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Abstract

We prove that there is an E∞-ring structure on a particular form

of Johnson-Wilson theory E(2) at height 2 at any prime. This pro-

vides a realization in spectral algebraic geometry of a flat cover of the

moduli stack of formal groups of height at most 2. We show this by

using techniques developed by Lawson and Naumann and with Zhu’s

computations of power operations for Morava E-theory E2 at height

2 to construct an E∞-ring spectrum R whose K(2)-localization is E2.

This E∞-ring has the property that taking homotopy fixed points with

respect to the action of a certain finite group is an E∞-form of E(2).
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1 Introduction

One of the slogans behind the modern algebro-geometric viewpoint of chro-

matic homotopy theory can be phrased roughly as: “it’s the theory of formal

(p-divisible) groups, only in the spectral setting”. In this paper, we take a

step in the direction of making this maxim precise by proving that there is an

E∞-ring E(2) such that the affine derived scheme SpecE(2) realizes the flat

affine cover of the moduli stack M≤2
fg parametrizing formal groups of height

at most 2. (See Section 2 for a terse review of some of these terms.)

To explain this result, we must delve into more detail. The process of tak-

ing MU -homology defines a functor sending spectra to quasicoherent sheaves

on the moduli stack, Mfg, of formal groups (the reader is referred to [Goe08]

for a study of the latter category). This functor ties the category of spectra

closely to the geometry of Mfg. Indeed, after p-localizing, the E2-page of the

BP -based Adams-Novikov spectral sequence, which converges to the graded

ring of (p-local) stable homotopy groups of spheres, is precisely the bigraded

ring H∗(Mfg;ω⊗∗), where ω is the line bundle of invariant differentials on

Mfg. This looks suspiciously like the descent spectral sequence associated

to a sheaf of E∞-rings on Mfg whose global sections are the sphere spec-

trum. However, constructing such a sheaf of E∞-rings on Mfg has proved

to be incredibly hard. The only reasonable Grothendieck topology one can

impose on this stack is the fpqc topology, but it is known that there is no

such sheaf of E∞-rings on (Mfg)fpqc (see, e.g., [SVW99, Dev17]). Further

obstructing this program is the realization that work of Quillen, Landweber,
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and Novikov, among others, suggests that Mfg is presented by the “spectral

Hopf algebroid” (BP,BP ∧ BP ). However, it is known, by [Law17, Sen17],

that the homotopy commutative ring structure on BP does not rectify to an

E∞-ring structure.

Instead, one can try to approximate this candidate derived stack by con-

structing other derived stacks which are “as close as possible” to each of

the strata in the (infinitely long) height filtration of Mfg. Recall that BP∗ ∼=
Z(p)[v1, v2, · · · ] for some choice of generators vn, and let G = SpecBP∗BP de-

note the group scheme over SpecBP∗ parametrizing isomorphisms of the uni-

versal p-typical formal group; then, these strata are precisely given by M≤n
fg =

Spec(v−1
n BP∗/(vn+1, vn+2, · · · ))//G. It is then natural to ask: is there a de-

rived stack Y ≤n whose underlying stack (in some Grothendieck) topology

is M≤n
fg ? The study of the layers M≤(n+1)

fg \M≤n
fg is spectrally realized as

the study of K(n)-local stable homotopy theory; see (this is obviously an in-

complete list) [GH94, HMS94, HL13, HS99, Rez06]. Here, we will attack the

following simpler question: is there a (necessarily affine) derived stack X ≤n

whose underlying stack (in the étale topology) is Spec(v−1
n BP∗/(vn+1, vn+2, · · · ))?

We answer this question affirmatively in the case n = 2, and propose a

method of attack for n ≥ 3.

Before stating our main result, we will recall some of the history be-

hind this problem. Most approaches have involved asking the analogous

question for Spec(BP∗/(vn+1, vn+2, · · · )). One can always form (for nice

choices of generators vn) a homotopy commutative ring spectrum BP 〈n〉 =

BP/(vn+1, vn+2, · · · ), but this structure is not even close to the amount of

data encapsulated in the phrase “E∞-ring”. We also get a homotopy com-

mutative ring spectrum E(n) = v−1
n BP 〈n〉, so the question asked above is

whether or not E(n) admits an E∞-structure. If there is a BP 〈n〉 which

admits an E∞-ring structure, then there is also an E(n) which admits an

E∞-ring structure. The cases n = −1, 0 are easy: BP 〈−1〉 = Fp and

BP 〈0〉 = Z(p). The more interesting case of n = 1 is classical; one can

realize BP 〈1〉∧p as the Adams summand in p-adic complex K-theory, and

this can be used to reconstruct the p-local E∞-ring BP 〈1〉. This is not in-

dicative of the situation for larger n, though: in [Law17, Sen17], it was shown

that the BP 〈n〉 for n ≥ 4 do not admit E∞-structures. (This does not imply

that the E(n) cannot admit the structure of an E∞-ring.) The remaining

cases are n = 2, 3. We will focus our attention on the case n = 2. In [HL10]
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(resp. [LN12]), it was proved that there is an E∞-ring structure on BP 〈2〉
at the prime 3 (resp. the prime 2). The existence of an E∞-ring structure

on a BP 〈2〉 immediately implies the existence of an E∞-ring structure on

an E(2), as mentioned above. The obvious question that remains is: what

about p ≥ 5?

