem.

When the dust clears, the resulting expression is symmetric in x, y, z.

3.2 Main Proof

To prove Gaiotto’s formula, we note that the determinant formula for K3 arises in

Gaiotto’s chiral algebra construction as the result of a Gaussian integral over formal

parameters λi [5]. To this end, we will perform some formal calculations involving Gaus-

sian integrals and relate these to what we wish to prove. To begin, notice that we may

write

K3(x, y, z; t) =
1

|detA| =
1√
detA

· 1√
detA

.

The holomorphic Gaudin operators care only about the determinant of the holomorphic

matrix A, so it suffices to represent (detA)−1/2 as a Gaussian integral and consider the

action of the Gaudin operator on this piece. To begin, we quote two well-known elementary
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results for real matrices:

Lemma 3.1 (Gaussian Integration). Let A be a real, symmetric positive-definite matrix.

We have (for suitable normalization of the Lebesgue measure)

∫

Rn

e−
1

2
(u,Au)dnu = (detA)−1/2.

Lemma 3.2 (Wick’s Theorem). Let A be a real, symmetric positive-definite matrix as

above, and let B,C be symmetric matrices. Then the following relations hold:

∫

Rn

(Bu, Au)e−
1

2
(u,Au)dnu = Tr(B)(detA)−1/2;

∫

Rn

(Bu, Au)(Cu, Au)e−
1

2
(u,Au)dnu = (Tr(B)Tr(C) + 2Tr(BC))(detA)−1/2.

Proof. These results are classical and well-known.

Now, xi, yi, zi, ti, 1 ≤ i ≤ n be real variables, and define a symmetric matrix A by

Aij =
(xi − xj)(yi − yj)(zi − zj)

ti − tj
, i 6= js

and Aii = 0, as in Gaiotto’s formula. The diagonal entries of aij are defined to be zero.

This is obviously a real, symmetric matrix, but it is not necessarily positive-definite.

Nevertheless, we may still use the Gaussian integral representation and Lemma A.1 to

compute the action of the Gaudin operators Gy
r on (detA)−1/2:

Lemma 3.3. Let the matrix A and the Gaudin operators Gy
r be defined as above. The

following formula holds:

4Gy
r(detA)

−1/2 =
∑

s 6=r

yr−ys
tr−ts

∑

m6=r

zm

[

−
∑

p 6=s

(

(yr − ys)zp(Tr(DrmA
−1)Tr(DspA

−1)+

2Tr(DrmA
−1DspA

−1))
)

− 2Tr((Drm −Dsm)A−1)

]

. (1)

Proof. Let Eij be the elementary matrix with a single 1 at the i, j position, we may write

Dkm = −xk − xm
tk − tm

(Ekm + Emk), k 6= m;

Dkk =
∑

m6=k

xk − xm
tk − tm

(Ekm +Emk),
(2)
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and in this case,

A =
n
∑

k,m=1

ykzmDkm (3)

Now, define A by (3), leaving the Dkm to be arbitrary matrices. If A is positive-definite,

then Lemma 3.1 tells us that

(detA)−1/2 =

∫

Rn

e−
1

2
(u,Au)dnu =

∫

Rn

e−
1

2

∑
k,m ykzm(u,Dkmu)dnu

Recall that the Gaudin operators have the form

Gr =
∑

s 6=r

1

tr − ts

[

−(yr − ys)
2∂r∂s + (yr − ys)(∂r − ∂s)

]

where we neglect an overall constant (which acts manifestly symmetrically on the variables

x, y, z).

By Lemmas A.1 and A.2, we may safely consider the action of the Gaudin operator

under the integral sign. Differentiating under the integral sign, we find

4Gy
r(detA)

−1/2 =

∫

Rn

dnu e−
1

2
(u,Au)

[

∑

s 6=r

yr−ys
tr−ts

×

∑

m

zm

(

−
∑

p

(yr − ys)zp(Drmu,u)(Dspu,u)− 2((Drm −Dsm)u,u)

)

]

An application of Lemma 3.2 therefore yields

4Gy
r(detA)

−1/2 =
∑

s 6=r

yr−ys
tr−ts

∑

m

zm(−
∑

p

(yr − ys)zp
(

Tr(DrmA
−1)Tr(DspA

−1)+

2Tr(DrmA
−1DspA

−1) )− 2Tr((Drm −Dsm)A−1)).

This is a purely algebraic expression in matrices A. Since it holds over all positive-

definite matrices A, the equality holds for all matrices A. In particular, we may take the

Dkm as in Eqn. 2. This completes the proof.

Now, define matrix elements bij as follows:

bij := (A−1)ij ,

so that
∑

k 6=i

(yi − yk)(zi − zk)(xi − xk)

(ti − tk)
bkj = δij . (4)
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We may now massage (1) into a more convenient form.

Lemma 3.4. The following formula holds:

(detA)1/2Gy
r(detA)

−1/2 := Ωr :=
∑

s 6=r

Ωrs

tr − ts
,

where Ωrs is defined by

Ωrs =
∑

m6=r,p 6=s

(yr−ys)2(zr−zm)(zp−zs)(xr−xm)(xs−xp)
(tr−tm)(ts−tp)

(bmrbsp + bmsbrp + bmpbsr)

−
∑

m6=r

(xr−xm)(yr−ys)(zr−zm)
tr−tm

brm +
∑

s 6=p

(xs−xp)(yr−ys)(zs−zp)
ts−tp

bsp.

Proof. We have

DspA
−1 = −xs − xp

ts − tp
(Esp + Eps)A

−1,

so the (i, j)-th element of this matrix is

(DspA
−1)ij = −xs − xp

ts − tp
(δisbpj + δipbsj).

Since Dss = −∑p 6=sDsp, we find

Tr(DspA
−1) = −2

xi − xp
ti − tp

bsp, s 6= p;

Tr(DssA
−1) = 2

∑

p 6=s

xi − xp
ti − tp

bsp.
(5)

Note now that we may also write

DspA
−1 = −xs − xp

ts − tp

∑

j

(Esjbpj + Epjbsj).

When r 6= m, s 6= p we have

DrmA
−1DspA

−1 =
(xr − xm)(xs − xp)

(tr − tm)(ts − tp)

∑

j,k

(Esjbpj + Epjbsj)(Erkbmk + Emkbrk) =

(xr − xm)(xs − xp)

(tr − tm)(ts − tp)

∑

j,k

δjr(Eskbpjbmk + Epkbsjbmk) + δjm(Eskbpjbrk + Epkbsjbrk) =

(xr − xm)(xs − xp)

(tr − tm)(ts − tp)

∑

k

(Esk(bprbmk + bpmbrk) + Epk(bsrbmk + bsmbrk))

9



We conclude that

Tr(DrmA
−1DspA

−1) = 2Frmsp, r 6= m, s 6= p

where

Frmsp =
(xr − xm)(xs − xp)

(tr − tm)(ts − tp)
(bmsbpr + bmpbsr).

In the case when r = m we use Drr = −∑m6=rDrm to get the same formula with

Frrsp = −
∑

m6=r

(xr − xm)(xs − xp)

(tr − tm)(ts − tp)
(bmsbpr + bmpbsr).

Similarly, if p = s, we get

Frmss = −
∑

p 6=s

(xr − xm)(xs − xp)

(tr − tm)(ts − tp)
(bmsbpr + bmpbsr).

Finally,

Frrss =
∑

m6=r,p 6=s

(xr − xm)(xs − xp)

(tr − tm)(ts − tp)
(bmsbpr + bmpbsr).

