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Abstract. This paper consists of two separate components. In the first half, we study
pattern avoidance in Weyl groups, defined by Billey and Postnikov to understand smooth-
ness of Schubert varieties. Specifically, we find all subspace root systems in root systems
of classical types, describe the restriction map explicitly from Weyl groups of classical
types, and define and explore Wilf equivalence in Weyl groups.

In the second half, with a slightly different notion of pattern avoidance, we show that
the number of signed permutations avoiding 1234 equals the number of signed permuta-
tions avoiding 2143 (also called vexillary signed permutations), resolving a conjecture by
Anderson and Fulton.

1. Introduction

Permutation pattern avoidance has been a popular line of research for many years.
Denote the symmetric group on n elements by Sn. We say that a permutation w ∈ Sn
avoids a pattern π ∈ Sk if there does not exist indices 1 ≤ a1 < · · · < ak ≤ n such that
w(ai) < w(aj) if and only if π(i) < π(j). Let Sn(π) denote the set of permutations w ∈ Sn
that avoid π. Two permutations π, π′ are called Wilf equivalent if |Sn(π)| = |Sn(π′)| for all
n. The study of growth rate of |Sn(π)| and the study of nontrivial Wilf equivalence classes
have been fruitful.

This paper consists of two separate parts that are mildly related.
In the first part (Section 2), we view the symmetric group as Weyl group of type A, and

study the generalization of pattern avoidance and Wilf equivalence to any Weyl groups.
Such generalization is first introduced to understand smoothness of Schubert varieties [2].
However, the combinatorics of pattern avoidance in Weyl groups is less explored.

In the second part (Section 3), we focus on pattern avoidance in the signed permutation
group, with a different notion of pattern avoidance. We show that the number of signed
permutations that avoid 1234 equals the number of signed permutations that avoid 2143
(also called vexillary signed permutations), resolving a conjecture by Anderson and Fulton
[1]. An important technique that we use is the generating tree developed by West [15],
which transfers the desired enumeration to that of certain lattice paths. We finish the
proof algebraically.
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The two parts of the paper are written in a self-contained manner, with more background
material involving motivation and preliminaries at the beginning of the respective sections.
Readers are free to go through the paper in any order.

2. Subspace root systems and pattern avoidance in classical types

Billey and Postnikov [2] introduced pattern avoidance for general Weyl groups to study
the smoothness of Schubert varieties. In particular, they provided a short list of patterns
and showed that a Schubert variety Xw is (rationally) smooth if and only if w avoids this list
of patterns. Their notion of pattern avoidance generalizes the classical pattern avoidance in
the symmetric group, which is also known as the Weyl group of type A. Many geometric
and combinatorial properties of permutations can be naturally generalized to any Weyl
groups and some of them can be described via the generalized notion of pattern avoidance,
including properties on the Bruhat order [11], on the weak order [5] and on hyperplane
arrangements [12].

The usage of pattern avoidance for certain properties has proven to be fruitful but from
the point of view of enumeration and the natural generalization of Wilf equivalence, little
is known. The goal of the first part of the paper is to explore this area. We first introduce
the basic concepts. Readers are referred to [9] for an introduction to root systems and
Weyl groups. The definitions in this section regarding pattern avoidance in general Weyl
groups mostly follow [2].

Let Φ ⊂ Rn be a root system with positive roots Φ+ ⊂ Φ, negative roots Φ− ⊂ Φ, and
simple roots ∆ ⊂ Φ+. We omit the axiomatic definition of root systems here. Intuitively, a
root system is a finite subset of vectors in the Euclidean space that is “highly symmetric”
in some precise sense. A subset of roots S ⊂ Φ+ is said to be biconvex if

• α, β ∈ S, α+ β ∈ Φ, then α+ β ∈ S,
• α, β /∈ S, α+ β ∈ Φ, then α+ β /∈ S.

Let WΦ be the Weyl group of Φ. The inversion set of a Weyl group element w ∈ WΦ is
defined to be

IΦ(w) := {α ∈ Φ+ : w(α) ∈ Φ−}.
The following proposition is well-known (see for example Proposition 2.1 of [8]), which says
that we can identify elements of the Weyl group with their inversion sets in a unique way.

Proposition 2.1. The function IΦ provides a bijection between WΦ and biconvex subsets
of Φ+.

For a vector subspace V ⊂ Rn, let ΦV = Φ ∩ V . It is easy to see from the axioms that
ΦV is a root system, and any root system obtained this way is called a subspace root system
of V . We will endow ΦV with the natural choice of positive roots ΦV,+ = Φ+ ∩ V which
corresponds to a unique choice of simple roots, denoted ∆V . We remark that it is usually
not the case that ∆V = ∆ ∩ V . A subset of Φ that forms a root system will be called
a subset root system. Any subspace root system is a subset root system, but there may
be subset root systems that are not subspace root systems. Such examples include subset
root systems A1 ×A1 in B2 and A3 in B3.
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With the tools of biconvex sets, we can define a restriction map from the Weyl group
WΦ to the Weyl group WΦV .

Definition 2.2. For w ∈ WΦ, define its restriction wV to be the unique w′ ∈ WΦV such
that IΦV (w′) = IΦ(w) ∩ V .

The above definition is possible since IΦ(w) ∩ V is a biconvex set in ΦV , so it is the
inversion set of a unique element wV ∈ WΦV by Proposition 2.1.

We are now equipped to define pattern avoidance for root systems.

Definition 2.3. Fix a root system Θ and π ∈ WΘ. For a root system Φ and an element
w ∈ WΦ, we say that w avoids π if there is no subspace root system ΦV for which there is
a root system isomorphism between ΦV and Θ that preserves positive roots and sends wV
to π.

If w does not avoid π, we say it contains π.
Classically, two permutation patterns are said to be Wilf equivalent if for all n, the

number of permutations in Sn avoiding one is the same as the number of permutations
avoiding the other. In complete analogy, we make the following definition.

Definition 2.4. Two patterns π1, π2 ∈ WΘ are said to be root system Wilf equivalent if for
all root systems Φ, the number of elements of WΦ avoiding π1 is the same as the number
of elements of WΦ avoiding π2, denoted π1 ∼ π2.

This entire story could also be repeated for subset root systems instead of subspace root
systems, giving a different notion of pattern avoidance. In this paper, we only consider
the case of subspace root systems, but it is evident from the analysis that the differences
between these two are minor.

We adopt the following convention for root systems of classical types. Note that the
ordering of the indices is somewhat atypical. The Dynkin diagrams can be seen in figure
1. In the following, ei is the canonical unit vector at the ith coordinate.

• Type An (n ≥ 1): Φ = {ei − ej : n + 1 ≥ i 6= j ≥ 1} ⊂ Rn+1/(1, . . . , 1), Φ+ =
{ei − ej : n+ 1 ≥ i > j ≥ 1}, ∆ = {ei+1 − ei : n ≥ i ≥ 1}. The Weyl group WAn is
isomorphic to the symmetric group Sn+1, where a permutation acts by permuting
coordinates.
• Type Bn (n ≥ 2): Φ = {±ei ± ej ,±ei : n ≥ i > j ≥ 1} ⊂ Rn, Φ+ = {ei ± ej , ei :
n ≥ i > j ≥ 1}, ∆ = {ei+1 − ei : n− 1 ≥ i ≥ 1} ∪ {e1}. The Weyl group WBn , also
denoted Bn, is isomorphic to Z2 oSn = (Z2)noSn, the group of signed permutations,
consisting of permutations σ on {−n, , . . . ,−1, 1, . . . , n} such that σ(−i) = −σ(i).
• Type Cn (n ≥ 3): Φ = {±ei ± ej ,±2ei : n ≥ i > j ≥ 1} ⊂ Rn, Φ+ = {ei ± ej , 2ei :
n ≥ i > j ≥ 1}, ∆ = {ei+1 − ei : n − 1 ≥ i ≥ 1} ∪ {2e1}. The Weyl group is the
same as for Bn.
• Type Dn (n ≥ 4). Φ = {±ei ± ej : n ≥ i > j ≥ 1} ⊂ Rn, Φ+ = {ei ± ej : n ≥
i > j ≥ 1}, ∆ = {ei+1 − ei : n − 1 ≥ i ≥ 1} ∪ {e2 + e1}. The Weyl group WDn is
isomorphic to (Z2)n−1 o Sn, the group of signed permutations on n elements with
an even number of sign changes.
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We will often write a signed permutation in two-line notation, with the indices on the
first line and their images under the signed permutation below them. An example is
−2 −1 1 2
1 −2 2 −1

.

• • • • • •An

• • • • • •Bn

• • • • • •Cn

• • • •
•

•
Dn

Figure 1. The Dynkin diagrams of root systems of classical types

In this section, we first explicitly find all irreducible subspace root systems in root
systems of classical types in 2.1, including an enumeration. In 2.2, we derive explicit
descriptions of the Weyl group element restriction maps, depending on the types of root
systems involved. In 2.3, we reduce any instance of root system pattern avoidance (for
classical types) to avoiding a set of patterns in a permutation in the usual sense or to
avoiding a set of signed patterns in a signed permutations. We finish in 2.4 by discussing
Wilf equivalence for root system pattern avoidance. We provide brief proofs for trivial
Wilf equivalences, and mention numerical data showing that there are no nontrivial Wilf
equivalences for short patterns of type A. In particular, surprisingly 1234 and 2143 are not
root system Wilf equivalent.

2.1. Subspace root systems of root systems of classical types. In this subsection,
we will characterize all irreducible subspace root systems of root systems of classical types.
We will first go over some basic facts about root systems to state and prove a few general
lemmas that facilitate the case analysis, and then go over the case analysis for all the main
types.

