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Abstract
Convergence of a class of perturbations of the line in R3 to a line under the curve

shortening flow is proven. Progress is presented towards conditions on perturbations of
the Grim Reaper cylinder which guarantee convergence under mean curvature flow to the
Grim Reaper cylinder.

1 Introduction
A family of smooth n-dimensional submanifolds Mn

t ⊆ RN (t ∈ I ⊆ R) is said to evolve by
the mean curvature flow (MCF)–called the curve shortening flow (CSF) when n = 1–if, for each
time t, any point x of the manifold Mt has time derivative the mean curvature vector of Mt at
x. Systematic study of mean curvature flow was first conducted by Brakke in The Motion of a
Surface by Its Mean Curvature [Bra78]. Notably, this work provided the first avoidance principle–
the statement that a hypersurface contained in a convex set will remain enclosed by the set as
both flow by mean curvature–for closed hypersurfaces evolving by mean curvature flow and used
techniques from geometric measure theory to guarantee existence (in a certain weak sense) of a
family Mn

t flowing by mean curvature–i.e. satisfying the mean curvature flow–given an initial
manifold Mn

0 . The application of partial differential equations to study mean curvature flow was
later pioneered by Huisken [Hui84], who used PDEs to show that any closed convex hypersurface
Mn

0 ⊂ Rn+1 of dimension two or greater will flow to a single point under MCF. Analogous results
for convex and closed curves respectively were presented by Gage-Hamilton [GH86] and Grayson
[Gra87] in the following years, and related results for noncompact hypersurfaces were provided
by Ecker and Huisken [EH89,EH91].

In specific, a theorem of Ecker and Huisken [EH89, Theorem 5.1] demonstrates existence for
all times t > 0 of a family Mt of manifolds satisfying the mean curvature flow given an initial
hypersurface M0 satisfying a linear growth condition and a bound on the growth of its curvature.
If M0 is taken to be bounded in this setting, Ecker and Huisken showed that M0 will flow by
mean curvature to a plane. We adapt the work of Ecker and Huisken [EH89, Theorem 5.1] in
the case that M0 is a bounded curve to the case that M0 is a bounded curve in codimension two
in Section 3, providing the result of Theorem 1.1:

Theorem 1.1. Consider smooth functions u0, v0 : R → R along with the associated curve
γ0(x) = (x, u0(x), v0(x)), let T0 be the tangent vector of γ0, and take ex := (1, 0, 0). If there exist
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positive constants C1 and C2 such that ⟨T0(x), ex⟩ ≥ C1 and |u0(x)2 + v0(x)2|≤ C2 for all x ∈ R
and all derivatives of κ are bounded on γ0, the curve shortening flow with initial data γ0 exists
for all time and there exist constants cy, cz such that

lim
t→∞

|γ(x, t) − (x, cy, cz)|= 0

for all x ∈ R.

Informally, this result states that a smooth, bounded perturbation γ0 of a line in R3 whose
tangent vector never tends towards being orthogonal to this line will flow by mean curvature for
all positive time t > 0 and converge to a line as t → ∞. Our proof of this result in codimension
2 reduces to such a proof in codiemension 1 by eliminating any mention of the binormal vector
B in the computations in Section 3. We believe a result in higher codimensions to be readily
attainable, requiring only our calculations to account for extra binormal vectors.

We also provide, using methods of Clutterbuck-Schnürer-Schulze [CSS07], conditions on a
perturbation u0 of the Grim Reaper cylinder and on the family u of manifolds flowing by mean
curvature with initial data u0 which ensure that u will converge under mean curvature flow–and
specifically that u will, in the sense of (1.1), converge to a Grim Reaper cylinder.

Theorem 1.2. Consider a smooth solution

u : Rn−1 ×
(

−π

2 ,
π

2

)
× [0, ∞) → R.

to the graphical mean curvature flow; i.e. so that this solution can be expressed as a family of
graphs of smooth functions. If the sets

Ω±
ϵ,t :=

{
(x, y) ∈ Rn−1 ×

(
−π

2 ,
π

2

) ∣∣∣∣ u(x, y, t) − ϕ(x, y, t) ≥ ±ϵ
}

are compact and have boundary contained in Rn−1 × (−π
2 , π

2 ) for all ϵ > 0 and t ≥ 0, we have
that

lim
t→∞

sup
(x,y)∈Rn−1×(− π

2 , π
2 )

|u(x, y, t) − ϕ(x, y, t)|= 0. (1.1)

This result assumes strong conditions on the family u which flows by mean curvature with
initial data a perturbation of the Grim Reaper cylinder. We believe a result which only makes
assumptions on the initial perturbation to be achievable, but to require extra constraints on this
perturbation.