This allows us to write the following:

Tr(DrmA
−1)Tr(DspA

−1) + 2Tr(DrmA
−1DspA

−1) =

4
(xr − xm)(xs − xp)

(tr − tm)(ts − tp)
(brmbsp + bmsbpr + bmpbsr) (6)

when m 6= r, p 6= s.

Let m 6= r, p 6= s. We have four contributions to the

(xr − xm)(xs − xp)

(tr − tm)(ts − tp)
(brmbsp + bmsbpr + bmpbsr)

term when we combine (1) and (6): −zmzp as above, zmzs when p = s, zrzp when m = r

and −zrzs when p = s and r = m. Overall, this gives (yr − ys)
2(zr − zm)(zp − zs).

We similarly compute degree 1 pieces:

10



− 1
2

∑

m

zmTr(Drm −Dsm)A−1 =
∑

m6=r

zm
xr − xm
tr − tm

brm −
∑

m6=r

zr
xr − xm
tr − tm

brm−

∑

m6=s

zm
xs − xm
ts − tm

bsm +
∑

m6=s

zs
xs − xm
ts − tm

bsm =

−
∑

m6=r

(zr − zm)(xr − xm)

tr − tm
brm +

∑

m6=s

(zs − zm)(xs − xm)

ts − tm
bsm

Combining the above equations with (1) we get that

(detA)1/2Gy
r(detA)

−1/2 := Ωr :=
∑

s 6=r

Ωrs

tr − ts
,

where Ωrs is defined by

Ωrs =
∑

m6=r,p 6=s

(yr−ys)2(zr−zm)(zp−zs)(xr−xm)(xs−xp)
(tr−tm)(ts−tp)

(bmrbsp + bmsbrp + bmpbsr)

−
∑

m6=r

(xr−xm)(yr−ys)(zr−zm)
tr−tm

brm +
∑

s 6=p

(xs−xp)(yr−ys)(zs−zp)
ts−tp

bsp.

This completes the proof.

Now, decompose Ωr = Ω
(1)
r +Ω

(2)
r , where Ω

(i)
r contains terms of degree i in the symbols

bmk. In particular,

Ω(2)
r =

∑

m6=r,p 6=s

(yr−ys)2(zr−zm)(zp−zs)(xr−xm)(xs−xp)
(tr−tm)(ts−tp)

(bmrbsp + bmsbrp + bmpbsr);

Ω(1)
r = −

∑

m6=r

(xr−xm)(yr−ys)(zr−zm)
tr−tm

brm +
∑

s 6=p

(xs−xp)(yr−ys)(zs−zp)
ts−tp

bsp.

Our strategy will be to rearrange Ω
(2)
r until we obtain an expression which can be shown

to be symmetric in y and z. Along the way, we will obtain additional degree-1 terms,

which we will denote by Σ
(1)
r . Finally, we will demonstrate that Ω

(1)
r +Σ

(1)
r is symmetric

in y, z.

We begin by noticing that

(yr − ys)
2 = (yr − ys)(yr − yp) + (yr − ys)(yp − ys).
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Moreover, we find that

∑

p 6=s

(yp − ys)(zp − zs)(xs − xp)

ts − tp
(bmrbsp + bmsbrp + bmpbsr) = brm + δsrbms + δmsbrs.

We then see that

∑

m6=r,p 6=s

(yr − ys)(yp − ys)(zr − zm)(zp − zs)(xr − xm)(xs − xp)

(tr − tm)(ts − tp)
(bmrbsp+bmsbrp+bmpbsr) =

∑

m,s 6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − tm)(tr − ts)
brm + · · · := Σ(1),1

r ,

where the terms · · · are manifestly symmetric in y, z.

The remaining degree-two piece looks as follows:

Ω′(2)
r =

∑

s 6=r

∑

m6=r,p 6=r,s

(yr − ys)(yr − yp)(zr − zm)(zp − zs)(xr − xm)(xs − xp)

× 1

(tr − tm)(ts − tp)(tr − ts)
(bmrbsp + bmsbrp + bmpbsr),

so that

Ω(2)
r = Ω′(2)

r +Σ(1),1
r .

Note that the yr − yp term allows us to add a condition p 6= r without changing the sum.

Hence the summation is symmetric with respect to the exchange of summation indices

s↔ p. Thus, we may symmetrize with respect to change s↔ p. Note that the numerator

is symmetric with respect to s↔ p. The denominator transforms as follows:

1

(tr − tm)(ts − tp)(tr − ts)
=⇒

1

2

[

1

(tr − tm)(ts − tp)(tr − ts)
+

1

(tr − tm)(tp − ts)(tr − tp)

]

=
1

2

1

(tr − tm)(ts − tp)

[

1

tr − ts
− 1

tr − tp

]

=
1

2

1

(tr − tm)(tr − ts)(tr − tp)
.

Now, we write

yr − yp = (yr − ym) + (ym − yp).

and we notice that

∑

m6=r

(yr − ym)(zr − zm)(zr − xm)

tr − tm
(bmrbsp + bmsbrp + bmpbsr) = bsp + δrsbrp + δrpbrs.

12



We see then that

1

2

∑

s 6=r

∑

m6=r,p 6=r,s

(yr − ys)(yr − ym)(zr − zm)(zp − zs)(xr − xm)(xs − xp)

× 1

(tr − tm)(tr − tp)(tr − ts)
(bmrbsp + bmsbrp + bmpbsr)

= −1

2

∑

p,s 6=r

(xs − xp)(yr − ys)(zs − zp)

(tr − tp)(tr − ts)
bsp + · · · := Σ(1),2

r ,

where the · · · are terms manifestly symmetric in y, z.

The degree-two term that we are left with is then

Ω′′(2)
r =

1

2

∑

m,s,p 6=r

(yr − ys)(ym − yp)(zr − zm)(zp − zs)(xr − xm)(xs − xp)

1

(tr − tm)(tr − ts)(tr − tp)
(bmrbsp + bmsbrp + bmpbsr)

:=
1

2

∑

m,s,p 6=r

Armsp(bmrbsp + bmsbrp + bmpbsr).

so that

Ω(2)
r = Ω′(2)

r +Σ(1),1
r = Ω′′(2)

r +Σ(1),1
r +Σ(1),2

r .

We note that the presence of terms zp − zs in the numerator allows us to safely drop the

condition p 6= s in the sums.

At this point, we are in a position to explicitly show the symmetry of the degree-two

piece in y, z.

Lemma 3.5. The quantity Ω′′(2)
r is symmetric in y, z.

Proof. We begin by noting that the terms bmrbsp+bmsbrp+bmpbsr are invariant under any

cyclic permutation of the indices m, s, p. By a sum over cyclic permutations of m, s, p, we

see that for fixed m, s, p the coefficient on bmrbsp is 1
2 (Armsp + Arspm + Arpms). We will

prove that Armsp +Arspm +Arpms is symmetric in y and z.

Define Hrmsp(x) as follows:

Hrmsp(x) = (xr − xm)(xs − xp).

We have

Armsp =
Hrspm(y)Hrmsp(x)Hrmsp(z)

(tr − tm)(tr − ts)(tr − tp)
.

Since the denominator is symmetric in m, p, s we should prove that the sum of cyclic

shifts of Hrspm(y)Hrmsp(x)Hrmsp(z) in these three indices is symmetric with respect to

13



y, z. Explicitly, we wish to show that

Hrspm(y)Hrmsp(x)Hrmsp(z) +Hrmsp(y)Hrpms(x)Hrpms(z) +Hrpms(y)Hrspm(x)Hrspm(z)

is symmetric in y, z.