Given a subset root system Θ ⊂ Φ, its set of simple roots is a subset of the positive roots
of Φ. As the simple roots generate the entire root system via reflections, the simple roots
uniquely determine the subspace root system. Given a set of positive roots, in complete
analogy with the construction of the Dynkin diagram, we may form a graph in which
the vertices correspond to the roots and the multiplicity of the edge between two vertices
corresponding to roots α, β is 〈α, β〉〈β, α〉. It is well known that this number is always
either 0, 1, 2, or 3 and if it is not 0 or 1, the two roots have different lengths, and we will
make the corresponding multiedge directed towards the vertex corresponding to the shorter
root. We will call this the characteristic graph of this set of roots. This graph uniquely
determines the spatial configuration of these roots (by determining all angles and ratios of
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lengths), so if some set of roots has a graph which is isomorphic to the Dynkin diagram
of some root system Θ, then these vectors are isomorphic to the simple basis of this root
system, so they generate by reflections a root system isomorphic to Θ. To conclude, we
have proved the following lemma:

Lemma 2.5. For root systems Φ and Θ, a subset of positive vectors of Φ is the simple
basis of a subset root system isomorphic to Θ if and only if the characteristic graph of that
subset is isomorphic to the Dynkin diagram of Θ, and such a simple basis determines the
subset root system completely.

For an irreducible root system Φ with given positive roots Φ+ and simple roots ∆, there
is a unique maximal root β =

∑
α∈∆ kαα. Let us denote the maximal coefficient by mΦ,

that is, mΦ = maxα∈∆ kα.

Lemma 2.6. If mΦ < mΘ, there are no subset root systems in Φ that are isomorphic to
Θ.

Proof. Say for a contradiction that there is a subset root system in Φ that is isomorphic
to Θ. The simple roots of Θ are all positive roots of Φ, so each is a linear combination of
simple roots of Φ with positive integer coefficients. Consider the maximal root of Θ. When
written in terms of the basis for Θ, some root has a coefficient of mΘ. Hence, if we expand
this expression in terms of the simple roots of Φ, some simple root will have a coefficient
of at least mΘ, as all coefficients in the linear combination are positive. Hence, this root
has a coefficient of at least mΘ, so the maximal root of Φ has a coefficient of at least mΘ,
so mΦ ≥ mΘ, a contradiction. �

Note that mAn = 1, mBn = 2, mCn = 2, mDn = 2, and if Φ is an exceptional type,
mΦ ≥ 3. As an immediate application of the lemma, we obtain the following corollary.

Corollary 2.7. No exceptional type root system can be a subset root system in a classical
type root system. All subsystems of An are of type A.

We can further decrease the number of cases left to consider by noticing that root systems
with roots of multiple lengths cannot be contained in root systems with roots of only a
single length, as a root system isomorphism preserves ratios of lengths. This further rules
out containing Bn or Cn in Dn. The remaining cases are considered below.

2.1.1. Ak ⊂ An.

Lemma 2.8. The subset root systems Ak ⊂ An are precisely those given by a simple basis
of the form eik+1

− eik , . . . , ei2 − ei1 for any decreasing sequence of indices n+ 1 ≥ ik+1 >

ik > . . . > i2 > i1 ≥ 1. The number of Ak in An is
(
n+1
k+1

)
.

Proof. By Lemma 2.5, all we need to check is that these are precisely all the sets of k roots
with characteristic graph equal to the Dynkin diagram of Ak. For a set of roots of the form
given above, all the inner products and lengths are the same as for the standard construction
of Ak, so clearly the characteristic graph is the Dynkin diagram of Ak. Conversely, given
a set of roots whose characteristic graph is the Dynkin diagram of Ak (a path with k
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vertices), let ey − ex be one of the endpoints. The only positive roots this would have a
single edge to are roots of the form ez − ey or ex − ew (positivity requires w < x < y < z).
If the next root is ex − ew and this is not already the other endpoint of the path, then the
next root could only be eq − ex or ev − ew. eq − ex is ruled out since it would have an edge
to ey − ex, so this has to be ev − ew. Continuing by induction, we get that the path is of
the form given in the statement of the lemma. The other case of picking ez − ey is exactly
the same, except the indices are added in the other direction, again giving the form given
in the statement of the lemma. To enumerate Ak ⊂ An, we then just need to count the
number of ways one can pick the sequence of k+ 1 indices from [n+ 1], which is

(
n+1
k+1

)
. �

Lemma 2.9. Each of the subset root systems from Lemma 2.8 is also a subspace root
system.

Proof. Take a subset root system Ak ⊂ An, and take the span of the vectors in the subset.
Let this be the vector subspace V . V has dimension k, so the subspace root system in V
is Ak by Corollary 2.7. Hence, the subspace contains no vectors other than those in our
initial subset root system Ak. Hence, this initial Ak is a subspace root system. �

2.1.2. Ak ⊂ Dn.

Lemma 2.10. For k 6= 3, the subset root systems Ak ⊂ Dn are precisely those given by a
simple basis of the form ei` − ei`−1

, . . . ei2 − ei1 , ei1 + ej1 , ej2 − ej1 , . . . , ejm − ejm−1 with n ≥
i` > i`−1 > . . . > i1 ≥ 1, n ≥ jm > jm−1 > . . . > j1 > 1, i1 > j1, {iα}α∈[`] ∩ {jβ}β∈[m] = ∅,
and `+m−1 = k. The number of such Ak ⊂ Dn is

(
n
k+1

)
2k. For k = 3, Dn contains A3 of

the above form, and the only additional A3 ⊂ Dn have simple roots ej + ei, ek − ej , ej − ei
for any k > j > i. The number of these additional A3 is

(
n
3

)
.

Proof. We again just need to check that these are precisely the sets of roots with char-
acteristic graph equal to the Dynkin diagram of Ak. It is an explicit computation to see
that the above construction gives the desired characteristic graph. It remains to show that
any set of roots with the right characteristic graph is of this form. Suppose we have a
set of positive roots forming a simple basis for Ak ⊂ Dn. The sum of all simple roots in
Ak is a root, so the sum of the roots in our set has to be a root of Dn. Hence, our set
contains at most one root with a plus sign, i.e., of the form ei + ej (all other roots are of
the form ei − ej). If the set contains no root with a plus sign, then our Ak is contained
in the set of all ei − ej , which are just the positive roots of An−1. For such Ak, Lemma
2.8 gives that these are of the desired form. If the set contains a root with a plus sign,
let this be ei1 + ej1 , where i1 > j1. We can cut the Dynkin diagram into two segments at
this vertex (not including this vertex in either segment), and both of these segments only
contain roots with a negative sign, so both segments (are either empty or) form bases for
type A root systems in the aforementioned An−1, so both segments are of the form given
in Lemma 2.8. The two vertices adjacent to ei1 + ej1 in the Dynkin diagram have to have
an edge to it, so they can only be of the form ei2 − ei1 , ej2 − ej1 . It is also clear that an
index cannot appear in both segments, as there is no way for two roots with a minus to
share an index and have inner product 0. Let us now consider if the indices i1 and j1 can
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reappear in one of the segments after the first element. If they cannot, we just have the
main case given by the lemma, and the proof is done. As for the other case, the only way
one of them is present in a root but there is no edge between that root and ei1 +ej1 is when
that root is ei1 − ej1 . From the previous considerations already see that if this happens,
then the first vertex of the other segment is not present, so one of the segments is empty.
As for the segment which is nonempty, any vertex with an edge to ei1 − ej1 would give a
nonzero inner product with ei1 + ej1 . Hence, any vertex adjacent to ei1 − ej1 would also
have to be adjacent to ei1 + ej1 , so the only option is that there is one vertex between the
two, and this can only be ek− ei1 . This is exactly the extra case for A3 from the statement
of the lemma. Hence, any Ak always has to be of the form given in the statement. The
only thing left is the enumeration. For the regular case, we can choose the subsystem by
first picking the k + 1 indices that appear, j1 has to be the smallest, and for the k other
indices we can choose which sequence they are in in any way. This gives a total of

(
n
k+1

)
2k

options. As for the extra case for A3, the number of these is the number of ways one can
pick the set of 3 indices, which is

(
n
3

)
. �

Lemma 2.11. Each of the subset root systems from Lemma 2.10 is also a subspace root
system.

Proof. Suppose not, then some Ak ⊂ Dn is such that the span of the roots in this Ak
contains a subspace root system which is not Ak. By Corollary 2.7 and the discussion
immediately after it, this root system has to be Dk. We see from Lemma 2.10 that there
are no subset root systems Ak ⊂ Dk (note that Dn is only defined for n ≥ 4), so this is a
contradiction. �

2.1.3. Ak ⊂ Bn. The case of A1 is trivial – any vector forms a simple basis for A1. For
other k, it turns out that the Ak in the standard Bn have the exact same form as those in
the standard Dn.

Lemma 2.12. For k 6= 1, 3, the subset root systems Ak ⊂ Bn are precisely those given by
a simple basis of the form ei`−ei`−1

, . . . ei2−ei1 , ei1 +ej1 , ej2−ej1 , . . . , ejm−ejm−1 with n ≥
i` > i`−1 > . . . > i1 ≥ 1, n ≥ jm > jm−1 > . . . > j1 > 1, i1 > j1, {iα}α∈[`] ∩ {jβ}β∈[m] = ∅,
and `+m−1 = k. The number of such Ak ⊂ Bn is

(
n
k+1

)
2k. For k = 3, Bn contains A3 of

the above form, and the only additional A3 ⊂ Bn have simple roots ej + ei, ek − ej , ej − ei
for any k > j > i. The number of these additional A3 is

(
n
3

)
.

Proof. The positive roots of Bn can be partitioned into 2 groups: the roots with length√
2 (these are ei ± ej) and the roots with length 1 (these are ei). As all vectors in Ak

have the same length, our Ak has to be contained entirely in the set of vectors of length√
2 or contained entirely in the set of vectors of length 1. For k > 1, the second option is

impossible, as there exist nonorthogonal nonproportional pairs of roots in Ak, but all pairs
of vectors of the form ±ei are proportional or orthogonal. Hence, Ak has to be contained
entirely in the set of vectors of length

√
2, and this set contains the same vectors as Dn

for n ≥ 4. But for n < 4, the set of vectors in Bn is still explicitly the same as what
the construction for Dn would be for lower n. In any case, the proof of Lemma 2.10 still
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goes through with almost no changes, giving that the Ak in Bn are the same as in Lemma
2.10. �

For k = 1, all subset root systems are obviously also subspace root systems. For k > 1,
the only subset root systems which are not subspace root systems are the extra ones for
A3. This is the content of the following lemma.