Section 3 is devoted to proving Theorem 1.1, while Section 4 proves Theorem 1.2. In each
case, we prove long-time existence–i.e. existence for all t > 0–of a family of manifolds satisfying
the mean curvature flow given an initial condition in a certain set of perturbations of the line
or Grim Reaper cylinder. Additionally, the condition that the mean curvature flow preserves
the entire-graphicality of hypersurfaces–which was shown by Ecker-Huisken [EH89]–and pre-
serves forwards-tangency–the codimension-2 analogue, proven in Lemma 3.2, of a graphicality
condition–are discussed. These results are used throughout the proofs below to parameterize
our manifolds as they evolve by mean curvature flow, and are important in presenting avoidance
principles–statements that if our initial perturbations do not intersect with a given plane or grim
reaper cylinder, then they will never cross these manifolds as they evolve by mean curvature
flow–to demonstrate boundedness under the flow in the linear case and translation under the
flow in the Grim Reaper cylinder case.
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2 Preliminaries
Formally, a family X : M × [0, ∞) → Rn of smooth manifolds is said to flow by mean

curvature if
∂tX(x, t) = H⃗(x, t), (2.1)

where H⃗ is the mean curvature vector of X. We similarly say that a function u : Ω× [0, ∞) → R
is a solution to the graphical mean curvature flow on some open domain Ω ⊂ Rn if we have that

ut =
√

1 + |∇u|2div
 ∇u√

1 + |∇u|2

 (2.2)

on Ω. In this case, the graph of u will admit a paramaterization which flows by mean curvature.
When u is a family of curves in R2, (2.2) reduces to Equation 2.3.

ut = uxx

1 + u2
x

(2.3)

Definition 2.1. A solution to the mean curvature flow is called a translating solution (or a
translator) if every point of the solution has time derivative the same fixed vector for all time.

The simplest example of a translator is the line or plane, which stays fixed for all time when
flowed by mean curvature. In the case of curves in R2, the only convex translating solution other
than the line is the Grim Reaper curve, which is the graph of the function

ϕ(x, t) = log(sec(x)) + t for (x, t) ∈
(

−π

2 ,
π

2

)
. (2.4)

In higher dimensions, translators include the plane and Grim Reaper cylinder–the Cartesian
product of the Grim Reaper curve with some Euclidean space Rk. More solutions, such as the
bowl solution to the mean curvature flow [Has15], have also been investigated.

We now present known results we use throughout the following sections. We do not reprove
these statements, but proofs of the results can be found in the original papers cited. In specific,
the proofs in Section 3 make use of Theorem 2.2 and Lemma 2.3 to assist in proving Theorem
1.1, while Propositions 2.4 and 2.5 are used in Section 4 to assist in proving Theorem 1.2.

Theorem 2.2, which was proved by Ecker and Huisken [EH89, Corollary 1.1], provides a
maximum principle for evolving hypersurfaces on noncompact domains. We note that this
result holds for not just hypersurfaces but, more generally, for any manifolds.

Theorem 2.2. Consider a smooth submanifold Mt ⊂ Rn evolving by mean curvature flow and
a function f(x, t) on Mt. If f satisfies the inequality

(∂t − ∆)f ≤ a · ∇f

for some vector field a–where ∇ denotes the tangential gradient on M–and

sup
M×[0,t1]

|a|< ∞

for some t1 > 0, then
sup
x∈Mt

f(x, t) ≤ sup
x∈M0

f(x, 0)

for all t ∈ [0, t1].
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The second result–due to Gage and Hamilton [GH86, Lemma 3.1.3]–concerns the inter-
changing of partial derivatives on manifolds. Gage and Hamilton derived this formula in the
codimension-one case. In the higher-codimension case, one can show that the same formula still
holds by direct calculation.

Lemma 2.3. Consider a curve ct evolving by the curve shortening flow and a function f(x, t)
on ct. We have that

fst = fts + κ2fs,

where ∂
∂s

is the spacial derivative with respect to the arc length parameterization of ct and κ is
the curvature of ct.

To aid in showing longtime existence of solutions to the mean curvature flow problems we
consider, we introduce estimates provided by Ecker-Huisken [EH89] of the curvature and higher
derivatives of solutions to the mean curvature flow.