We first note by direct computation that

Hrmsp(x) +Hrspm(x) +Hrpms(x) = 0,

so we may replace Hrpms(x) with −Hrmsp(x)−Hrspm(x). We find that

Hrspm(y)Hrmsp(x)Hrmsp(z) +Hrmsp(y)Hrpms(x)Hrpms(z) +Hrpms(y)Hrspm(x)Hrspm(z)

= C(1)
rmsp + C(2)

rmsp,

where

C(1)
rmsp = Hrmsp(x)(Hrspm(y)Hrmsp(z)−Hrmsp(y)Hrpms(z));

C(2)
rmsp = Hrspm(x)(Hrpms(y)Hrspm(z)−Hrmsp(y)Hrpms(z)).

We will prove that the first cyclic shift C
(1)
rmsp is symmetric in y, z; the proof that C

(2)
rmsp

is symmetric in y, z is entirely analogous. We wish to show that

Hrspm(y)Hrmsp(z)−Hrmsp(y)Hrpms(z) = Hrspm(z)Hrmsp(y)−Hrmsp(z)Hrpms(y).

Indeed, the leftmost and the rightmost term have sum

Hrmsp(z)(Hrspm(y) +Hrpms(y)) = −Hrmsp(z)Hrmsp(y).

The middle two terms have sum

Hrmsp(y)(Hrpms(z) +Hrspm(z)) = −Hrmsp(y)Hrmsp(z),

hence the left-hand side is equal to the right-hand side. Thus, the first cyclic shift is

symmetric. The second cyclic shift is done similarly. We are therefore done.

Now, we focus on the degree-one pieces.

Lemma 3.6. In particular, define by Σ
(1)
r the remaining terms of degree 1 after we have

transformed the degree-two piece as above:

Σ(1)
r = Σ(1),1

r +Σ(1),2
r

14



Then Ω
(1)
r +Σ

(1)
r is symmetric in y, z.

Proof. In particular, let us denote by Σ
(1)
r the remaining terms of degree 1 after we have

transformed the degree-two piece as above. We have computed the terms of Σ
(1)
r already:

Σ(1)
r = Σ(1),1

r +Σ(1),2
r

=
∑

m,s 6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − tm)(tr − ts)
brm − 1

2

∑

p,s 6=r

(xs − xp)(yr − ys)(zs − zp)

(tr − tp)(tr − ts)
bsp.

On the other hand, the degree-one terms present in the original Ω
(1)
r are as follows:

Ω(1)
r = −

∑

m,s 6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − tm)(tr − ts)
brm +

∑

p,s 6=r

(xs − xp)(yr − ys)(zs − zp)

(tr − ts)(ts − tp)
bsp.

The combined degree-one term we require is Ω
(1)
rs +Σ

(1)
rs . The first terms of Ω

(1)
rs and Σ

(1)
rs

cancel, so we are left with

Ω(1)
r +Σ(1)

r =
∑

p,s 6=r

(xs − xp)(yr − ys)(zs − zp)

(tr − ts)

[

1

ts − tp
− 1

2

1

tr − tp

]

bsp =

1

2

∑

p,s 6=r

(xs − xp)(yr − ys)(zs − zp)(2tr − ts − tp)

(tr − tp)(tr − ts)(ts − tp)
bsp.

Since bsp is symmetric under s ↔ p for the summed indices s, p, we may symmetrize its

coefficient. We find that

(xs − xp)(yr − ys)(zs − zp)(2tr − ts − tp)

(tr − tp)(tr − ts)(ts − tp)
7−→

−1

2

(xs − xp)(ys − yp)(zs − zp)(2tr − ts − tp)

(tr − tp)(tr − ts)(ts − tp)
.

But we now see that this summand is symmetric in y, z. Thus, the entirety of Ωr is indeed

symmetric in y, z, so Gy
r and Gz

r act identically. We are done.

Now, we can put all of the pieces together. Recall that

Ωr = Ω(2)
r +Ω(1)

r = Ω′′(2)
r + (Ω(1)

r +Σ(1)
r ).

By Lemmas 3.5 and 3.6, Ω′′(2)
r and Ω

(1)
r +Σ

(1)
r are each symmetric in y, z, so Ωr must also

be. By Lemma 3.4, Gy
r(detA)−1/2 is therefore symmetric in y, z, so

Gy
r(detA)

−1/2 = Gz
r(detA)

−1/2,
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exactly as we wanted to show. We are done.

3.3 λ-Twisted Generalization

A natural generalization of our formula incorporates a so-called λ-twist. In [2], λ-twisted

versions of the Gaudin operators are defined:

Gλ
i =

∑

j 6=i

1

ti − tj

[

−(yi − yj)
2∂i∂j + (yi − yj)(λi∂i − λj∂j) +

λiλj
2

]

.

In particular, we modify the Gaussian integral representation of K3 as follows to obtain

a kernel Kλ
3 :

Kλ
3 (x, y, z; t) =

∫

C

dmudmu

[

m
∏

i=0

|ui|−2(λi+1)

]

e(u,Au)−(u,Au),

This integral can be sensibly defined in the sense of tempered distributions as per the

techniques in Appendices A and B. In particular, we show in B.9 that we may take the

action of the holomorphic Gaudin operator inside the integral sign. Now, let ni = −λi−1;

the action of the (nonconstant part of the) holomorphic Gaudin operator Gλ
i on the

holomorphic part of the above integral yields the following:

Gλ
r

(

∫

dnu

[

n
∏

i=1

uni

i

]

e(u,Au)

)

=

∫

dnu

[

n
∏

i=1

uni

i

]

∑

s 6=r

1

tr − ts

[

−(yr − ys)
2∂r∂s + (yr − ys)((ns + 1)∂r − (nr + 1)∂s)

]

e(u,Au)

∫

dnu

[

n
∏

i=1

uni

i

]

e(u,Au)×

=

[

−
∑

s 6=r

∑

m6=r,p 6=s

(yr − ys)
2(xr − xm)(xs − xp)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(ts − tp)
urusumup

+
∑

s 6=r

(ns + 1)
∑

m6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − ts)(tr − tm)
urum

− (nr + 1)
∑

s 6=r

∑

p 6=s

(xs − xp)(yr − ys)(zs − zp)

(tr − ts)(ts − tp)
usup

]

. (7)

At this point, we wish to integrate the second and third sums by parts, which is legitimate
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by Proposition B.11. In particular, we recognize that

(ns + 1)uns
s =

d

dus
uns+1
s .

In integrating by parts, we integrate this term and differentiate the coefficient it multiplies

(including the exponential) as follows:

∫

u dv =⇒ −
∫

v du.

Taking

u = e(u,Au)
∑

m6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − ts)(tr − tm)
urum, dv = (ns + 1)uns

s ·
∏

i 6=s

uni

i dus,

we find that

u dv = −
n
∏

i=1

uni

i dus · (ns + 1)
∑

m6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − ts)(tr − tm)
urum;

−v du =

n
∏

i=1

uni

i dus·
∑

m6=r,p 6=s

(xr − xm)(xs − xp)(yr − ys)(ys − yp)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(ts − tp)
urusumup.