Lemma 2.13. For k > 1, the subspace root systems Ak ⊂ Bn are precisely those given by
a simple basis of the form ei`−ei`−1

, . . . ei2−ei1 , ei1 +ej1 , ej2−ej1 , . . . , ejm−ejm−1 with n ≥
i` > i`−1 > . . . > i1 ≥ 1, n ≥ jm > jm−1 > . . . > j1 > 1, i1 > j1, {iα}α∈[`] ∩ {jβ}β∈[m] = ∅,
and `+m− 1 = k.

Proof. We need to check which subset root systems are subspace root systems. The extra
A3 of the form ei + ej , ek− ej , ej − ei are not subspace root systems, as the R-span of these

3 vectors contains the root ej =
ei+ej+ej−ei

2 , which is not in the A3 (the length is not
√

2).
As for the regular case, let us first consider k > 3. Suppose such a subset root system Ak
is not a subspace root system. Then the root system in its span is some other root system
of the same dimension. By Corollary 2.7, this has to be Bk, Ck, or Dk. In any case, for
k ≥ 4 both Bk and Ck contain Dk, and furthermore Ak has to be contained in this Dk by
the length argument from the proof of Lemma 2.12. In any case, this would imply having a
subset root system Ak ⊂ Dk, which is impossible by Lemma 2.10. This is a contradiction.
For each k ≤ 3, one can explicitly write out all roots in the subspace spanned by the subset
given in the statement of this lemma, and check that these are precisely the roots in the
subset. �

2.1.4. Ak ⊂ Cn. Both the subset and subspace root systems correspond exactly to those
in Bn. For k = 1, each vector forms a basis for A1. For k > 1, the same length argument
as in the proof of Lemma 2.12 gives that the subset root systems Ak ⊂ Cn are the same
as for Bn, and these are given in 2.12. The subspace root system argument for Ak ⊂ Cn is
also exactly the same as for Ak ⊂ Bn in the proof of Lemma 2.13.

2.1.5. Dk ⊂ Dn.

Lemma 2.14. The subset root systems Dk ⊂ Dn are precisely those given by a simple
basis of the form eik − eik−1

, . . . , ei2 − ei1 , ei2 + ei1 for any indices n ≥ ik > . . . > i1 ≥ 1.

The number of Dk ⊂ Dn is
(
n
k

)
.

Proof. The characteristic graph of such a set of roots is clearly the Dynkin diagram of Dk.
For the other direction, suppose we have a set of positive roots such that their characteristic
graph is the Dynkin diagram of Dk. Then in particular, there is a vertex that is connected
to 3 pairwise disconnected vertices. It is not hard to see that 2 of these 3 vertices must be
ei2 + ei1 and ei2 − ei1 . Then, the vertex connected to both of these can only be ei3 − ei2 .
The third vertex connected to this can only be ei4 − ei3 . It is impossible for one of ei2 + ei1
and ei2 − ei1 to have an adjacent vertex without this vertex also giving a nonzero inner
product with the other root in this pair. Hence, the only vertex that may have adjacent
vertices is ei4 − ei3 . The sum of all roots in Dk is a root in Dk, so it is also a root in our
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Dn. Hence, at most one of the simple roots for our Dk can have a plus sign. So all vertices
other than ei2 + ei1 have negative signs, so they are all elements of the set of all ei − ej ,
which is an An−1. From our previous considerations about the Dynkin diagram, we know
that the rest of the vertices form an Ak−1, so we have a Ak−1 in An−1, and the form of
this was given in Lemma 2.8. This implies that the set we are considering is of the desired
form. The number of suck sets is the number sets of k indices from [n], which is

(
n
k

)
. �

Lemma 2.15. Each of the subset root systems in Lemma 2.14 is a subspace root system.

Proof. Consider the root system in the span of the subset root system. By Corollary 2.7,
the discussion after it, and the fact that it contains Dk, the only option is for it to be Dk.
This is what we wanted to show. �

2.1.6. Dk ⊂ Bn. The subset root systems Dk ⊂ Bn are the same as Dk ⊂ Dn.

Lemma 2.16. The subset root systems Dk ⊂ Bn are precisely those given by a simple basis
of the form eik − eik−1

, . . . , ei2 − ei1 , ei2 + ei1 for any indices n ≥ ik > . . . > i1 ≥ 1. The

number of Dk ⊂ Bn is
(
n
k

)
.

Proof. The fact that Dk ⊂ Dn and Dk ⊂ Bn are the same follows from the same length
and orthogonality considerations as those in the proof of Lemma 2.12. The present lemma
then follows from Lemma 2.14. �

Lemma 2.17. There are no subspace root systems Dk ⊂ Bn.

Proof. By Lemma 2.1.6, any such subset root system Dk ⊂ Bn contains ei2 + ei1 and

ei2 − ei1 , so the R-span contains the additional root ei2 =
(ei2+ei1 )+(ei2−ei1 )

2 of Bn. Hence,
root system in the span is not Dk. Hence, no subset root system Dk ⊂ Bn is a subspace
root system. �

2.1.7. Dk ⊂ Cn. The results and proofs are the same as for Dk ⊂ Bn.

2.1.8. Bk ⊂ Bn.

Lemma 2.18. The subset root systems Bk ⊂ Bn are precisely those given by a simple basis
of the form eik − eik−1

, . . . , ei2 − ei1 , ei1 for any indices n ≥ ik > . . . > i1 ≥ 1. The number

of Bk ⊂ Bn is
(
n
k

)
.

Proof. It is an easy computation to check that a set of vectors of the given form satisfies the
problem. To show that any simple basis of Bk in Bn has this form, note that the Dynkin
diagram of Bk has roots of two different lengths, and so does Bn. The only short root in
the Dynkin diagram of Bk must be a short root of Bn, so denote it ei1 . The rest of the roots
in the Dynkin diagram are long, so the rest of the roots in our set are of the form ei − ej
or ei + ej . The latter is impossible, since the sum of all long simple roots and twice the
short simple root is a root of Bk ⊂ Bn, so it is also a root of Bn. Hence, all the long roots
in our set are of the form ei − ej , so the long roots form an Ak−1 ⊂ An−1. Furthermore,
the root adjacent to ei1 in the Dynkin diagram can only be ei2 − ei1 . Given that this is an
endpoint for our Ak−1, by Lemma 2.8, the only options are for the other indices to form
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an increasing sequence from i2 or a decreasing sequence from i1. The presence of the short
root i1 makes it impossible for i1 − i0 to fit into the Dynkin diagram, ruling out the latter
case. Hence, any set of vertices forming Bk is of the desired form. As for the enumeration,
it is the number of ways to pick k indices from [n], which is

(
n
k

)
. �

Lemma 2.19. Each of the subset root systems in Lemma 2.18 is a subspace root system.

Proof. The root system in the R-span of the subset root system Bk contains Bk, so it
contains roots of different lengths. Together with Corollary 2.7, the only options this
leaves us with is for it to be Bk or Ck. Ck has the same number of roots as Bk, so Ck does
not contain Bk, so the subspace root system in the span must be Bk. �

2.1.9. Ck ⊂ Cn. This case is essentially the same as Bk ⊂ Bn. The proof of the next
lemma is omitted, as the proof of Lemma 2.18 applies with minor changes.

Lemma 2.20. The subset root systems Ck ⊂ Cn are precisely those given by a simple basis
of the form eik−eik−1

, . . . , ei2−ei1 , 2ei1 for any indices n ≥ ik > . . . > i1 ≥ 1. The number

of Bk ⊂ Bn is
(
n
k

)
. All these subset root systems are subspace root systems.

2.1.10. Bk ⊂ Cn. The cases k = 2 and k > 2 will be treated separately.

Lemma 2.21. The subset root systems B2 ⊂ Cn are precisely those given by a simple basis
of the form ei2 − ei1 , 2ei1 with n ≥ i2 > i1 ≥ 1. All these are also subspace root systems.

Proof. It is easy to check that these give the correct characteristic graph. For the other
direction, we can pick a more convenient construction for B2 without changing what subset
root systems of our explicit construction for Cn are isomorphic to B2. So let our construc-
tion for B2 have the simple roots e2− e1, 2e1 (one can think of this as the construction for
type C with n = 2). For this construction, the proof of Lemma 2.18 applies with minor
changes to show that the B2 given in the lemma are indeed all the subset root systems
B2 ⊂ Cn. The proof of lemma 2.19 applies to show that these are also subspace root
systems. �

Lemma 2.22. For k > 2, there are no subset root systems Bk ⊂ Cn.

Proof. Bk and Cn both have roots of two lengths, so the short roots of Bk would have to be
contained in the short roots of Cn and the long roots of Bk would have to be contained in
the long roots of Cn. For k ≥ 2, among the long roots of Bk, there are some nonproportional
nonorthogonal pairs, but there are no such pairs among the long roots of Cn. Hence, there
are no Bk in Cn. �

2.1.11. Ck ⊂ Bn.

Lemma 2.23. There are no subset root systems Ck ⊂ Bn.

Proof. The proof of Lemma 2.22 applies with minor changes. �

This completes the case analysis.
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2.2. Explicit restriction maps for classical types. In this subsection, we give an
explicit description of the restriction map from WΦ to WΘ for a subspace root system Θ.
For a general Θ, there may be multiple ways it is isomorphic to the standard construction
of Θ. Each of these ways may give a different restriction map from WΦ to WΘ, as the
image of the restriction set may consist of different vectors in the explicit construction.
Nevertheless, any isomorphism can be written as a composition of a fixed isomorphism
and an automorphism preserving the positive roots, so to characterize all restriction maps,
it suffices to understand the restriction map for just one isomorphism and also the map
each automorphism induces on the Weyl group (via inversion sets). The automorphisms
preserving positive roots are in bijection with Dynkin diagram automorphisms, so it suffices
to analyze these. This is what we will do first.

2.2.1. Type Ak automorphisms. The Dynkin diagram is a path, so there is exactly one
automorphism. It is well known that this automorphism induces the reverse complement
map on the Weyl group.