Proposition 2.4. Consider a smooth function u0 : Ω → R with bounded sup norm such that
the graph M0 of u0 has bounded curvature. F for x ∈ Br(0) × [0, T ], we have that

|Dmu(0, t)|≤ C, (2.5)

where C is a constant depending on u0, T , r, m and the dimension n.

Also a result of Ecker and Huisken [EH91, Proposition 4.1], Proposition 2.5 presents an ex-
istence condition for solutions to the mean curvature Dirichlet problem; i.e. the mean curvature
flow with fixed boundary. We do not produce results concerning the Dirichlet problem, but
make use of the proposition in proving Corollary 3.5 and Theorem 4.1.

Proposition 2.5. Suppose that F0 : Mn → Rn+1 is a smooth isometric immersion. There exists
some T0 depending on the second fundamental form of F0 such that there exists a unique smooth
function F : Mn × [0, T0] → Rn+1 satisfying the mean curvature flow such that F (p, t) = F0(p)
whenever p ∈ ∂Mn

3 Curve translators
In this section, we present results generalizing those of Ecker and Huisken [EH89] regarding

stability of the line in codiemnsion one to higher codimension curves. Much of the work here–in
specific, the work of Subsections 3.2 and 3.3–applies directly to the higher-codimension grim
reaper stability problem, but an avoidance principle is not so clear. It is believed that such a
principle can likely be found by bounding the perturbed grim reaper by a pair of grim reaper
cylinders and planes. It is also believed that these results and the results proved for the line
in codimension 2 should be provable in codimension n using many of the same proof methods
described below. Future iterations of this report may contain treatments of these problems.

Consider smooth functions u0, v0 : R → R and the associated curve γ0(x) = (x, u0(x), v0(x))
in R3. We say that γ(x, t) is a solution to the curve shortening flow on an interval I ⊆ [0, ∞)
with the initial data γ0 if it satisfies∂tγ(x, t) = −κ(x, t)N(x, t) for (x, t) ∈ R × I

γ(x, 0) = γ0(x) for x ∈ R
(3.1)
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where κ(x, t) is the curvature at γ(x, t) and N(x, t) is the unit principal normal to γ; i.e. N is
the unit vector in the direction of ∂sT . We also denote by B a unit binormal to γ–a unit vector
orthogonal to T and N which varies smoothly along γ.

We first prove Lemma 3.2, showing that ⟨T0, ex⟩ having a positive lower bound allows us
to pick functions u, v : R × I such that γ(x, t) = (x, u(x, t), v(x, t)) on R × I. This is used to
show Lemma 3.3–the statement that any convex shape containing γ0 will contain γ(·, t) for all
t ∈ I–and the bounds on ⟨T, ex⟩ computed in Subsection 3.1 are used to show the proofs in
Subsection 3.3–which show the existence of a solution γ to our curve shortening problem 3.1 and
that the curvature of γ(·, t) vanishes as t → ∞. In Subsection 3.4, we provide explicit evolution
equations for ut and vt used in the proofs in Subsection 3.3, and an example of a perturbation
of the line which converges by curve shortening flow to the line in Subsection 3.5.

3.1 Preservation of forwards-tangency
We first define the forwards-tangent property.

Definition 3.1. A curve c in R3 has the forwards-tangent property if the tangent vector Tc of c
satisfies

⟨Tc, ex⟩ ≥ C

for fixed C > 0 at all points in the domain of c. In this case, we say that c is forwards-tangent.

In this section, we prove the following lemma regarding forwards-tangency:

Lemma 3.2. Suppose γ(x, t) (t ∈ I) is a solution to (3.1). If γ0(x) is forwards-tangent, then
γ(x, t) will be forwards-tangent for all times t ∈ I.

This lemma allows us to write γ(x, t) = (x, u(x, t), v(x, t)) for some functions u, v with
u(·, t) = u0(·) and v(·, t) = v0(·). Note that this paramaterization flows by

γt = Ts + uxuxx + vxvxx

(1 + u2
x + v2

x) 3
2
T = −κN + uxuxx + vxvxx

(1 + u2
x + v2

x) 3
2
T, (3.2)

as adding any tangential component to our flow will not impact the evolution of our curve and
we can see from our evolution equation in (3.19) that adding the tangent term

uxuxx + vxvxx

(1 + u2
x + v2

x) 3
2
T

ensures that the x component of γt is 0, as desired.