Thus, dropping boundary terms as per Proposition B.11, we may effectively replace the

second sum in brackets in (7) with

∑

s 6=r

(ns + 1)
∑

m6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − ts)(tr − tm)
urum =⇒

−
∑

s 6=r

∑

m6=r,p 6=s

(xr − xm)(xs − xp)(yr − ys)(ys − yp)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(ts − tp)
urusumup. (8)

By analogous reasoning,

−(nr + 1)
∑

s 6=r

∑

p 6=s

(xs − xp)(yr − ys)(zs − zp)

(tr − ts)(ts − tp)
usup =⇒

∑

s 6=r

∑

m6=r,p 6=s

(xr − xm)(xs − xp)(yr − ys)(yr − ym)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(ts − tp)
urusumup (9)

The term in (8) in now combines nicely with the first sum in brackets in (7):

−
∑

s 6=r

∑

m6=r,p 6=s

(yr − ys)
2(xr − xm)(xs − xp)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(ts − tp)
urusumup
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+
∑

s 6=r

(ns + 1)
∑

m6=r

(xr − xm)(yr − ys)(zr − zm)

(tr − ts)(tr − tm)
urum =

−
∑

s 6=r

∑

m6=r,p 6=s

(xr − xm)(xs − xp)(yr − ys)(yr − yp)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(ts − tp)
urusumup.

Note that the term with r = p vanishes due to the factor of yr − yp in the numerator.

Thus, the summation indices s, p run over the same range. We may thus symmetrize

the coefficient of urusumup in the indices s, p. Note that everything within the sum is

symmetric in s, p except for 1
(tr−ts)(ts−tp)

. We find

1

(tr − ts)(ts − tp)
+

1

(tr − tp)(tp − ts)
=

1

(tr − ts)(tr − tp)
,

and we obtain

−1

2

∑

s 6=r

∑

m6=r,p 6=r

(xr − xm)(xs − xp)(yr − ys)(yr − yp)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(tr − tp)
urusumup.

Now, write

yr − yp = yr − ym + ym − yp.

Focus on the piece corresponding to ym − yp:

−1

2

∑

m,s,p 6=r

(xr − xm)(xs − xp)(yr − ys)(ym − yp)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(ts − tp)
urumusup.

Using the notation of Sec. 3.2, the coefficient of urumusup is given by

Armsp =
Hrspm(y)Hrmsp(x)Hrmsp(z)

(tr − tm)(tr − ts)(tr − tp)
.

We already showed that Hrspm(y)Hrmsp(x)Hrmsp(z) is symmetric in y, z when summed

over cyclic permutations of the indices s,m, p. The relevant computations are performed

in Sec. 3.2. The same computation follows through in this case, as the term urumusup is

invariant under these cyclic permutations.

This leaves the following term:

−1

2

∑

s 6=r

∑

m6=r,p 6=r

(xr − xm)(xs − xp)(yr − ys)(yr − ym)(zr − zm)(zs − zp)

(tr − ts)(tr − tm)(tr − tp)
urusumup.

Adding this to the term in (9) gives

∑

s 6=r

∑

m6=r,p 6=r

(xr−xm)(xs−xp)(yr−ys)(yr−ym)(zr−zm)(zs−zp)
(tr−ts)(tr−tm)

[

1
ts−tp

− 1
2

1
tr−tp

]

urusumup =
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1

2

∑

s 6=r

∑

m6=r,p 6=r

(xr−xm)(xs−xp)(yr−ys)(yr−ym)(zr−zm)(zs−zp)(2tr−ts−tp)
(tr−ts)(tr−tp)(ts−tp)(tr−tm) urusumup.

Symmetrizing the coefficient of urusumup in s and p, we obtain

−1

4

∑

s 6=r

∑

m6=r,p 6=r

(xr−xm)(xs−xp)(ys−yp)(yr−ym)(zr−zm)(zs−zp)(2tr−ts−tp)
(tr−ts)(tr−tp)(ts−tp)(tr−tm) urusumup,

which is symmetric in y, z. We are done.

4 Discussion

In summary, we have proved a conjectured formula for an intertwining kernel for the

quantum Hitchin Hamiltonians in genus zero (Gaudin operators) over C with |S| ≥ 4

marked points. We have additionally demonstrated a natural generalization of our formula

to account for a possible “λ-twisting.” With all of this in mind, we now assess the various

implications of our result.

First of all, it is of natural interest to consider the analytic geometric Langlands

program over fields other than C. The case of R is handled very similarly to C. Gaiotto

[5] produces a very similar formula for an intertwining kernel for the real Gaudin system

in three sets of variables:

KR
3 (x, y, z; t) =

1
√

|detA|
.

The argument from the previous section goes through essentially unchanged to demon-

strate this formula as well. We represent (detA)−1/2 by a Gaussian integral, act on the

integral by the Gaudin operator, and apply Wick’s theorem. The resulting expression can

be massaged into a form which is manifestly symmetric in the x, y, z variables.

Over local fields, the story is more complicated. We no longer have at our disposal the

differential Gaudin operators, and to understand the spectrum of the Hecke operators, it

would thus be an important stop to construct a Gaiotto kernel over local fields F . One

might naturally guess something of the following form:

KF
3 (x, y, z; t) =

θ(detA)
√

‖detA‖
,

where ‖·‖ denotes a (non-Archimedean) absolute value over F . Here we define θ(x) = 1

if x is a square in F and θ(x) = 0 otherwise.

To show that KF
3 intertwines the Hecke operators over all fields F is therefore an

important next step. We will show this with a calculation of the action of the Hecke

operators on KF
3 in the upcoming work [8].
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A Differentiating under the Integral Sign

In this section, we want to prove that

∂

∂xi

∫

f(x, y)dy =

∫

∂

∂xi
f(x, y)dy

for sufficiently “good” functions f . This will allow us to make the analytic manipulations

we use in Section 3.2. We will also use the result of this section in the next Section B.

Since we are differentiating in one variable at a time, we will assume that x is just one

variable. Let n be a positive integer, and suppose f(x, y) is a smooth function defined on

U × R
n, where U is an open subset of R. Let

g(x) =

∫

Rn

f(x, y)dy,

where we assume that the right-hand side is absolutely convergent for all x ∈ U . Let x∗

be a point in U . Also denote ∂x = ∂
∂x .

Lemma A.1. 1. Suppose that there exists a neighborhood V of x∗ and a function M(y)

with the following property: for all x ∈ V we have |∂xf(x, y)| +
∣

∣∂2xf(x, y)
∣

∣ ≤ M(y)

and
∫

Rn M(y) ≤ ∞. Then g(x) has a derivative at point x∗ that can be computed as

g′(x∗) =

∫

Rn

∂xf(x
∗, y)dy.

2. Suppose that x ∈ R
m, U is an open subset of R

m, f(x, y) is a smooth function

defined on U × R
n, g(x) is defined as above. Let x∗ be a point in U . Assume that

for any partial differential operator D in x with constant coefficients there exists a

neighborhood VD of x∗ and a function MD(y) with the following property: for all

x ∈ VD we have |Df(x, y)| ≤ MD(y) and
∫

Rn MD(y) ≤ ∞. Then g(x) is smooth at

x∗ and Dg(x) can be computed as
∫

Rn Df(x
∗, y)dy.
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Proof. The second statement immediately follows from the first using induction on the

order of D.

By definition,

g′(x∗) = lim
ε→0

1

ε
(g(x∗ + ε)− g(x∗)).

We have

g(x∗ + ε)− g(x∗) =

∫

Rn

[f(x∗ + xi, y)− f(x∗, y)] dy = ε

∫

Rn

∂xf(x
∗ + a(y), y)dy.

Here, we have used mean value theorem, and we have let a be a map from R
n to [0, ε].

Thus,
1

ε
(g(x∗ + εxi)− g(x∗)) =

∫

Rn

∂xf(x
∗ + xia(y), y)dy.