2.2.2. Type Bk and Ck automorphisms. There are no automorphisms of the Dynkin dia-
gram.

2.2.3. Type Dk automorphisms. The Dynkin diagram of D4 has 6 automorphisms and
will not be considered (although it is possible to explicitly write out the effect of each
automorphism on each of the Weyl group elements). For Dk with k ≥ 5, the Dynkin
diagram has one automorphism. Our initial Dynkin diagram has roots en − en−1, . . . , e2 −
e1, e2 + e1, and the automorphism switches e2 − e1 and e2 + e1 and leaves all other simple
roots unchanged. We see that the vector space isomorphism sending e1 to −e1 and leaving
all other basis vectors unchanged acts in this way on the simple roots, so since the simple
roots span the space, this isomorphism is the isomorphism inducing the automorphism of
Dynkin diagrams.

Given an initial Weyl group element π, we are looking for the Weyl group element whose
inversion set is the image of the inversion set of π. Note that ei + e1 is in the inversion
set for the image if and only if ei − e1 is in the inversion set initially, and vice versa. We
can talk about the inversion set for any map from a root system to itself, with the exact
same definition. With this terminology, note that the map attained from the initial Weyl
group element by changing the sign of the image of 1 and −1 has the desired inversion set,
but it is not a Weyl group element for Dk since the number of sign changes is now odd.
However, we can also change the sign of the image with the smallest absolute value (1),
as this does not change whether any of the roots is inverted (only the sign of the larger
index matters, and the smallest index is not the larger index in any pair). After these two
changes, we have a map corresponding to a Weyl group element again, since the number
of sign changes is even. This is what we were looking for. We have proved the following
lemma.

Lemma 2.24. For k ≥ 5, the Dk automorphism induces via inversion sets the map on the
Weyl group that switches the sign of 1 (as an image in the signed permutation) and the
sign of the image of 1.
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Example 2.25. The automorphism sends

−4 −3 −2 −1 1 2 3 4
1 −2 4 −3 3 −4 2 −1

to
−4 −3 −2 −1 1 2 3 4
−1 −2 4 3 −3 −4 2 1.

2.2.4. A restriction map for Ak ⊂ An. The following is well known. Lemma 2.8 gave that
any Ak ⊂ An is eik+1

−eik , . . . , ei2−ei1 . We will give this the standard construction (in the
corresponding order) fk+1 − fk, fk − fk−1, . . . , f2 − f1. In this case, the restriction map is
just the restriction map for usual pattern avoidance. That is, the restriction map takes the
substring of the permutation at the indices i1, i2, . . . ik+1 and constructs the restriction by
replacing the smallest image by 1, the second smallest by 2, and so on. To check that this
restriction map is really the right one, one just has to check that it gives exactly the desired
inversion set. Some positive root f`− fm is inverted in the proposed restriction if and only
if the image of ` is less than the image of m. By definition of the proposed restriction map,
this happens iff the image of i` is less than the image of im, which happens if and only if
ei` − eim is inverted, which happens if and only if f` − fm is in the inversion set. Hence,
our proposed restriction has the right inversion set, so it is the actual restriction.

2.2.5. A restriction map for Bk ⊂ Bn. In this case, there is a unique indexing (there
are no automorphisms), and by essentially the same proof as in the previous subsection,
the restriction map is just picking a subset of indices in the signed permutation with the
property that if i is picked, then so is −i, and restricting to that subset in the usual sense.
This is also equivalent to the usual notion of signed patterns in signed permutations.

Example 2.26. For the signed permutation

−4 −3 −2 −1 1 2 3 4
1 −2 4 −3 3 −4 2 −1,

restricting to the indices −3,−1, 1, 3 gives the substring

−3 −1 1 3
−2 −3 3 2

which reduces to the signed permutation

−2 −1 1 2
−1 −2 2 1.

2.2.6. A restriction map for Ck ⊂ Cn. This is the same as Bk ⊂ Bn.

2.2.7. A restriction map for Dk ⊂ Dn. The restriction map for Bk ⊂ Bn would give a
map with the correct inversion set in this case as well, but this map might not be a Weyl
group element for Dk, depending on the number of sign switches. In 2.2.3, we argued
that changing the sign of the image with the smallest absolute value does not change the
inversion set. This allows for the parity of the number of sign changes to be fixed again
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while retaining the correct inversion set. Hence, the restriction rule is doing the restriction
for Bk ⊂ Bn and then if the number of sign changes is odd, also changing the sign of the
image with the smallest absolute value.

2.2.8. A restriction map for Ak ⊂ Dn, Bn, Cn. The restriction map for the case of the
irregular A3 ⊂ Dn is not described. The irregular case is not a subspace root system for
Bn or Cn, so we nevertheless have a full description for the these two cases. We also have
full description for all cases for k ≥ 4. For the regular Ak ⊂ Dn given in Lemma 2.13, it
turns out that for Dn, Bn, and Cn, the explicit restriction maps are the same. The regular
Ak ⊂ Dk, Bk, Ck is given by two disjoint sequences of indices. The restriction map is given
by treating the sequence i` > i`−1 > . . . > i1 as giving (absolute values of) negative indices
and j1 < j2 < . . . < jm as giving positive indices, and restricting to these indices in the
signed permutation in the usual sense. Again, this rule can be explicitly checked to give
the right inversion set. Note that the only restriction on picking indices is that it is not
possible to simultaneously pick i and −i, as the two sequences have to be disjoint.

Example 2.27. For the signed permutation

−4 −3 −2 −1 1 2 3 4
1 −2 4 −3 3 −4 2 −1,

restricting to the indices −3,−2, 1, 4 gives

−3 −2 1 4
−2 4 3 −1,

which reduces to the permutation
1 2 3 4
1 4 3 2

2.3. A reduction of all cases of root system pattern avoidance to usual pattern
avoidance.

2.3.1. Ak ⊂ An. The following proposition is well known and included for completeness.

Proposition 2.28. A Weyl group element w ∈ WAn avoids π ∈ WAn if and only if as a
permutation, w avoids the permutation π and its reverse complement.

Hence, this case of Weyl group pattern avoidance reduces to avoiding a set of at most 2
patterns in the usual sense of pattern avoidance.

2.3.2. Bk ⊂ Bn and Ck ⊂ Cn. Weyl group pattern avoidance is just the same as the usual
notion of signed pattern avoidance for signed permutations, as we saw in 2.2.5. The same
is true for Ck ⊂ Cn.

2.3.3. Dk ⊂ Dn. For an explicit signed permutation in Dn, avoiding a pattern of type Dk

is equivalent to the same permutation avoiding a set of patterns of type Bk. This set of
patterns is derived from the original pattern by the Dk automorphism and changing the
sign of the smallest image.
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2.3.4. Ak ⊂ Bn.

Lemma 2.29. A signed permutation in Bn avoiding a pattern π of type Ak is equivalent
to it avoiding the set of patterns of type Bk+1 that contain π.

Proof. If the signed permutation contains a pattern of type Bk+1 containing π, then we can
combine the restrictions to get that it also contains π. As for the other direction, for any
Ak, there is a Bk+1 involving the same indices, and the restriction to this Bk+1 contains π.
So containing π implies containing a pattern of type Bk+1 containing π. This completes
the proof. �

Similar lemmas also hold for the remaining cases Ak ⊂ Cn, Dn. In the case of Dn, one
can first state the lemma in terms of avoiding some Dk+1 and then translate that to usual
signed pattern avoidance.

2.4. Root system Wilf equivalence. The following three lemmas present three trivial
cases of Wilf equivalence.

Lemma 2.30. For a root system Θ, suppose there are π1, π2 ∈ WΘ such that there is a
root system automorphism ϕ of Θ that takes positive roots to positive roots and π1 to π2.
Then π1 ∼ π2.

Proof. For a root system Φ, if some w ∈ WΦ does not avoid π1, then there is a subspace V
such that there is an isomorphism between ΦV and Θ taking wV to π1. Since composition
with the automorphism ϕ gives an isomorphism taking wV to π2, w also does not avoid
π2. Analogously, composition with ϕ−1 gives that any w containing π2 also contains π1.
Hence, the w ∈ WΦ avoiding π1 and π2 are the same. So their number is also the same. �

Given π ∈ WΘ, we define its complement π via the following construction. IΘ(π) is
biconvex, so by definition so is Θ \ IΘ(π). Hence, Θ \ IΘ(π) is the inversion set of a unique
element of WΘ, and we write π for this element. In fact, π = w0π, where w0 is the longest
element in the Weyl group WΘ

Lemma 2.31. For π ∈ WΘ, π ∼ π.

Proof. As (w) = w, the elements of WΦ are partitioned into element-complement pairs.
Therefore, it suffices to show that if w contains π, then w contains π. Well, if w contains
π, then there is a subspace V such that there is an isomorphism between ΦV and Θ taking
IΦ(w) ∩ V to IΘ(π). Hence, the same isomorphism takes IΦ(w) ∩ V = (Φ \ IΦ(w)) ∩ V =
ΦV \ (IΦ(w) ∩ V ) to Θ \ IΘ(π) = IΘ(π). Hence, wV is taken to π, so w contains π. �

Lemma 2.32. For π ∈ WΘ, π ∼ π−1.

Proof. Again, it suffices to show that if w contains π, then w−1 contains π−1. If w contains
π, then there is a subspace V for which there is an isomorphism ϕ taking ΦV to Θ and wV
to π. Note that IΦ(w−1) = −wIΦ(w). Consider the restriction of w−1 to the subspace wV .
The inversion set of this restriction is IwV

((
w−1

)
wV

)
= −wIΦ(w)∩wV = w(−IΦ(w)∩V ).

Consider the map π ◦ϕ ◦w−1 taking ΦwV to Θ. This map is an isomorphism, and it takes



WILF EQUIVALENCE IN WEYL GROUPS AND SIGNED PERMUTATIONS 15

IwV
((
w−1

)
wV

)
= w(−IΦ(w)∩ V ) to π ◦ϕ(−IΦ(w)∩ V ) = −πIΘ(π) = IΘ(π−1). This map

also takes positive roots to positive roots, as the roots inverted by w−1 are −wIΦ(w)∩wV ,
so the negatives of the images of the inverted roots under w−1 are IΦ(w)∩V , ϕ takes these
to IΘ(π), which are inverted by π−1. Hence, all positive roots inverted by w−1 are taken
to positive roots. A similar argument shows that all positive roots that are not inverted
by w−1 are sent to roots that are not inverted by π, so they also go to positive roots under
the composite map. Hence, we have an isomorphism between ΦwV and Θ sending positive
roots to positive roots and

(
w−1

)
wV

to π−1. Hence, w−1 contains π−1. �

For Wilf equivalence of irreducible patterns, perhaps the most interesting unstudied
case is that of type A patterns. We saw before that for patterns of other types, avoiding
the pattern is equivalent to avoiding a small (constant size) set of patterns in either the
usual permutation in permutation or signed permutation in signed permutation sense. For
patterns from Ak for k ≤ 4 (so permutations of length up to 5), we used a program to count
the number of Weyl group elements avoiding each pattern for some small root systems Φ.
For each pair of patterns π1, π2 ∈ Ak for k ≤ 4, we found a small root system Φ for
which the number of elements of WΦ avoiding π1 and the number of elements avoiding
π2 are different. Hence, there are no Wilf equivalences for patterns in Ak with k ≤ 4. In
particular, 1234 and 2143 are not root system Wilf equivalent. This data also leads us to
the following conjecture.