Proof of Lemma 3.2. Consider the function

f := ⟨T, ex⟩.

By metric compatibility,
ft = ⟨Tt, ex⟩ + ⟨T, (ex)t⟩ = ⟨Tt, ex⟩. (3.3)

Equation (3.1) and Lemma 2.3 give us that

Tt = γst = γts + κ2γs = (−κN)s + κ2T. (3.4)
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Similarly to in (3.3), we have
fss = ⟨Tss, ex⟩. (3.5)

Now, we have from (3.1) that
Tss = (−κN)s. (3.6)

Combining (3.4) and (3.6), we get
ft − fss = κ2f, (3.7)

and the conclusion follows from the maximum principle presented in Theorem 2.2.

3.2 An avoidance principle
In this section, we prove the following lemma:

Lemma 3.3. Suppose γ(x, t) (t ∈ I) is a solution to (3.1) and we write γ(x, t) = (x, u(x, t), v(x, t)).
If |u(·, 0)| and |v(·, 0)| are bounded, then

sup
x∈R

|u(x, t)|≤ sup
x∈R

|u(x, 0)| and sup
x∈R

|v(x, t)|≤ sup
x∈R

|v(x, 0)|

for all t ∈ I.

This is the statement that if our perturbation is initially contained in a rectangular prism
(infinitely long in one direction) that it will remain in this prism. By rotational invariance of
the flow, we can in fact contain γ in any convex set containing γ0.

Proof of Lemma 3.3. For any w ∈ R3 and (x, t) ∈ R × I, by (3.1), we see that

∂t ⟨γ(x, t), w⟩ =
〈
∂2

s γ(x, t), w
〉

= ∂2
s ⟨γ(x, t), w⟩ .

Thus, ⟨γ(x, t), w⟩ is a solution to the heat equation on R × I. Applying Theorem 2.2 with
f = ⟨γ(x, t), w⟩ gives us that

sup
x∈R

⟨γ(x, t), w⟩ ≤ sup
x∈R

⟨γ(x, 0), w⟩

for all t ∈ I. We see that taking w = (0, 1, 0), ⟨γ(x, t), w⟩ = u(x, t). Thus, we see taking
w = (0, 1, 0) and w = −(0, 1, 0) respectively that

sup
x∈R

u(x, t) ≤ sup
x∈R

u(x, t0) and sup
x∈R

−u(x, t) ≤ sup
x∈R

−u(x, t0).

So, we have that
sup
x∈R

|u(x, t)|≤ sup
x∈R

|u(x, t0)|.

Taking w = (0, 0, 1) and w = (0, 0, −1) gives the analogous result that

sup
x∈R

|v(x, t)|≤ sup
x∈R

|v(x, t0)|.

6



3.3 Convergence of curvature
In this subsection, we prove the following statement regarding boundedness and decay of

curvature of γ as t → ∞, then use this result to prove that γ converges to a line as it evolves by
the curve shortening flow.

Proposition 3.4. Suppose γ(x, t) (t ∈ I) is a solution to (3.1). If γ0(x) is forwards-tangent and
all derivatives of the curvature κ(·, t) of γt are bounded for all t ∈ I, then for any m ∈ N ∪ {0},
we can find Cm > 0 only depending on γ0 such that

sup
R

∣∣∣∣∣∂mκ

∂sm
(·, t)

∣∣∣∣∣
2

≤ Cm

tm+1

for all t ∈ I.

Proof of Proposition 3.4. We only present the zero-order estimate; i.e. the estimate for κ. The
higher derivative estimates can be derived by a standard argument based on induction (cf.
[EH89, Proposition 4.4]).

We will first compute an evolution equation for the curvature κ of γ and show boundedness
of κ, then prove κ decays in time. We see that

κ = κ⟨N, N⟩ = −⟨Ts, N⟩,

so differentiating with respect to t, applying Lemma 2.3, and noting that ⟨N, Nt⟩ = 0 since N
is a unit vector, gives us that

κt = −⟨Tst, N⟩ = −⟨Tts + κ2Ts, N⟩ − ⟨Ts, Nt⟩ = −⟨Tts, N⟩ + κ3 − 0. (3.8)

We now compute Tts. We see from (3.1) and Lemma 2.3 that

Tt = γst = γts + κ2γs = (−κN)s + κ2T = −κsN − κNs + κ2T,

so we have that
Tts = −κssN − 2κsNs − κNss + 2κκsT − κ3N. (3.9)

We also see–taking τ := ⟨Ns, B⟩ and noting that ⟨Ns, T ⟩ = 0 − ⟨N, Ts⟩ = κ by orthogonality of
N and T–that

Ns = ⟨Ns, T ⟩T + ⟨Ns, B⟩B = κT + τB, (3.10)
and thus

Nss = κsT − κ2N + τsB + τBs.