Using the mean value theorem again, we find that

∫

Rn

∂xf(x
∗ + a(y), y)dy −

∫

Rn

∂xf(x
∗, y)dy = ε

∫

Rn

∂2xf(x
∗ + b(y), y)dy,

where b is another map from R
n to [0, ε]. Using the condition in the statement of the

lemma we see that the expression on the right hand side is at most Cε, where C is a

constant positive number. Hence it tends to zero when ε tends to zero, and indeed

g′(x∗) =

∫

Rn

∂xf(x
∗, y)dy.

Lemma A.2. Let Dkm be fixed matrices, A =
∑

ykzmDkm. Let U be the set of all x

such that the corresponding matrix A is positive definite, x∗ be an element of U .

Then function f(x,u) = e−
1

2
(Au,u) satisfies conditions of Lemma A.1 with y = u. In

particular, we can compute a partial differential operator D(
√
detA) as

∫

Rn D(e−
1

2
(Au,u))du

times a constant.

Proof. For any partial differential operatorD with constant coefficients we haveDf(x,u) =

p(x,u)e−
1

2
(Au,u), where p is a polynomial in x,u. In a neighborhood V of x∗ we can say

that p(x,u) ≤ C1 + C2 |u|N , where C1, C2, N are constant positive numbers. Since any

two norms on R
m are equivalent, we have that

(Au,u) ≥ ε(u,u).

for any u. In fact, we can choose ε > 0 such that the above equation holds true for all A

in a neighborhood V ∋ x∗.

Consider M(u) = (C1+C2 |u|N )e−ε(u,u). We just showed that |Df(x,u)| ≤M(u) for

21



x ∈ V . We also see that
∫

Rn M(u)du <∞. It follows that f(x,u) satisfies the conditions

of Lemma A.1.

With the preceding two lemmas, we have established the validity of differentiating

sufficiently convergent real integrals. This finishes the details of the proof in Section 3.2.

In the next section, we will explain how to deal with the integrals arising in the proof of

the twisted Gaiotto formula in Section 3.3.

B Integrals in the Sense of Tempered Distributions

In this section, our goal will be to explain what to do with the integral containing

e(Au,u)−(Au,u) in the definition of twisted kernel in Section 3.3. We wish to verify that

the manipulations applied in that section (e.g. differentiation under the integral sign,

integration by parts) are legitimate. In effect, we will formalize the details of the proof in

Sec. 3.3.

Our starting point is the following integral:

∫

dmxdmx

[

m
∏

i=1

|xi|s
]

e(x,Ax)−(x,Ax),

where (x,y) =
∑m

i=1 xiyi is a bilinear form, not sesquilinear. This integral is the primary

object of interest in Sec. 3.3, but a rigorous definition thereof is not immediately clear.

Moreover, our manipulations of differentiating this integral and integrating by parts are

not a priori justified. In order to rectify this situation, we will need to define this integral

using the notion of a Fourier transform of a tempered distribution.

Note that the results of this section are not new: distrubutions and operations on

them are known since the middle of twentieth century. We include proofs of these results

for reader’s convenience. It is possible that the properties of the integral used for Gaiotto

kernel are described somewhere in the mathematical analysis literature, but the authors

could not locate a source formalizing precisely the manipulations used in Sec. 3.3. For

this reason we (re)prove the results we need below.

We say that a smooth function f : Rn → C is rapidly decreasing if for all n ≥ 0

function |x|nf is bounded. Let S = S(Rn) be the Schwartz space. It consists of smooth

functions f such that f and all its derivatives are rapidly decreasing. The Schwartz space

is a topological space with a family of seminorms ‖f‖α,β = supx∈Rn |xαDβf |. We further

define S(Cn) via S(R2n). Define the space of tempered distributions to be continuous dual

S ′ of S.

The Fourier transform F is an automorphism F : S → S defined in the usual way.

We can then define Fourier transform on S ′ as a transpose operator. We now introduce
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some convenient notation. For functions f, g on R
n define a bilinear pairing (f, g) via

(f, g) :=

∫

Rn

dnxf(x)g(x).

Again, this notation is slightly nonstandard, but it will be more convenient for us. We

embed Lp(Rn), 1 ≤ p ≤ ∞ into S ′(Rn) via f(g) = (f, g). In this way Fourier transform

on S ′ extends Fourier transform F : L1 → L∞.

If Fourier transform of f can be computed as a well-behaved conditionally convergent

integral, the result will coincide with Ff :

Proposition B.1. Let f be a locally integrable function that belongs to S ′(Rm), and let

K1 ⊂ K2 ⊂ · · · be a sequence of compact sets with union R
m. Suppose that

In(y) :=

∫

Kn

dmx f(x)ei(x,y)

is uniformly bounded in n,y and limn→∞ In(y) exists for all y and is uniform on compact

sets. Then the function

g(y) = lim
n→∞

In(y)

defined by this limit satisfies g ∈ S ′; moreover, g = Ff .

Proof. We have

(Ff, h) = (f,Fh) =
∫

dmy f(y)Fh(y) =

lim
n→∞

∫

Kn

dmy f(y)Fh(y) = lim
n→∞

∫

Kn

dmy f(y)

[
∫

R

dmx ei(x,y)h(x)

]

=

lim
n→∞

∫

R

dmxh(x)

[
∫

Kn

dmy ei(x,y)f(y)

]

(10)

In the last step, we used that f is locally integrable to apply Fubini’s theorem. Since

In(y) :=
∫

Kn
dmy ei(x,y)f(y) is uniformly bounded, for any ε > 0 there exists a compact

set Kε such that the difference between

∫

R

dmxh(x)

[
∫

Kn

dmy ei(x,y)f(y)

]

and
∫

Kε

dmxh(x)

[
∫

Kn

dmy ei(x,y)f(y)

]

is at most ε/2 for any n. We may take Kε so that it contains the ball with the radius 1
ε

centered at zero.

23



Since the limit of
∫

Kn
dmx f(x)ei(x,y) is uniform on compact sets we have

lim
n→∞

∫

Kε

dmxh(x)

[
∫

Kn

dmy ei(x,y)f(y)

]

=

∫

Kε

dmxh(x)

[

lim
n→∞

∫

Kn

dmy ei(x,y)f(y)

]

=

∫

Kε

dmxh(x)g(x).

It follows that for large enough n the difference between

∫

R

dmxh(x)

[
∫

Kn

dmy ei(x,y)f(y)

]

and

∫

Kε

dmxh(x)g(x)

is at most ε. Using (10), we deduce that the difference between (Ff, h) and
∫

Kε
dmxh(x)g(x)

is at most ε.

Note that g(x) is a bounded continuous function, hence it gives an element of S ′ and

the integral
∫

Rm d
mxh(x)g(x) can be computed as the limit limε→0

∫

Kε
dmxh(x)g(x) =

(Ff, h), hence g = Ff .

Equipped with a definition of the Fourier transform on tempered distributions, we

may now define the integral over a tempered distribution:

Definition B.2. Let f be a tempered distribution such that Ff is represented by a

function continuous at zero. Then we define the integral of f as

∫

R

dx f(x) := Ff(0).

Thus, in order to define an integral

∫

dmxdmx

[

m
∏

i=1

|xi|si
]

e(x,Ax)−(x,Ax)

in this sense, we should compute

F
([

m
∏

i=1

|xi|si
]

e(x,Ax)−(x,Ax)

)

.

We will break up this computation into several steps. First we will compute Fe(x,Ax)−(x,Ax)

in Lemma B.3. The function |xi|si gives an element of S ′ only for ℜsi > −2, but the cor-

responding distribution can be meromorphically continued to C \ −2Z>0, and its Fourier

transform is known. A usual Fourier transform of a product of functions is a convolution

of Fourier transforms under some conditions. In our case, for certain values of si we

can also make sense of the integral in the definition of convolution and the result is a
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smooth function. We prove that it gives a Fourier transform of the product and then use

meromorphic continuation to prove that Fourier transform is always given by a smooth

function, hence the integral is well-defined. Then we check that the integral satisfies the

properties we need: we can differentiate under integral sign and in certain cases we can

integrate by parts with no boundary term.