Conjecture 2.33. There are no root system Wilf equivalences between patterns of type
A.

3. 1234-avoiding and vexillary signed permutations

In this section, we will work with a different notion of pattern avoidance in the signed per-
mutation group Bn. Recall that the signed permutation group Bn consists of permutations
w on {−n, . . . ,−1, 1, . . . , n} such that w(i) = −w(−i) for all i ∈ {−n, . . . ,−1, 1, . . . , n}.
We say that w ∈ Bn avoids π ∈ Sk if the natural embedding of w into S2n avoids π in the
sense of permutation pattern avoidance. In particular, let us define

Bn(1234) = {w ∈ Bn | there do not exist − n ≤ a < b < c < d ≤ n
such that w(a) < w(b) < w(c) < w(d)},

Bn(2143) = {w ∈ Bn | there do not exist − n ≤ a < b < c < d ≤ n
such that w(b) < w(a) < w(d) < w(c)},

to be the set of signed permutations avoiding 1234 and 2143 respectively, which are the
main objects of interest in this section.

The set of permutations avoiding 1234 and the set of permutations avoiding 2143 have
been traditionally well-studied and enjoy nice combinatorial properties. Their permutation
matrices are shown in Figure 2. Permutations avoiding 2143 are also called vexillary
permutations. A permutation w avoids 1234 if and only if its shape under RSK has at most
3 columns [13]. And a permutation w avoids 2143 if and only if its associated Schubert
polynomial is a flag Schur function [10]. Moreover, 1234 and 2143 are known to be Wilf
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•
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•
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•

Figure 2. Permutations 1234 and 2143.

equivalent in the usual sense. Let Sn(1234) and Sn(2143) be the sets of permutations on n
elements avoiding 1234 and avoiding 2143 respectively. West [15] showed that |Sn(1234)| =
|Sn(2143)| and the enumeration

|Sn(1234)| = 1

(n+ 1)2(n+ 2)

n∑
j=0

(
2j

j

)(
n+ 1

j + 1

)(
n+ 2

j + 1

)
appeared in many previous work [7], [6] and [3] and is now an exercise in chapter 7 of [13].

Analogously, the set of signed permutations avoiding 1234 and the set of signed per-
mutations avoiding 2143 have similarly nice properties. In particular, the enumeration
result

|Bn(1234)| =
n∑
j=0

(
n

j

)2

Cj

where Cj =
(

2j
j

)
/(j + 1) is the jth Catalan number, is given by Egge [4], using techniques

involving RSK and jeu-de-taquin. Geometric and combinatorial properties of signed per-
mutations avoiding 2143, which are also called vexillary signed permutations, are studied
by Anderson and Fulton [1]. They also conjectured that |Bn(1234)| = |Bn(2143)|. The
main result of this section is to answer this conjecture positively.

In fact, there are more similarities between the structures of signed permutations avoid-
ing 1234 and signed permutations avoiding 2143. For 0 ≤ j ≤ n, define

Bj
n(1234) := {w ∈ Bn(1234) | w(i) > 0 for exactly j indices i ∈ {1, . . . , n}}

and define Bj
n(2143) in a similar way.

Theorem 3.1. For j ≤ n, |Bj
n(1234)| = |Bj

n(2143)|.

As a corollary, we obtain the following result, previously conjectured by Anderson and
Fulton [1].

Corollary 3.2. For n ∈ Z≥1, |Bn(1234)| = |Bn(2143)|.

The main tool that we use is the idea of generating trees developed by West [15] to show
that |Sn(1234)| = |Sn(2143)|. A generating tree is a rooted labeled tree for which the label
at a vertex determines its descendants (their number and their labels). The generating trees
in West’s paper have vertices that correspond to permutations avoiding a fixed pattern, with
the descendants of a vertex corresponding to all permutations with a new largest element
added to some location that still avoid that pattern. The usefulness of such generating
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trees stems in part from the fact that it is often possible to present an isomorphic tree
with vertices labeled by only a few integer statistics (instead of permutations), with a
simple enough succession rule to be fit for further analysis. In the case of Sn(1234) versus
Sn(2143), West was able to find a simple description of both trees and observed that the two
are naturally isomorphic, thus proving |Sn(1234)| = |Sn(2143)| bijectively. As for the case
of interest in this paper, in Section 3.1, we describe the succession rules for generating trees

corresponding to Bj
n(1234) and Bj

n(2143), using some more refined statistics that are soon
made precise. However, it turns out that these two trees are far from being isomorphic.
Therefore, in Section 3.2, we finish the proof by observing the succession rules more closely
and comparing certain generating functions. We end in Section 3.3 with discussion on open
problems.

3.1. Generating trees for 1234 and 2143 avoiding permutations. We will start

working towards an explicit generating tree for Bj
n(1234) and Bj

n(2143) by first proving
a structural lemma about permutations avoiding either pattern. Throughout the discus-
sion, the reader is invited to keep the following visualization of signed permutations in
mind. A signed permutation w can be represented by a point graph, where the x axis
corresponds to the indices (−n, . . . ,−1, 1, . . . n), and the y axis corresponds to the images
(−n, . . . ,−1, 1, . . . , n). A point appears at (x, y) if the index x is sent to the image y by
the signed permutation w.

First, we have a structural lemma for 2143.

Lemma 3.3. Suppose w ∈ Bj
n(2143), where the j positive indices with positive images are

1 ≤ i1 < i2 < . . . < ij ≤ n. Then w(i1) < w(i2) < . . . < w(ij).

In terms of the point graph of w, this lemma is saying that the j points in the top right
quadrant form an increasing sequence. This implies that the j points in the bottom left
quadrant form a decreasing sequence.

Proof. Suppose not. Then there exists a pair of positive indices i < j with 1 ≤ w(j) <
w(i) ≤ n. Consider the pattern forming at the indices −j,−i, i, j. We have w(−i) <
w(−j) < 0 < w(j) < w(i), or in other words, the pattern is 2143. This is a contradiction

with w ∈ Bj
n(2143). �

We have a similar structural lemma for 1234.

Lemma 3.4. Suppose w ∈ Bj
n(1234), where the j positive indices with positive images are

1 ≤ i1 < i2 < . . . < ij ≤ n. Then w(i1) > w(i2) > . . . > w(ij).

In terms of the point graph of w, this lemma is saying that the j points in the top right
quadrant form a decreasing sequence. This implies that the j points in the bottom left
quadrant form an increasing sequence.

Proof. Suppose not. Then there exists a pair of positive indices i < j with 1 ≤ w(i) <
w(j) ≤ n. Consider the pattern forming at the indices −j,−i, i, j. We have w(−j) <
w(−i) < 0 < w(i) < w(j), or in other words, the pattern is 1234. This is a contradiction

with w ∈ Bj
n(1234). �
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To motivate our method of generating signed permutations, let us first informally discuss
how one can take an ordinary permutation and generate new permutations from it by simple
operations. This discussion relies on [15]. We will consider inserting one element to the
previous permutation. For a permutation on n indices, we will call the n + 1 positions
between indices sites. One can consider inserting a new element to any site. In general,
this new element can also get any image between 1 and n + 1. If we choose the image of
the new element to be i, then all other images greater or equal to i will get increased by
one – we think of this as making the image of the new element lie in the gap between the
previous i − 1 and i. In a specific scenario, one might want this generating procedure to
be more constrained than just inserting any image to any site, in order to satisfy some
additional properties.

With these preliminary considerations in mind, let us discuss what the generating pro-
cedure might be for our particular case. As we are dealing with signed permutations, our
steps are not going to be adding just one new index and image, as this would violate the
condition that the images of i and −i are negatives of each other, so we would not end up
with signed permutations. Instead, we will simultaneously be inserting to the site i and to
the site −i, with images that are also negatives of each other. As we want to keep j, the
number of positive indices with positive images, fixed, the only insertions we will perform
are insertions of positive images to negative indices. Given these informal considerations,
we will now finally define what we mean by insertions from now on.

Definition 3.5. We define the following auxiliary function (one should think of this as
the function pushing images to their new locations when the gap between `− 1 and ` gets
a new image):

β`(x) =


x if |x| < `

x− 1 if x < −`
x+ 1 if x > `

.

For a signed permutation w on the indices −n, . . . ,−1, 1, n, let w−i` be the signed per-
mutation with the following first half (which uniquely determines the second half):

−(n+1) −n . . . −(i+1) −i −(i−1) . . . −1
β`(w(−n)) β`(w(−(n−1)) . . . β`(w(−i)) ` β`(w(−(i−1))) . . . β`(w(−1)).

We call this inserting a new element to the site −i and gap `.

On any step, we will be allowed to insert a new element to any negative index site.
Furthermore, we want there to be at most one way to generate each permutation. For
this reason, we will only ever add images that are larger than the current largest image
of among negative indices. Finally, we would like all the generated permutations to avoid
2143 (or 1234), and to generate all permutations avoiding 2143 (or 1234) To this end, we
will only be adding an index if the resulting permutation avoids 2143 (or 1234). Our start
point will be a permutation with exactly j positive indices with positive images, and no
other positive indices. Such a permutation is unique by Lemma 3.3. In terms of our point
graph representation, the points in the top right and bottom left quadrant are fixed, and



WILF EQUIVALENCE IN WEYL GROUPS AND SIGNED PERMUTATIONS 19

all the action happens in the other two quadrants. The element we will be adding will
always be the largest in the top left quadrant, and we will allow insertions to any site on
the left. As for which gap the image of the new index falls in, we can think of the j initial
points as cutting the top left quadrant into j + 1 layers. When we inserted the previous
point to some layer, we can attach the next one to the same layer or any layer above it.
Initially, we can insert a point to any layer.