We see that ⟨Bs, B⟩ = ⟨Bs, T ⟩ = 0, respectively because B is a unit vector and

⟨Bs, T ⟩ = 0 − ⟨B, Ts⟩ = −κ⟨B, T ⟩ = 0.

So, Bs = ⟨Bs, N⟩N = 0 − τN , meaning that

Nss = κsT − κ2N + τsB − τ 2N. (3.11)

Then, plugging in (3.10) and (3.11) to (3.9) shows us that

Tts = (−κss + κ3 − κ3 + κτ 2)N + (−2κsκ − κsκ + 2κsκ)T + (−2κsτ − κτs)B.
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This, combined with (3.8) and the orthogonality of {T, N, B} shows that

κt = κ3 + κss − κτ 2. (3.12)

With v := f−1 = ⟨T, ex⟩−1, take g := κ2v2. We will first bound gt − gss, for the purpose of
applying the maximum principle.

We see that
gt = 2κκtv

2 + 2κ2vvt

and

gss = (2κκsv
2 + 2κ2vvs)s = 2κ2

sv
2 + 2κκssv

2 + 4κκsvvs + 4κκsvvs + 2κ2v2
s + 2κ2vvss.

So, we have that

gt − gss = 2κv2(κt − κss) + 2κ2v(vt − vss) − 2(κ2
sv

2 + 4κκsvvs + κ2v2
s).

Equation (3.7) gives us that

vt − vss = −f−2ft − (−f−2fs)s

= −f−2ft − 2f−3f 2
s + f−2fss

= −f−2(ft − fss) − 2f−3f 2
s

= −κ2v − 2v−1v2
s

(3.13)

This formula and Equation (3.12) give us that

gt − gss = 2κv2(κ3 − κτ 2) + 2κ2v(−κ2v − 2v−1v2
s) − 2(κ2

sv
2 + 4κκsvvs + κ2v2

s)
= 2κ4v2 − 2κ2v2τ 2 − 2κ4v2 − 4κ2v2

s − 2(κ2
sv

2 + 4κκsvvs + κ2v2
s)

= −2κ2v2τ 2 − 6κ2v2
s − 2κ2

sv
2 − 8κκsvvs.

(3.14)

By the arithmetic geometric mean inequality, we see that

4κκsvvs = 4(κ2v2
sκ2

sv
2) 1

2 ≤ 4κ2v2
s + κ2

sv
2

2 ,

so we see from (3.14) that

gt − gss ≤ −2κ2v2τ 2 − 4κ2v2
s − 4κκsvvs = −2κ2v2τ 2 − 2vsv

−1(κ2v2)s = −2κ2v2τ 2 − 2vsv
−1gs.
(3.15)

Noting that gt − gss = (∂t − ∂ss)(κ2v2), we get since

(v2)t − (v2
ss) = 2vvt − 2v2

s − 2vvss = 2v(vt − vss) − 2v2
s = −2κ2v2 − 2v2

s − 2v2
s

that

(∂t − ∂ss)(2tκ2v2 + v2) = 2κ2v2 + 2t(gt − gss) − 2κ2v2 − 4v2
s

≤ 2t(−2κ2v2τ 2 − 2vsv
−1gs) − 2κ2v2 − 4v2

s

≤ −2vsv
−1(2tg)s − 4v2

s

≤ −2v−1vs(2tg)s − 2v−1vs(v2)s

= −2v−1vs(2tκ2v2 + v2)s.

(3.16)
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Take h := 2tκ2v2 + v2 and a := −2v−1vs. We see that (3.16) reduces to

ht − hss ≤ ahs.

We have that
a = 2v−1vs = 2f(−f−2fs) = 2κ

⟨N, ex⟩
⟨T, ex⟩

,

which is bounded by the boundedness of |κ| we assumed and the fact that ⟨T, ex⟩ has a positive
lower bound by Lemma 3.2. Boundedness of a means that we may apply Theorem 2.2 to show
that

sup
x∈R

|h(x, t)|≤ sup
x∈R

|h(x, 0)|

for all t ∈ I.