To simplify notation, define

E(x) = E(A,x) := e(x,Ax)−(x,Ax), M(x) =M(s1, . . . , sn,x) :=
n
∏

i=1

|xi|si . (11)

Lemma B.3. There exist fixed complex numbers C1, C2 such that the following hold:

1. Feix2

= C1e
−i 1

4
y2 ;

2. Suppose that A is invertible complex matrix, z ∈ C
n. Then

Fe(z,Az)−(z,Az) =
C2

|detA|e
(w,A−1w)−(w,A−1

w).

The second proposition can be rewritten as FE(A,x) = C2

|detA|E(−A−1,x).

Proof. Let us first prove the first statement. It is well-known that
∫

dx eix
2

is conditionally

convergent: We have
∫ ∞

a
dx eix

2 → 0,

∫ a

−∞
dx eix

2 → 0

as a→ ∞. It is also not hard to see that
∫ b
a e

ix2

dx is bounded for all a, b. Now, note that

eix
2+ixy = e−

iy2

4 ei(x+
y

2
)2 .

We deduce that
∫ n
−n e

ix2+ixy is uniformly bounded. Moreover, for a compact set [−n, n],

∫ n

−n
dx eix

2+ixy =

∫ n

−n
dx e−

iy2

4 ei(x+
y

2
)2 = e−

iy2

4

∫ n+ y

2

−n+ y

2

dx eix
2

,

Let S ⊂ [−N,N ] be a compact set, y ∈ S. Then

∣

∣

∣

∣

∫ n

−n
dx eix

2+ixy − e−
iy2

4

∣

∣

∣

∣

= e−
iy2

4

∣

∣

∣

∣

∣

∫ −n+ y
2

−∞
dx eix

2

+

∫ ∞

n+ y
2

dx eix
2

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∫ ∞

n−N
dx eix

2

∣

∣

∣

∣

.

The right hand side tends to zero as n tends to infinity. Hence the limit

lim
n→∞

∫ n

−n
dx eix

2+ixy = e−
iy2

4

is uniform on compact sets. It follows that f(x) = ei(x,x) and Kn = [−n, n]m satisfy the
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conditions of Proposition B.1 and the limit is g(y) is a constant times e−i 1
4
(y,y).

For the second statement, make the coordinate change z →
√
A

−1
z. It then suffices

to show the result for A equal to the identity. Let z = (z1, . . . , zn), zj = xj + iyj. In this

case,

(z, z) − (z, z) = 2i

n
∑

j=1

xjyj =
i

2

n
∑

j=1

(xj + yj)
2 − (xj − yj)

2.

Now, let w = (w1, · · · , wn), where wj = aj + ibj . Reasoning similarly to the proof of the

first statement, we find that

Fe i
2

∑n
j=1

(xj+yj)2−(xj−yj)2 = C2e
− i

2

∑n
j=1

(aj+bj)2−(aj−bj)2

= C2e
−2i

∑
ajbj = C2e

(w,w)−(w,w).

for some absolute constant C2. This finishes the proof.

Lemma B.4. Let ℜs > −2, S = S(C), f ∈ S. Then (|u|s , f) is well-defined and gives

meromorphic function in s, holomorphic over s ∈ C \ 2Z.

Proof. Since ℜs > −2, the function |u|s is locally integrable and has at most polynomial

growth at infinity. Thus, the function |u|s belongs in S ′. It remains to show that (|u|s , f)
is meromorphic with poles at 2Z<0. Since f decays rapidly, we note that for any V ⊂ C,

∫

C

dudu max
s∈V

∣

∣∂js (|u|s f)
∣

∣ =

∫

C

dudu max
s∈V

∣

∣|u|s logj |u| f
∣

∣ .

The integral on the right hand side is always absolutely convergent for ℜs > −2. We

conclude by lemma A.1 that (|u|s , f) is infinitely differentiable in s (and thus holomorphic)

when ℜs > −2.

Now, notice that

∆ |u|s = ∂u∂u(uu)
s
2 =

s2

4
|u|s−2 .

Suppose that ℜs > 0. Let ε > 0, K = {u | ε < |u| < ε−1}. Let us transform the following

integral using Green’s theorem:

∫

K
∆(|u|s)fdxdy.

The boundary term on the circle |u| = ε−1 clearly tends to zero, so we look at boundary

term on the circle |u| = ε. For any two smooth functions g, h on R
2 \{0, 0} with compact

support for large enough ε we have

∫

K
(∆g)h =

∫

K
(g′′xx + g′′yy)hdxdy =

∫

|u|=ε
(hg′xdy − hg′ydx)−

∫

K
(g′xh

′
x + g′yh

′
y)dxdy.
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When g = f , h = |u|s, both hg′x and hg′y are continuous at zero, hence the boundary

term goes to zero.

When g = |u|s and h = f the boundary term tends to zero when ε tends to zero.

More explicitly, writing g = |u|s = (x2 + y2)
s
2 , we have

g′x = sx |u|s−2 , f ′y = sy |u|s−2 .

Hence,

hg′xdy − hg′ydx = sh |u|s−2 (xdy − ydx).

If we parametrize the boundary circle using x = r cosφ, y = r sinφ we get xdy − ydx =

r2dφ. Note that r2 |u|s−2 = |u|s. The function h |u|s−2 tends to zero when |u| tends to

zero, hence this boundary term tends to zero when ε→ 0.

Thus, using Green’s theorem twice allows us to write (for ℜs > 0)

(|u|s−2 , f) =
4

s2
(∆ |u|s , f) = 4

s2
(|u|s ,∆f).

This allows us to define (|u|s , f) for s such that ℜs > −4, s 6= −2. It also proves that

(|u|s , f) is holomorphic for ℜs > −4 except at s = −2, where it has a pole of order 2.

Continuing in this way, we see that (|u|s , f) continues to a meromorphic function with

poles at −2,−4, . . . and so on.

Lemma B.5. Let −2 < ℜs < 0, |u|s ∈ S ′(C). Then the Fourier transform F |u|s ∈ S ′ is

given by locally integrable function C(s) |u|−s−2, where

C(s) = 2−sπ
Γ
(

− s
2

)

Γ
(

2+s
2

) .

The same formula holds if we meromorphically continue s onto s ∈ C \ 2Z.

Proof. This formula is quoted in Gelfand-Shilov, p. 363, and the relevant function rλ is

defined in Sec. 1.3.9, p. 71 of [7]. It follows from the computations on p. 73 that our

definition is the same; the proof is in Sec. 2.3.3, p. 192.

Now we explicitly construct a Fourier transform of

f(x) =

[

n
∏

i=1

|xi|si
]

e(x,Ax)−(x,Ax)

in the case when all si satisfy ℜsi < −2.

How would we go about constructing this Fourier transform? A natural answer would
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be a convolution of

∏

C(si) |yi|−2−si and
C2

|detA|e
(y,A−1y)−(y,A−1

y)

in some sense. Below, we will define this convolution in such a way to get function smooth

in y, A and meromorphic in the si.

Let f be a smooth function on C = R
2 bounded at infinity. Choose a partition of

unity 1 = ρ1 + ρ2, where ρ1 has compact support and the support of ρ2 does not contain

zero. For ℜs < −2, we can define the integral of |u|s f(u) over C as follows. Let fi = fρi.