To summarize what we have arrived at, let us finally explicitly define our pattern avoid-
ance tree.

Definition 3.6. For π = 1234 or π = 2143, define BT j(π), the signed permutation pattern
avoidance tree for fixed number of positive indices with positive images j to be the following
generating tree:

• The label of the root is the unique signed permutation on the indices−j, . . . ,−1, 1, . . . , j
with all positive indices sent to positive images. For π = 2143, the root is

−j . . . −1 1 . . . j
−j . . . −1 1 . . . j

For π = 1234, the root is

−j . . . −1 1 . . . j
−1 . . . −j j . . . 1

• The succession rule is the following. Our label is the permutation w ∈ Bn. Let
m be the maximal image of a negative index in w (m = 0 if there are no images).
Let X(w) be the set of w−i` for all pairs i, ` with 1 ≤ n + 1 and m < ` ≤ n + 1.
The successor set of w is the subset of X(w) consisting of those permutations that
avoid π.

Let us confirm that this tree has the desired properties. Well, given a permutation
avoiding π = 1234 with j positive indices with positive images, there is a way to reconstruct
it by a sequence of such insertions. Any subpermutation of a permutation avoiding 1234
also avoids 1234. We start at the root of our tree, and then on each step we take the smallest
image from our permutation that has not been inserted yet, and insert it in the tree. Each
step can be made, as we are always inserting the new largest image to a negative index,
and with the prescribed insertion we always end up with a signed permutation avoiding
1234. For each permutation avoiding 1234 and with j positive indices with positive images,
the way it can be constructed with our procedure is unique, as the only way is to start
off with the permutation containing only the positive images of positive indices, and to
fill everything else in in increasing order. Additionally, as we add one index on each step,

Bj
n(π) as defined before is precisely the set of labels appearing on the n− j’th layer of the

tree, where counting starts at 0 from the layer of the root.
Our next goal is to give an alternative description of this tree that is easier to analyze.

As the first step towards this goal, we have the following pair of lemmas that allows us to
ignore the bottom right quadrant.
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Lemma 3.7. For a vertex labelled w in BT j(2143), if a signed permutation x in X(w)
contains 2143, then it contains some 2143 at indices i1, i2, i3, i4, such that there is no ik
for which ik > 0, x(ik) < 0.

Proof. Say for a contradiction that x contains 2143 but only so that it involves a pos-
itive index with a negative image. Let the indices at which one such 2143 appears be
a1, a2, a3, a4. Consider the pattern appearing at the reflection of those images, that is, at
−a4,−a3,−a2,−a1. It is easy to check explicitly that the pattern appearing at these in-
dices is also 2143. For these indices, we know that one of them is the reflection of a positive
index with a negative image, so that one is a negative index with a positive image. By
our assumption, we also know that this pattern contains a positive index with a negative
image. As the negative index must come before the positive one in the pattern and this
pair forms a decreasing sequence, the pair must correspond to a decreasing pair in 2143.
If this pair is 21, then we would need to have a 43 after the positive index with a negative
image. Hence, this 43 would come at positive indices. As our 2 is a positive image, the 43
also needs to come at positive images. But this is already a contradiction, as there is no
pair of positive indices with decreasing positive images, as w avoids 2143, and the positive
indices with positive images are not changed by the insertion, so Lemma 3.3 applies. This
completes the proof. �

Lemma 3.8. For a vertex labelled w in BT j(1234), if a signed permutation x in X(w)
contains 1234, then it contains some 1234 at indices i1, i2, i3, i4, such that there is no ik
for which ik > 0, x(ik) < 0.

Proof. Say for a contradiction that x contains 1234 but only so that it involves a pos-
itive index with a negative image. Let the indices at which one such 1234 appears be
a1, a2, a3, a4. Consider the pattern appearing at the reflection of those images, that is, at
−a4,−a3,−a2,−a1. It is easy to check explicitly that the pattern appearing at these in-
dices is also 1234. For these indices, we know that one of them is the reflection of a positive
index with a negative image, so that one is a negative index with a positive image. By
our assumption, we also know that this pattern contains a positive index with a negative
image. As the negative index must come before the positive one in the pattern and its
image is larger (since it is positive and the other is negative), this pair is decreasing, but
there are no decreasing pairs in 1234. This is a contradiction, completing the proof. �

We still need some more terminology before getting to presenting the generating tree.
The following three permutation statistics will be important.

• The number of sites before the first ascent (or descent). For a signed
permutation w, by a site before the first ascent (descent) we mean a site such that
there is no increasing (decreasing) pair of images among the indices before this site.
When w is clear from the context, we write x for the number of sites before the
first ascent (descent). We say a site is after the first ascent (descent) if it is not
before the first ascent (descent).
• The number of active sites. For a signed permutation w, we say a site with a

negative index is active with respect to a fixed pattern π and some fixed gap ` if



WILF EQUIVALENCE IN WEYL GROUPS AND SIGNED PERMUTATIONS 21

inserting an element to the gap ` in that site in w results in a permutation that
avoids π. When π, w, and ` are clear from the context, we will write y for the
number of active sites.
• The layer number. As discussed before, the j positive indices with positive

images partition the gaps between images to j + 1 sections or layers. Visually, this
corresponds to the top left quadrant being partitioned into j+1 horizontal strips by
horizontal lines passing through the points corresponding to positive indices with
positive images. For a permutation w, the layer number is the number of layers
above and including the layer in which the maximal image of a negative index is
in w (j + 1 if there is no image). An equivalent way to think of the layer number
is that it is the number of gaps above the maximal image of the negative indices.
This is also the same as n+ 1−m with the notation from Definition 3.6. When w
is clear from the context, we will write z for the layer number.

We can now state a few lemmas that help in many of the arguments to come.

Lemma 3.9. For π = 1234 or π = 2143 and for a vertex labelled w in BT j(π), suppose a
site is inactive w.r.t. inserting the maximal element among the images of negative indices
to a gap. Then this insertion creates a pattern π that involves the element we just inserted
and no positive index with a negative image (nothing from the bottom right quadrant).

Proof. If we ignore the two new images we created with the insertion, then the permutation
still does not contain a pattern π. So the pattern π that is present after the insertion must
involve at least one of the added elements. Lemmas 3.7 and 3.8 tell us that there is a π
contained in the new permutation which does not involve anything from the bottom right
quadrant, so in our case there must be a π in w that involves the largest element we just
inserted and no positive index with a negative image. �

Lemma 3.10. Let π = 1234 or π = 2143. Fix a layer in which we are considering active
sites. If we insert the new maximal image ` of the negative indices to some active site,
then the new active sites after this insertion are a subset of the old ones (where we think of
the site where we inserted ` to have split into two). Furthermore, if a previously active site
becomes inactive, then inserting `+ 1 there would create a pattern involving ` and `+ 1.

Proof. The new active sites are a subset of the old ones, as if a site is inactive for inserting
`, then it is also inactive for inserting ` + 1, as it would create the same pattern (` and
` + 1 relate to all other elements in the same way). If a previously active site becomes
inactive, then it must be because of creating a pattern not involving anything from the
bottom right quadrant by Lemmas 3.7 and 3.8. It is also impossible for this pattern just
to involve elements which are not ` or the reflection −`, as ` and ` + 1 relate to all other
elements in the same way, so if inserting ` at that site does not create any patterns π, then
neither does inserting `+ 1, if we only consider patterns not involving `. Hence, inserting
`+ 1 to that site must create a pattern involving ` and `+ 1. �

The plan for the rest of the derivation of the generating trees is to first describe succession
rules while staying in the same layer, then understand what happens when one passes from
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layer to layer, and finally combine the two into one succession rule. The next 3 lemmas
describe how some statistics of a permutation avoiding π determine the same statistics for
some of the successors.

Lemma 3.11. Let the pattern we are avoiding be π = 2143. Let w be a signed permutation
for which there are no images of negative indices above the `’th layer. Let x be the number
of elements before the first descent and y be the number of active sites for insertion as
the largest element of the `’th layer. If we just consider the successors of w for which we
perform an insertion in the `’th layer, then the pairs (x, y) for each successor form the
following multiset (in terms of the values of x and y for w):

{(2, y + 1), (3, y + 1), . . . , (x+ 1, y + 1), (x, x+ 1), (x, x+ 2), . . . , (x, y)}

Proof. All sites before the first descent in w are active, as by Lemma 3.9, the largest
element we add would have to be involved in 2143, and it cannot be 4 or 3 as it comes
before the previous first descent, so there would be no 21, and it also cannot be a 2 or a 1
as the elements larger than it form an increasing sequence by Lemma 3.3, so there would
be no 43.

If we insert to a site before the first descent, then there is a descent right after the
inserted element, so the new number of sites before the first descent is 1 more than the
number of sites to the left of the insertion. All previously active sites stay active, since sites
to the left of the last insertion are still before the first descent, and as for sites to the right
of the last insertion, for a site to become inactive inserting there would have to create a
2143 involving both elements that were last added (by Lemma 3.10). As the two elements
last added are adjacent images with the smaller coming first, the only option is for them to
be 2 and 3 in 2143, but then there is no 4 between them. So all active sites remain active
in that case. This case gives the successor labels (2, y + 1), (3, y + 1), . . . , (x+ 1, y + 1).

If we insert to a site after the first descent, then the number of sites before the first
descent is unchanged. All sites after the first descent but to the left of the insertion
become inactive, as inserting there would create an obvious 2143. All sites to the right
of the insertion stay active, as by Lemma 3.10 for one to become inactive, inserting there
would have to create a 2143 involving both last added elements, but as these are adjacent
images, they would have to be the 2 and 3 in 2143. There is no 4 between them, so such a
2143 cannot be formed. This case gies the successor labels (x, x+ 1), (x, x+ 2), . . . , (x, y).