Corollary 3.5. If γ0(x) is forwards-tangent, u0 and v0 are C∞, and all derivatives of the
curvature κ(·, 0) of γ0 are bounded, then there exists a solution γ(x, t) ((x, t) ∈ R × [0, ∞)) to
(3.1) and for any m ∈ N ∪ {0}, we can find Cm > 0 only depending on γ0 such that

sup
R

∣∣∣∣∣∂mκ

∂sm
(·, t)

∣∣∣∣∣
2

≤ Cm

tm+1

for all t ∈ I = [0, ∞).

Proof. Proposition 3.4 gives us that if a solution to (3.1) has bounded curvature and bounded
derivatives of curvature on any interval, we can find bounds on these quantities which only
depend on the initial data γ0 of (3.1). Thus, it suffices to show that a solution to (3.1) exists
on some interval [0, ε). Note that we know this will be the case if our solution has bounded
curvature and derivatives of curvature on [0, ε).

Fix r > 0. We consider γ0,r := γ0|[−r,r] alongside a solution γr to the Dirichlet curve shortening
problem on an interval Ir ⊂ [0, ∞) with initial data γ0,r, so we have

∂tγr(x, t) = −κr(x, t)N(x, t) for (x, t) ∈ R × Ir

γr(x, 0) = γ0,r(x) for x ∈ R
γr(±r, t) = γ0,r(±r) for t ∈ Ir

. (3.17)

Note that κr is the curvature of γr and N is the principal normal to γr. We then see from
Proposition 2.5–the existence theorem by Ecker and Huisken [EH91, Proposition 4.1] for the
Dirichlet curve shortening problem1–that there exists Tr > 0 depending only on a bound for κr

(which is the second fundamental form of γr) such that γ is a unique smooth solution to the
problem (3.17) on [0, Tr), so we can take Ir = [0, Tr). Because each κr will be bounded by a
bound for κ and we know by assumption that κ is bounded, we can pick the same bounds for
all κr, giving us Tr = T0 for all r. Calculations analogous to those in Subsection 3.1 show us
that we can write

γr(x, t) = (x, ur(x), vr(x))
for functions ur, vr ∈ C∞([−r, r]× [0, T0]). We consider sequences (ur)r∈N, (vr)r∈N of functions in
C∞(R× [0, T0]). (ur)r∈N, (vr)r∈N are uniformly bounded with uniformly bounded derivatives for

1[EH91, Proposition 4.1] is only formulated to apply to hypersurfaces, but the proof methods apply to curves
in greater codimension. Thus, we can use the theorem here
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fixed t by the maximum principle for parabolic partial differential equations and since our initial
values u0, v0 are in C∞(R). Thus, by Arzela-Ascoli, there are subsequences of each sequence
(where we restrict each function to a given compact set [−r′, r′] ⊂ R) converging to continuous
limits on [−r′, r′]. We then apply Arzela-Ascoli again to find a subsequence of this subsequence
whose first derivatives converge to a continuous first derivative, and repeat this diagonalization
argument until we have C∞(R × [0, T0]) functions ũr′(x, t) and ṽr′(x, t) which are limits of
subsequences of (ur)r∈N and (vr)r∈N respectively. We now consider functions

u(x, t) := ũx+1(x, t), v(x, t) := ṽx+1(x, t),

each in C∞(R × [0, T0]) (regularity is inherited from ũr′ and ṽr′ , and boundedness follows since
(ur)r∈N, (vr)r∈N are uniformly bounded with uniformly bounded derivatives as discussed above).
We now consider

γ(x, t) := (x, u(x, t), v(x, t)).

It follows from the C∞-convergence of our functions above that γ is a solution to the curve
shortening flow (3.1) with initial data γ0. We then know from (3.18) that we can express the
magnitude of curvature |κ|= |Ts| in terms of u, v, and their derivatives, so boundedness of these
terms and their derivatives gives boundedness of all derivatives of κ. We may repeat this process
ad infinitum to generate a sequence of intervals, all on which these bounds are satisfied and we
have existence of our solution. These intervals will eventually contain the entire half-line [0, ∞),
as is shown by a basic openness-closedness argument.

Now we are in a position to prove the first main result using Corollary 3.5.