Then
∫

C
dudu |u|sf2(u) is convergent. We now deduce the following fact from the proof of

Lemma B.4: When the support of f1 does not intersect with zero for any positive integer

m we have
∫

C

dudu f1(x) |u|s = c(s,m)

∫

C

dudu (∆mf(u)) |u|s+2m , (12)

c(s,m) =
4m

s2(s+ 2)2 · · · (s + 2m− 2)2
.

When the support of f contains zero, the left-hand side is not well-defined because ℜs <
−2, but we can use the right-hand side as a definition:

∫

C

dudu f1(u) |u|s := c(s,m)

∫

C

dudu (∆mf1(u)) |u|s+2m , (13)

where we choose m so that ℜs+2m > −2. It follows from the computations with Green’s

theorem in the proof of Lemma B.4 that the result does not depend on the choice of m.

We also see that the result does not depend on the choice of ρ1, ρ2.

We can similarly define the integral over C
n of f(x)

∏n
i=1 |xi|si when ℜsi < −2 for all

i: Consider the sum
∑

ki∈{1,2}

f(x)
∏

ρki(xi) |xi|si ,

and for each term use (13) integrate over the pieces containing a factor of ρ1(xi).

Proposition B.6. Suppose that s1, · · · , sn ∈ C such that ℜsi > 0. Let

g(y) =

∫

Cn

dnxdnxE(−A−1,x+ y)

n
∏

i=1

|xi|−2−si ,

where we can use the construction above because E(−A−1,x + y) is smooth and has

absolute value one. Then g is smooth in y, has ⌊12 miniℜsi⌋− 10 partial derivatives in A,

is holomorphic in the si ∈ C\2Z. The partial derivatives in A belong to S ′. Furthermore,

F
[

e(x,Ax)−(x,Ax)
n
∏

i=1

|xi|si
]

=
C2

|detA|

(

n
∏

i=1

C(si)

)

g(y).
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Proof. Write partitions of unity 1 = ρ1(xi) + ρ2(xi) as before, where ρ1 has compact

support and 0 /∈ supp(ρ2). Then, we may write

g(y) =
∑

ki∈1,2

∏

i:ki=1

c(−2− si,m)

∫

dmxdmx

n
∏

i=1

|xi|−2−si
∏

i : ki=1

|xi|2m
(

∏

i : ki=1

∆m
xi

)

[

f(x+ y)

n
∏

i=1

ρki(xi)

]

where we take m large enough. We can apply Lemma A.1 for ∂sig: if ki = 2 the

integral at infinity converges, while if ki = 1 the integral at zero converges if we take

m large enough. Note that c(−2 − si,m) = 1
(−2−si)2(−si)2···(2m−4−si)2

is holomorphic on

C \ 2Z. Hence g has a complex derivative with respect to si /∈ C \ 2Z, so g is holomorphic

in this region. We also see that g has at most polynomial growth: the integrals at infinity

are bounded, the integrals are bounded by constant times max(1, |y|2nm).

Let us now try to differentiate g by yi or aij. When we attempt to do this, we could

possibly obtain a divergence at infinity. When taking a derivative with respect to aij , we

take at least ⌊12 miniℜsi⌋ − 10 derivatives and the integral will still converge at infinity.

When differentiating we get terms in y of polynomial growth, hence the partial derivatives

of g also belong to S ′.

Let us now show that g(y) is smooth in y. To do this, replace ρi(xi) to ρi(xi+yi−y∗i ):
in a neighborhood of y∗i . The functions ρ2 are chosen such that they still have support

that does not intersect with zero. We therefore find

g(y) =
∑

ki∈1,2

∏

i:ki=1

c(−2− si,m)

∫

dmxdmx

n
∏

i=1

|xi|−2−si
∏

i : ki=1

|xi|2m
(

∏

i : ki=1

∆m
xi

)

[

f(x+ y)
n
∏

i=1

ρki(xi + yi − y∗i )

]

Shifting the integration variable x → x− y, we get

g(y) =
∑

ki∈1,2

∏

i : ki=1

c(−2− si,m)

∫

dmxdmx

n
∏

i=1

|xi − yi|−2−si
∏

i : ki=1

|xi − yi|2m
(

∏

i : ki=1

∆m
xi

)

[

f(x)
n
∏

i=1

ρki(xi − y∗i )

]

The above expression has 2m− si − 4 partial derivatives in yi: There are no issues at

infinity, and we get divergence at zero only when |xi − yi| has negative degree. Since we

can take any large enough m this proves that g is smooth in yi.

Now, take x → −x in the integral above and note that f(x− y) = f(y− x). We find
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that

g(x) =

∫

dmxdmx f(x− y)
∏

|xi|−2−si .

For h ∈ S, we have

(g, h) =
∑

ki∈{1,2}

∏

i : ki=1

c(si,m)

∫

dmydmy

∫

dmxdmx

n
∏

i=1

|xi|−2−si
∏

i : ki=1

|xi|2m
(

∏

i : ki=1

∆m
xi

)

[

f(x− y)
n
∏

i=1

ρki(xi)

]

h(y).

Integrating over y, we get

∑

ki∈{1,2}

∏

i : ki=1

c(si,m)

∫

dmydmy

∫

dmxdmx

n
∏

i=1

|xi|−2−si
∏

i : ki=1

|xi|2m
(

∏

i : ki=1

∆m
xi

)

[

f(x− y)

n
∏

i=1

ρki(xi)

]

h(y)

=
∑

ki∈{1,2}

∏

i : ki=1

c(si,m)

∫

dmxdmx

n
∏

i=1

|xi|−2−si
∏

i : ki=1

|xi|2m
(

∏

i : ki=1

∆m
xi

)

[

(f ∗ h)(x)
n
∏

i=1

ρki(xi)

]

.

We now note that f ∗ h = F−1(FfFh) is a rapidly decreasing function:

Lemma B.7. Suppose that f ∈ S is a function such that f,Ff are bounded. Then for

any h ∈ S we have f ∗ h ∈ S, f ∗ h = F−1(FfFh).

Proof. Function f ∗ h(y) =
∫

dnx f(x)h(y − x) is defined by an absolutely convergent

integral. It is also bounded, hence it belongs to S ′. For g ∈ S we use Fubini theorem to

obtain

(f∗h,Fg) =
∫

dnydny f∗h(y)(Fg)(y) =
∫

dnxdnxdnydnydnzdnz f(x)h(y−x)ei(y,z)g(z)

=

∫

dnxdnxdnzdnz f(x)Fh(z)ei(x,z)g(z) =
∫

dnxdnx f(x)F(Fh · g)(x)

= (f,F(Fh · g)) = (Ff,Fh · g) = (FfFh, g),

hence F(f ∗ h) = FfFh as elements of S ′. Since Ff is bounded and Fh ∈ S ′, their

product belongs to S, hence F(f ∗ h) also belongs to S. Function f ∗ h and F−1Fh give

the same element of S ′, hence f ∗ h = F−1F(f ∗ h) = F−1(Ff{h) belongs to S.
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Hence for each (k1, . . . , kn) we can integrate by parts using ∆m
j for all j such that

kj = 2 to get

∑

ki∈{1,2}

∏

i : ki=1

c(si,m)

∫

dmxdmx

n
∏

i=1

|xi|−2−si
∏

i : ki=1

|xi|2m
(

∏

i : ki=1

∆m
xi

)

[

(f ∗ h)(x)
n
∏

i=1

ρki(xi)

]

=
∑

ki∈{1,2}

n
∏

i=1

c(si,m)