Observe that the two cases together give the desired successor set.
�

Lemma 3.12. Let the pattern we are avoiding be π = 1234. Let us consider inserting the
new largest element to the top layer. Let x be the number of elements before the first ascent
and y be the number of active sites for top layer. If we just consider the successors of w
for which we perform an insertion in the top layer, then the pairs (x, y) for each successor
form the following multiset (in terms of the values of x and y for w):

{(2, y + 1), (3, y + 1), . . . , (x+ 1, y + 1), (x, x+ 1), (x, x+ 2), . . . , (x, y)}
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Proof. All sites before the first ascent in w are active, as by Lemma 3.9, the largest element
we add would have to be involved in 1234, and it is the largest element in the permutation
(as we are inserting into the top layer), so it would have to be a 4. But if there is no ascent
before it, then no 12 can be found before it, so it cannot be involved in a 1234.

If we insert the largest element into the first position, then the new first ascent is at
x + 1. It is obvious from Lemma 3.10 that all sites stay active. So this case gives the
successor label (x+ 1, y + 1).

If we insert the largest element into some other position before the first ascent, then the
new positions before the first ascent are exactly the sites preceding our inserted element.
By what we argued before, all these also stay active. All active sites after the insertion
also stay active, as Lemma 3.10 implies that for one to become active, there would need to
be a 12 before the insertion, but this is not the case. Hence, this case gives the successors
(2, y + 1), (3, y + 1), . . . , (x, y + 1).

If we insert the largest element into some active site after the first ascent, the position
of the first ascent is unchanged. It is clear that all sites after it become inactive because
inserting there would create a 1234 from the ascent and the last two insertions. It is also
clear from Lemma 3.10 that all active sites to the left of the insertion remain active. Hence,
this case gives the successors (x, x+ 1), (x, x+ 2), . . . , (x, y).

Taking the union of the successor multisets from the three cases indeed gives the desired
multiset. �

Lemma 3.13. Let the pattern we are avoiding be π = 1234. Let us consider inserting the
new largest element to a layer which is not the top layer. Let x be the number of sites
before the first ascent. If we just consider the successors of w for which we perform an
insertion in this layer, then the positions of the first ascent form the following multiset (in
terms of the value of x for w):

{2, 3, . . . , x+ 1}

Proof. All sites before the first ascent are active, since creating a new 1234 would have
at least 2 elements to one side of the inserted element, but having these on the left is
impossible since it was inserted before the first ascent, and having these on the right is
impossible by Lemma 3.4. All sites after the first ascent are inactive, because inserting
there would create a 1234 involving the first ascent as 12, the inserted element as 3, and
the largest positive image of a positive index as 4 (this is larger than the inserted element
since we are inserting to a layer below the top layer).

After inserting to the first position, the new number of sites before the first ascent is
x+ 1. After inserting into some other site before the first ascent, the sites before the first
ascent are the sites to the left of the insertion, giving the terms 2, 3, . . . , x. We see that
the labels of successors are what is given in the lemma. �

The following lemmas give a characterization of the number of active sites as one switches
from one layer to a layer above it.
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Lemma 3.14. Let the pattern we are avoiding be π = 2143. w is a signed permutation
avoiding π, for which the number of sites before the first descent is x. Consider a layer
such that there are currently only elements inserted to layers below it. Then the number of
active sites w.r.t. inserting to this layer is x.

Proof. It is enough to show that the active sites are precisely those before the first descent.
Any site after the first descent is inactive, as adding a site after a descent means we create
a pattern involving the 2 elements in the first descent as 21, the new added element as 4,
and the positive index positive image at which the new layer starts as 3. The sites before
the first descent are all active, since the new largest element we add could only appear as 4
or 3 in a pattern 2143 (because by Lemma 3.3 everything larger than our maximal element
forms an increasing sequence), and if we add a new largest element to one of the sites that
are not after the first descent, there is no 21 before it to complete the 2143. Hence, the
number of active sites is x. �

Lemma 3.15. Let the pattern we are avoiding be π = 1234. w is a signed permutation
avoiding π. If there are currently no elements in the top layer, then for inserting to the
top layer, all sites are active.

Proof. Suppose there is an inactive site in the top layer. For this to be inactive but w to
avoid π, inserting to that site must create a 1234. By Lemma 3.8, we also created a 1234
even if we ignore the bottom right quadrant. The only change in the other 3 quadrants is
the insertion of the new maximal element in the top layer, so there must be a 1234 involving
that element. This is the largest image among all the images (as it is in the top layer),
so it must be a 4 in the 1234. Hence, there is a 123 before it, but even without inserting
the new largest element, the largest positive image of a positive index is greater than all
previous images and comes after the 123, so it also fulfils the role of the 4, completing this
1234. Hence, w contains a 1234, which is a contradiction. So all sites in the top layer are
active. �

We now have all the ingredients to write down the succession rule for BT j(2143). The
statistics we will keep track of for 2143 are the following:

• x – the number of sites before the first descent
• y – the number of active sites in the layer given by the current layer number, or

in other words the number of active sites in the lowest layer to which the maximal
image of the negative indices can be inserted
• z – the layer number.

Proposition 3.16. The generating tree given by the following:

• the label of the root is (j + 1, j + 1, j + 1).
• the succession function suc that takes a label as its input and outputs the set of

successors is defined recursively as follows:

suc(x, y, z) =


0 z = 0,

{(2, y + 1, z), (3, y + 1, z), . . . , (x+ 1, y + 1, z)

(x, x+ 1, z), (x, x+ 2, z), . . . , (x, y, z)}
⋃
suc(x, x, z−1) z ≥ 1.
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is isomorphic as a rooted tree to BT j(2143).

Proof. The only things we have to check is that if a signed permutation w has the statistics
(x, y, z), then its successors have the statistics given in the lemma, and that the statistics
of the root of BT j(2143) are the same as the label of the root given in the lemma. The
latter is trivial, and as for the former, all the work is already done in Lemmas 3.11 and
3.14. Lemma 3.11 gives that the successors for fixed z are those given in this lemma, and
3.14 tells us what the labels are if we consider the layer below. Inducting on z gives that
this succession rule works. �

Example 3.17. Figure 3 shows the point graph of the 2143 avoiding signed permutation

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
−6 4 −3 5 2 1 −1 −2 −5 3 −4 6

.

In each layer (horizontal strip), the active sites are shown with a cross. The relevant
statistics x, y, z are also displayed.

•
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•
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3
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1

y = 5

j = 2

x = 3

Figure 3. The point graph of a 2143 avoiding signed permutation with
active sites and statistics

We also have the ingredients to write down the succession rule for BT j(1234). The
statistics we will keep track of for 1234 are the following:

• x – the number of sites before the first ascent



26 KAAREL HAENNI

• y – the number of active sites in the top layer (by Lemma 3.15, all sites are active
before getting to the top layer, so this just increases by one each step as long as
nothing has been inserted in the top layer yet)
• z – the layer number.

Proposition 3.18. The generating tree given by the following:

• the label of the root is (j + 1, j + 1, j + 1).
• the succession function suc that takes a label as its input and outputs the set of

successors is defined recursively as follows:

suc(x, y, z) =


{(2, y + 1, z), (3, y + 1, z), . . . , (x+ 1, y + 1, z)

(x, x+ 1, z), (x, x+ 2, z), . . . , (x, y, z)} z = 1,

{(2, y + 1, z), (3, y + 1, z), . . . , (x+ 1, y + 1, z)}⋃
suc(x, y, z − 1) z ≥ 2.

is isomorphic as a rooted tree to BT j(1234).

Proof. The proof is analogous to the proof of Proposition 3.16. �

Example 3.19. Figure 4 shows the point graph of 1234 avoiding signed permutation

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
2 −3 4 −5 1 −6 6 −1 5 −4 3 −2

.

In each layer, the active sites are shown with a cross. The relevant statistics x, y, z are also
displayed.

These generating trees turn the problem of counting permutations avoiding certain pat-
terns into the problem of counting lattice paths of some length in Z3 given by the succession
rules.

3.2. Proof of Theorem 3.1. Proposition 3.16 and Proposition 3.18 allow us to translate

the questions of enumerating Bj
n(2143) and Bj

n(1234) to questions of enumerating lattices
paths in the integer lattice Z3 with specified rules. Respectively, let P2143 be the set of all
lattice paths specified by the succession rule in Proposition 3.16 and let P1234 be the set
of all lattice paths specified by the succession rule in Proposition 3.18. We allow arbitrary
starting point (x, y, z) for those paths with 2 ≤ x ≤ y and 1 ≤ z besides those that start
at (j + 1, j + 1, j + 1). We view such a lattice path as a sequence of points connected by
edges.

For a path P ∈ P2143 and an edge e of P that goes from (x1, y1, z1) to (x2, y2, z2), we
say that e is recorded

• if z1 = z2 and y2 = y1 + 1;
• if z1 > z2 (and y2 = x1 + 1).

Notice that if z1 > z2, then we are forced to use the succession rule of (x1, x1, z2) to go to
(x2, y2, z2) and thus y2 = x1 + 1. Analogously, for P ∈ P1234 and an edge e of P that goes
from (x1, y1, z1) to (x2, y2, z2), we say that e is recorded if y2 = y1 + 1. In particular, if
z2 ≥ 2, the edge is always recorded. We see from the succession rule in Section 3.1 that if



WILF EQUIVALENCE IN WEYL GROUPS AND SIGNED PERMUTATIONS 27

•
•

•

•
•

•

•
•

•

× × ×
× × ×
× × × × × × ×

j = 3

y = 7

x = 3

z =3

2

1

4

Figure 4. The point graph of a 1234 avoiding permutation with active
sites and statistics

an edge is not recorded, then the x-coordinates are the same for the two points connected
by the edge.

Definition 3.20. For a path P ∈ Pπ, π ∈ {1234, 2143}, define its signature sig(P ) to be
the tuple consists of the x-coordinate of the starting point, appended with the x-coordinates
of the ending points of recorded edges in order.

Example 3.21. Consider the following paths P ∈ P2143 and P ′ ∈ P1234 which are

P =(4, 4, 3)→ (3, 5, 3) 99K (3, 5, 3)→ (4, 4, 2)→ (2, 5, 2) 99K (2, 4, 2)

99K (2, 4, 2)→ (2, 2, 1)→ (2, 3, 1) 99K (2, 3, 1)

P ′ =(4, 4, 3)→ (3, 5, 3)→ (4, 6, 3)→ (2, 7, 2)→ (2, 8, 1) 99K (2, 7, 1)

99K (2, 7, 1) 99K (2, 5, 1) 99K (2, 4, 1) 99K (2, 4, 1)→ (2, 5, 1) 99K (2, 4, 1)

where the recorded edges are labeled with right arrows and the edges not recorded are
labeled as dashed arrows. Both paths have signature (4, 3, 4, 2, 2, 2).