Proof of Theorem 1.1. By the bounds in Corollary 3.5, the limit

c(x) :=
(

x, ũ(x) := lim
t→∞

u(x, t), ṽ(x) := lim
t→∞

v(x, t)
)

exists. We see from Corollary 3.5 that the curvature of c vanishes for all x ∈ R, so c is a line.
Lemma 3.3 shows that

sup
x∈R

|ũ(x)|≤ sup
x∈R

|u(x, 0)|, sup
x∈R

|ṽ(x)|≤ sup
x∈R

|v(x, 0)|,

so c must be parallel to the x-axis; i.e. there exist constants cy, cz such that c(x) = (x, cy, cz).

3.4 Evolution equations
We now present explicit evolution equations for ut(x, t) and vt(x, t) as γ(x, t) undergoes the

curve shortening flow. We see that

γx = (1, ux, vx), |γx|=
√

1 + u2
x + v2

x.

Then, the tangent vector T satisfies

T = γx

|γx|
= (1, ux, vx)√

1 + u2
x + v2

x

.
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So, taking the derivative with respect to x and simplifying gives that

Tx = (−uxuxx − vxvxx, uxx + v2
xuxx − uxvxvxx, vxx + u2

xvxx − uxvxuxx)
(1 + u2

x + v2
x) 3

2
.

Therefore, as we can see that Ts = Tx

|γx| , we have

Ts = (−uxuxx − vxvxx, uxx + v2
xuxx − uxvxvxx, vxx + u2

xvxx − uxvxuxx)
(1 + u2

x + v2
x)2 . (3.18)

Then, by (3.1), we have that

∂t(x, u, v) = ∂sT + uxuxx + vxvxx

(1 + u2
x + v2

x)− 3
2
T

= (0, uxx + v2
xuxx − uxvxvxx + u2

xuxx + uxvxvxx, vxx + u2
xvxx − uxvxuxx + uxvxuxx + v2

xuxx)
(1 + u2

x + v2
x)2

= (0, uxx + u2
xuxx + v2

xuxx, vxx + u2
xvxx + v2

xuxx)
(1 + u2

x + v2
x)2

= (0, uxx, vxx)
1 + u2

x + v2
x

.

(3.19)

3.5 An example
Most examples of curves or surfaces evolving under mean curvature flow are hard to explicitly

compute. Here, we show explicitly that the helix converges to the line in codimension two. This
helix in R3 is given by (cx, r cos(x), r sin(x)) for x ∈ R for c, r ∈ R. Based on equation (3.19),
we see that the radius r of the helix satisfies the differential equation

rx = −r

c + r2 . (3.20)

Though an explicit solution is hard to compute, we see that r converges to 0 in finite time.

4 Hypersurface translators
In this section, we consider dynamical stability under perturbations of the grim reaper cylin-

der as a hypersurface. Taking the grim reaper ϕ as in (2.4), we define the n-dimensional grim
reaper cylinder by

ϕn : Rn−1 × (−π

2 ,
π

2 ) ∋ (x, y) → ϕ(y) ∈ R.

We note that ϕ1 is the usual grim reaper curve, and that we will often write ϕ instead of ϕn

for purposes of notation. Since the value of ϕn(x, y) is independent of x for any n, the mean
curvature vector of ϕn–and thus how ϕn evolves under the mean curvature flow–depends only
on y ∈ (−π

2 , π
2 ). So, we can see that ϕn inherits translator properties from ϕ.

It is well known that we can express any solution of the mean curvature flow with initial
condition a hypersurface as a graph on Rn−1 for all time (see [EH91, Theorem 5.1]). We assume
this fact throughout the proofs below.
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4.1 Avoidance principle for the grim reaper cylinder
We now show that if the difference between our perturbation and the grim reaper is initially

bounded, that this bound will be satisfied at all later times. We employ similar proof methods
to those of Clutterbuck-Schnürer-Schulze [CSS07, Theorem 3.1].

Theorem 4.1. Consider a smooth graph u0 : Rn−1 × (−π
2 , π

2 ) → R such that

|u0(x, y) − ϕ(x, y, 0)|< C (4.1)

for all (x, y) ∈ Rn−1 × (−π
2 , π

2 ). There exists a solution u to the graphical mean curvature flow
such that

|u(x, y, t) − ϕ(x, y, t)|≤ C (4.2)
for all (x, y) ∈ Rn−1 × (−π

2 , π
2 ) and t ∈ [0, ∞).

This theorem gives us a solution to the mean curvature flow and a non-increasing bound on
the supremum of the difference between a grim reaper cylinder and our perturbation for all time.