∫

dmxdmx

n
∏

i=1

|xi|−2−si
n
∏

i=1

|xi|2m
( n
∏

i=1

∆m
xi

)

[

(f ∗ h)(x)
n
∏

i=1

ρki(xi)

]

Now we can sum over all (k1, . . . , kn) to get

∑

ki∈{1,2}

n
∏

i=1

c(si,m)

∫

dmxdmx

n
∏

i=1

|xi|−2−si
n
∏

i=1

|xi|2m
(

∏

i

∆m
xi

)

[

(f ∗ h)(x)
n
∏

i=1

ρki(xi)

]

=

n
∏

i=1

c(si,m)

∫

dmxdmx

n
∏

i=1

|xi|−2−si
n
∏

i=1

|xi|2m
( n
∏

i=1

∆m
xi

)

(f ∗ h)(x) =

n
∏

i=1

c(si,m)

(

n
∏

i=1

|xi|2m−2−si , (f ∗ h)(x)
)

=

(

n
∏

i=1

|xi|−2−si , f ∗ h
)

Hence, we have proven that

(g, h) =

(

n
∏

i=1

|xi|−2−si , f ∗ h
)

. (14)

Recall that M(x) = |x1|s1 · · · |xn|sn . We now compute F [E(A,x)M(x)]. We have

(F(E(A,x)M(x)), h) = (E(A,x)M(x),Fh) = (M(x), E(A,x)Fh).

By Lemma B.3, we find that

(M(x), E(A, x)Fh) = C2

|detA|
(

M(x),F(E(A−1, x) ∗ h)
)

=
C2

|detA|(M(x),F(f ∗ h)).
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Finally, by Lemma B.5, we find that

C2

|detA|(M(x),F(f ∗ h)) = C2

|detA|

(

F
[

n
∏

i=1

|xi|si
]

, f ∗ h
)

=
C2

|detA|

n
∏

i=1

C(si)

(

n
∏

i=1

|xi|−2−si , f ∗ h
)

.

Comparing this with (14), we get

F [E(A,x)M(x)] =
C2

|detA|

(

n
∏

i=1

C(si)

)

g(y).

Proposition B.8. Let s1, . . . , sn ∈ C\2Z, and recall that E(A,x)M(x) defines an element

of S ′ as above. Then g(y) := F(E(A,x)M(x)) is given by a function smooth in y and A

and holomorphic over si ∈ C \ 2Z.

Proof. We have (F(E(A,x)M(x), h) = (M(x), E(A, x)Fh). Thus,

(M(x), E(A,x)Fh) =
∏

c(si,m)

(

n
∏

i=1

|xi|si+2m ,
∏

∆m
i (E(A,x)Fh)

)

.

Note that for any partial differential operator D with constant coefficients we have

DE(x) = PD(x,x)E(x), where PD is a polynomial in x, x. Hence for any partial differ-

ential operator D with constant coefficients we have

D(E(x)Fh) =
∑

D1,D2

D1E(x)D2Fh = E(x)
∑

P1,D2

P1(x,x)D2Fh.

Here sum comes from the formula for the derivative of a product, P1 = PD1
is a

polynomial such that D1E(x) = P1E(x). Hence D(E(x)Fh) = E(x)D̃Fh, where D̃

is a partial differential operator with polynomial coefficients. Since Fourier transform

interchanges x with ∂x (up to a constant factor), we get D̃Fh = F(Dh), where D is also

a partial differential operator with polynomial coefficients. When D =
∏n

i=1 ∆
m
i , denote

the corresponding D by Dm.

Hence, defining

Mm(x) :=
n
∏

i=1

|xi|si+2m ,
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we find that

n
∏

i=1

c(si,m)

(

Mm(x),

n
∏

i=1

∆m
i (E(A, x)Fh)

)

=

n
∏

i=1

c(si,m)(Mm(x), E(A, x)FDmh).

We already know that

(Mm(x), E(A,x)Fh) = (gm(x), h(x)),

where for m sufficiently large we may write

gm(y) =

∫

Cn

dnxdnxE(−A−1,x+ y)

n
∏

i=1

|xi|−2−si−2m

as per Proposition B.6. Note that gm is smooth in y, holomorophic on si ∈ C \ 2Z and

has at least m− c partial derivatives in aij for some constant c > 0 that does not depend

on m. We thus find

[

n
∏

i=1

c(si,m)

]

(Mm(x), E(A, x)FDmh)

=

[

n
∏

i=1

c(si,m)

]

(gm(y),Dmh(y)) =

[

n
∏

i=1

c(si,m)

]

(D∗
mgm(y), h(y)),

hence

F(E(A,x)M(x)) =

[

n
∏

i=1

c(si,m)

]

D∗
mgm(y)

for m large enough. The right-hand side is holomorphic for si ∈ C \ 2Z and smooth in y

and also has m− c partial derivaties in aij. Since the left-hand side does not depend on

m we deduce that is smooth in aij .

Proposition B.9. Let DA be a differential operator in aij. Then

DA(F(E(A,x)M(x))) = F(DA(E(A,x))M(x)).

Proof. It is enough to check that both sides give the same element of S ′. It is not hard

to see that for any A∗ there exists a neighborhood U such that

max
A∈U

DAF(E(A,x)M(x))

is still an element of S ′. Indeed, g(y) = F(E(A,x)M(x)) is smooth in A and y, so we
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may safely take DAg(y). We find

DAg(y) = P (y,y)g(y)

for some polynomial P ; integrating DAg(y) against any test function h ∈ S thus yields

an absolutely convergent integral.

Thus, we use Lemma A.1 to get

(DA(F(E(A,x)M(x))), h) = DA(F(E(A,x)M(x)), h) = DA(E(A,x)M(x),Fh).

We then find

DA(E(A,x)M(x),Fh) = (DA(E(A,x))M(x),Fh).

The proposition follows.

Corollary B.10. Let K = g(0) be the twisted Gaiotto kernel, DA be as above. Then

DAK can be computed as an integral in the sense of tempered distributions

DAK =

∫

dnxdnx (DA(E(A,x))M(x).

Proof. Note that

(DA(E(A,x))M(x) = P (x)E(A,x)M(x)

for some polynomial P (x,x) in x,x. This expression has a good Fourier transform in the

sense of tempered distributions. Thus, it is enough to set y = 0 in Proposition B.9.

Proposition B.11. Let P (x,x) be a polynomial in x,x. Then, for any i we have

∫

dnxdnx ∂i

[

P (x,x)e(x,Ax)−(x,Ax)M(x)
]

= 0.

In particular, we can evaluate integrals of the form

∫

dnxdnxP (x,x)e(x,Ax)−(x,Ax)M(x)

by parts without boundary terms.

Proof. We wish to compute these integrals in the sense of tempered distributions. Note

that g(y) is smooth in y, so we find that

∫

dnxdnxP (x,x)e(x,Ax)−(x,Ax)M(x) = P (∂y, ∂y)g(y),
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and the right hand side is a smooth function of y. We thus find that

∫

dnxdnx ∂i

[

P (x,x)e(x,Ax)−(x,Ax)M(x)
]

= yiP (∂y, ∂y)g(y)

∣

∣

∣

∣

y=0

= 0.

We are done.

In summary, we have shown that we may sensibly define the following integral in the

sense of tempered distributions:

∫

dmxdmx

[

m
∏

i=1

|xi|s
]

e(x,Ax)−(x,Ax).

We have then shown that we may safely differentiate under the integral sign and integrate

by parts as we have done in Sec. 3.3, justifying all of the algebraic manipulations in our

proof of the twisted Gaiotto formula.
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