The main goal of this section is to show that for a fixed starting point v, a fixed signature
γ and n ≥ 1, the number of paths in Pπ that start with v, have signature γ and have length
n is the same for π ∈ {1234, 2143}. To do this, let us define the corresponding generating
functions. For π ∈ {1234, 2143}, k ≥ 0, q ≥ 1, γ = (γ1, . . . , γm) ∈ Zm, define Pπk,q,γ to be
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the set of paths in Pπ that start at (γ1, γ1 + k, q) and have signature γ. For any path P ,
let its length `(P ) be the number of points that it contains. Notice that if P has signature
γ = (γ1, . . . , γm), then clearly `(P ) ≥ m.

Definition 3.22. For π ∈ {1234, 2143}, k ≥ 0, q ≥ 1, γ ∈ Zm with m ≥ 1, define

F π(k, q, γ) :=
∑

P∈Pπk,q,γ

t`(P )−m.

We are going to recursively compute F π(k, q, γ) and then compare F 1234(k, q, γ) with
F 2143(k, q, γ). As for some notations, if γ ∈ Zm, write |γ| = m. For convention, we say
F π(k, q, γ) = 0 if q ≤ 0 or |γ| = 0. Let γ′ = (γ2, γ3, . . . , γm), which is ∅ if m = 1 and let
γ′′ = (γ3, . . . , γm), which is ∅ if m ≤ 2. And we will restrict our attention to only those γ’s
that can be signatures of some valid paths in Pπ. Namely, we require 2 ≤ γi+1 ≤ γi + 1.
Finally, for simplicity, let s = 1 + t+ t2 + · · · = 1/(1− t).

Lemma 3.23. For k ≥ 0, q ≥ 1, γ ∈ Zm with m ≥ 1, we have

F 2143(k, q, γ) =


sk |γ| = 1,

F 2143(0, q−1, γ) + F 2143(γ1+1−γ2, q, γ
′) |γ| ≥ 2, k = 0

sF 2143(k−1, q, γ) + sF 2143(γ1+1−γ2+k, q, γ′)

−sF 2143(γ1−γ2+k, q, γ′) |γ| ≥ 2, k ≥ 1.

Proof. We refer the readers to the succession rule in Proposition 3.16.
If |γ| = 1, then the signature has length 1 and we are summing over paths that start at

(γ1, γ1 + k, q) with no recorded edges. As soon as we decrease q, which is the z-coordinate,
we need to use the succession rule for (γ1, γ1, q − 1) and then every edge is recorded so
we cannot have any edges afterwards. Therefore, the only additional points on this path
come from any number of (γ1, γ1+k, q) followed by any number of (γ1, γ1+k−1, q) and so
on, finally ending with any number of (γ1, γ1+1, q). The resulting generating function is
then (1 + t+ t2 + · · · )k = sk.

If k = 0, then our paths start at (γ1, γ1, q). The next edge must be recorded. There are
exactly two options: either decrease the z-coordinate q, or go directly to the next signature
value γ2 at the same z-coordinate. For the first option, we obtain a generating function
F 2143(0, q − 1, γ). For the second option, we go from (γ1, γ1, q) to (γ2, γ1+1, q) and trim
the signature so the corresponding generating function is F 2143(γ1+1−γ2, q, γ

′).
The main case is |γ| ≥ 2 and k ≥ 1. Our goal is to decrease k. As k ≥ 1, when

we start at (γ1, γ1+k, q), we are allowed to have an arbitrary number of (γ1, γ1+k, q)
first via unrecorded edges, which provide a factor of s, before we choose the next edge.
Let’s now compare F 2143(k, q, γ) with sF 2143(k−1, q, γ). The paths enumerated by each of
them largely coincide, including those that decrease q right away. The only exception is
that paths that go directly from some number of (γ1, γ1+k, q) to the next recorded edge
ending at (γ2, γ1+k+1, q) are counted by F 2143(k, q, γ) but not by sF 2143(k−1, q, γ); and
similarly the paths that go directly to (γ2, γ1+k, q) from (γ1, γ1+k−1, q) are counted only
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by sF 2143(k−1, q, γ). As a result,

F 2143(k, q, γ)− sF 2143(k−1, q, γ)

=sF 2143(γ1+1−γ2+k, q, γ′)− sF 2143(γ1−γ2+k, q, γ′)

which is equivalent to the statement that we need. �

Notice that the recursive formula provided in Lemma 3.23 can determine F 2143 uniquely.

Lemma 3.24. For k ≥ 0, q ≥ 1, γ ∈ Zm with m ≥ 1, we have

F 1234(k, q, γ) =


sk |γ| = 1,

F 2143(k, q, γ) q = 1,

F 1234(k, q−1, γ) + F 1234(γ1+1−γ2+k, q, γ′) |γ| ≥ 2, q ≥ 2.

Proof. We refer the readers to the succession rule in Proposition 3.18
If |γ| = 1, then we are considering paths that start at (γ1, γ1 + k, q) with no recorded

edges. Since every edge is recorded when q ≥ 2, our only option is to decrease q all the way
down to 1 and then use the succession rule of (γ1, γ1 +k, 1). Now we can have an arbitrary
number of (γ1, γ1+k, 1) followed by an arbitrary number of (γ1, γ1+k−1, 1) and so on up to
an arbitrary number of (γ1, γ1+1, 1). The generating function is thus (1+t+t2+· · · )k = sk.

If q = 1, the succession rules for P1234 and P2143 are the same so we have P1234
k,1,γ = P2143

k,1,γ .

Therefore, F 1234(k, 1, γ) = F 2143(k, 1, γ).
When q ≥ 2 and |γ| ≥ 2, for a path in P1234

k,q,γ , it starts at (γ1, γ1+k, q). Since q ≥
2, all edges that keep the same z-coordinate q are recorded. So we have exactly two
options: decrease q by 1, which results in the generating function F 1234(k, q−1, γ), and
go to (γ2, γ1 + 1, q) indicated by the signature γ, which results in the generating function
F 1234(γ1+1−γ2+k, q, γ′). Take the sum and we get the desired equation. �

With sufficient tools to determine the generating functions F 2143 and F 1234, we are ready
to obtain their equality.

Lemma 3.25. For k ≥ 0, q ≥ 1, γ ∈ Zm with m ≥ 1,

F 1234(k, q, γ) = F 2143(k, q, γ).

Proof. We proceed by induction on |γ|, q and k in this order. From Lemma 3.23 and
Lemma 3.24, our statement is true when |γ| = 1 and is also true when |γ| ≥ 2 and q = 1.
When |γ| ≥ 2, q ≥ 2 and k = 0, from Lemma 3.23,

F 2143(0, q, γ) = F 2143(0, q − 1, γ) + F 2143(γ1 + 1− γ2, q, γ
′)

and from Lemma 3.24,

F 1234(0, q, γ) = F 1234(0, q − 1, γ) + F 1234(γ1 + 1− γ2, q, γ
′)

so by induction hypothesis, F 2143(0, q, γ) = F 1234(0, q, γ).
Now assume that |γ| ≥ 2, q ≥ 2 and k ≥ 1. With induction hypothesis and for the ease

of notation, for the arguments that we already know the equality of F 1234 and F 2143, we
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will just write F instead. By Lemma 3.23 and Lemma 3.24, and by induction hypothesis,
we have that

F 2143(k, q, γ) =sF (k−1, q, γ) + sF (γ1+1−γ2+k, q, γ′)− sF (γ1−γ2+k, q, γ′)

=sF (k−1, q−1, γ) + sF (γ1−γ2+k, q, γ′)

+ sF (γ1+1−γ2+k, q−1, γ′) + sF (γ1+2−γ3+k, q, γ′′)

− sF (γ1−γ2+k, q−1, γ′)− sF (γ1+1−γ3+k, q, γ′′)

=F (k, q−1, γ) + F (γ1+1−γ2+k, q, γ′)

=F 1234(k, q, γ)

as desired. We also see that the above argument goes through when |γ′| = 1, in which case
γ′′ = ∅. Therefore, the induction step is established so we obtain the desired lemma. �

With the main technical lemma (Lemma 3.25), Theorem 3.1 becomes immediate.

Proof of Theorem 3.1. For π ∈ {1234, 2143} and j ≤ n,

Bj
n(π) =

∑
γ1=j+1

[tn−j−|γ|+1]F π(0, j + 1, γ).

Since F 1234(0, j + 1, γ) = F 2143(0, j + 1, γ), Bj
n(1234) = Bj

n(2143). �

3.3. Open questions. There are still many interesting questions to be asked.
First, the proof provided in this section is semi-bijective. With recursive formula pro-

vided in Lemma 3.23 and Lemma 3.24, we are able to obtain the equality of F 1234(k, q, γ) =
F 2143(k, q, γ). However, is there an explicit bijection between paths in P1234

k,q,γ and P2143
k,q,γ

that is length-preserving?
Second, for a fixed j ≥ 0, it is desirable to obtain an explicit formula for the generating

function
∞∑
n=j

Bj
n(π)tn−j

for either π ∈ {1234, 2143}. The case j = 0 is the generating function for 1234 (or 2143)
avoiding permutations

∑
n Sn(1234)tn, which is studied in [3] and already has a complicated

form.
Last but not least, can our techniques be further generalized? We make the following

conjecture (see the beginning of the section for definitions).

Conjecture 3.26. For j ≤ n, |Bj
n(12345)| = |Bj

n(21354)|.

We have checked Conjecture 3.26 up to n ≤ 7. Notice that when j = 0, the statement
holds [14] and when j = n, it is not hard to see that both sides equal the Catalan number
Cj .

It is known that the identity element 1, 2, . . . , k and π = 2, 1, 3, . . . , k−2, k, k−1 are
Wilf equivalent in the sense of permutations [14]. So are they Wilf equivalent in signed
permutations?
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