Proof of Theorem 4.1. We take smooth functions

uk
0 : Ωk := Bk × [−π

2 + 1
k

,
π

2 − 1
k

] → R

such that uk
0(x, y) = u0(x, y) when

(x, y) ∈ Bk/2 × [−π

2 + 1
k

+ 1
k2 ,

π

2 − 1
k

− 1
k2 ],

and uk
0(x, y) = ϕ(x, y, 0) when (x, y) ∈ ∂Ωk. Since the second fundamental form of the grim

reaper cylinder is uniformly bounded, we may then apply Proposition 2.5 to find that there
exists a solution uk to the Dirichlet problem for time [0, T0] (T0 > 0) equal to the grim reaper ϕ
on its boundary.

Denoting ϕ := ϕ − C and ϕ := ϕ + C, we have

ϕ(x, y, t) < uk(x, y, t) < ϕ(x, y, t) for (x, y, t) ∈ ∂Ωk. (4.3)

Additionally, since the evolution equation of their difference |ϕ−uk| and |ϕ−uk| obey a parabolic
partial differential equation, the maximum principle gives us that the maximum values of these
quantities are attained on the boundary of Ωk × [0, T0]. Thus, we have that

ϕ(x, t) < uk(x, t) < ϕ(x, t) for (x, y, t) ∈ Ωk × [0, T0]. (4.4)

These relations hold for any k and the time T0 for which the flow exists is independent of
k. Thus, on any compact set, we see from Proposition 2.4 that there exists a uniform bound
on the time derivatives for this small time. Therefore, we can apply Arzela-Ascoli to identify a
subsequence of (uk)k∈N>0 which converges to a continuous limit on this compact interval. We
then apply a diagonalization result as in the proof of Corollary 3.5 to find a subsequence of
(uk)k∈N>0 which converges to a C∞ limit. As we can produce this result using any compact
interval, we get a C∞ solution u to the desired mean curvature flow problem for a small time.

Since the grim reaper cylinder is a translating solution, the second fundamental form satisfies
the same bound at all times and thus we can repeat the above process starting from T0 and taking
a new u′

0 := u(x, y, T0). Repeating this ad infinitum provides the desired result, as all T ′
0 ∈ [0, ∞)

will eventually be contained in some interval which we find our solution exists in.

12



Remark 4.2. The proof of Theorem 4.1 can be adapted to give an analogous result for the plane,
as we have a similar uniform bound on the second fundamental form of the plane. In fact, this
proof can be adapted to provide a similar result for any complete hypersurface with a uniform
bound on its second fundamental form.

Remark 4.3. The result of Wang-Wo [WW11, Theorem 1.4] can be extended by using this
approach, as it can be used to circumvent their condition of finitely many inflection points in
their stability theorem at the cost of uniqueness. Considering this, we provide the addition to
their result that a graph will converge to grim reaper under the curve shortening flow if the
supremum of the difference between this graph and the grim reaper is bounded. We also note that
a grim reaper translated such that the integral of its difference with our perturbation vanishes
will satisfy that its difference with the perturbation will vanish as curve shortening is applied.

4.2 Stability of the grim reaper cylinder
We now prove Theorem 1.2, our stability result for the Grim Reaper cylinder.

Proof of Theorem 1.2. We prove this for the supremum and note that an analogue argument
works for the infimum. Assume that for all ϵ > 0, there is a time tϵ such that for t > tϵ, the
set Ω+

ϵ,t is empty. Then our result follows. Assume for the sake of contradiction that this is not
true.

Let w(x, y, t) := u(x, y, t) − ϕ(x, y, t) and wk := w(x, y, t + tk) for some sequence tk → ∞.
We notice that |wt| is locally uniformly bounded, so on any compact subset of our domain, there
is a convergent subsequence of wk by Arzela-Ascoli. We find this for larger and larger compact
sets (applying Arzela-Ascoli on the subsequence of the last step). This gives us a solution

w∞:Rn−1 ×
(

−π

2 ,
π

2

)
× R → R

on the whole strip.
The supremum of w∞ is independent of time, as it cannot keep decreasing. Since the set

Ω+
ϵ,t ⊂ Rn−1 × (−π

2 , π
2 ) is compact and is at its lowest on its boundary, we can find a maximum

in the interior and by the maximum principle, so it must be constant. Thus, it is a constant
greater than ϵ–if not, Ωϵ,t would be empty for large enough time. This contradicts that Ω+

ϵ,t is
compact, completing the proof.
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