A standard heuristic in homotopy theory (“large primes are easy”) sug-

gests that this problem should be easier to solve. Indeed, the work in

[LN12] proved a much more general result, using Goerss-Hopkins obstruc-

tion theory: at any fixed prime p, the homotopy commutative ring spec-

trum BP 〈2〉 admits an E∞-ring structure if and only if a certain subring

of π0LK(1)LK(2)BP 〈2〉 is closed under a certain power operation. The proof

at p = 2 utilized explicit computations of this power operation on Morava

E-theory at height 2 by Rezk in [Rez08] at the prime 2 allowed Lawson and

Naumann to conclude. (Interestingly, the proof of existence of an E∞-ring

structure at p = 3 did not rely on such computations.) It was not until re-

cently that Zhu computed power operations on Morava E-theory at height 2

at any prime in [Zhu12, Zhu15a, Zhu15b]. The hope, then, is that one could

use Zhu’s computations to prove the existence of an E∞-ring structure on

BP 〈n〉 for p ≥ 5.

In this paper, we will prove a weaker result: using the techniques of

[LN12] and Zhu’s computations, we prove the following.

Theorem 1.0.1. For a particular choice of coordinate on the universal defor-

mation G, there is a p-complete complex-oriented E∞-ring R with an action

of G = F×p2 o Gal(Fp2/Fp) by E∞-ring maps such that

1. there is a G-equivariant equivalence of E∞-rings between LK(2)R and

the Morava E-theory E2; and

2. the complex-oriented E∞-ring RhG is (the p-completion of) a solution

to an E(2)-realization problem (see Definition 4.1.2).

As a corollary, we obtain the following result.

Corollary 1.0.2. There is a p-local solution to an E(2)-realization problem.

In other words, at any prime, there is an E∞-ring structure on some E(2).

This allows us to realize an affine derived scheme X ≤2 = SpecE(2) whose
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underlying stack (in the étale topology) is Spec(v−1
2 BP∗/(v3, v4, · · · )). We

do not know if there is an E∞-ring structure on some BP 〈2〉 of which this

E∞-ring is a localization. (In fact, there are numerous things we do not know

about the E∞-ring R of Theorem 1.0.1; see Section 4.5.)

In Section 2, we recall a few basic facts about E∞-rings, complex ori-

ented cohomology theories, and Morava E-theory. Essentially no proofs are

provided, since there are numerous resources with far more detailed expla-

nations of these topics. The reader familiar with these topics should skip

these sections. In Section 3, we recall the theory of power operations on

E∞-rings, as introduced by Ando-Hopkins-Strickland and Rezk via isogenies

of formal groups (see [AHS04]). We also recall the basics of the theory of

p-divisible groups, and then prove a result (Theorem 3.3.2) which is of in-

dependent interest: the power operations on LK(m)En (where En denotes a

Morava E-theory of height n) for m ≤ n is determined purely algebraically

by the subgroup structure of the associated universal deformation, regarded

as a connected p-divisible group. Finally, in Section 4, we recall Zhu’s deriva-

tion of the power operations on a particular Morava E-theory at height 2,

and use this to prove Theorem 1.0.1 and Corollary 1.0.2. We conclude that

section by providing a(n inexhaustive) list of open questions; in particular,

in Remark 4.5.3 we provide an outline for generalizing Theorem 1.0.1 to all

heights.
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1.2 Conventions

We will freely use the language of algebraic geometry (particularly, the the-

ory of formal groups and stacks), but we will provide a terse review of a few

homotopy-theoretic concepts in the next section. We shall, however, assume

familiarity with spectra and the basics of the theory of homotopy commuta-

tive structures. All spaces will be CW-complexes. If A is an abelian group,

we will denote by A the corresponding Eilenberg-Maclane spectrum. If A is

a ring, then the same notation will be used to regard A as a discrete E∞-ring.

If X is a space, we will denote the A-cohomology of X by H∗(X;A) — in

particular, even if A = Fp, we will explicitly specify the coefficient. However,

if X is a spectrum, then H∗(X) will always mean H∗(X; Fp); the choice of

prime will be clear from context.

Whenever we discuss Morava E-theory, we will be implicitly choosing a

prime p, and working in the stable∞-category of p-complete spectra. When

we work p-locally, we will say so explicitly. We have attempted to be con-

sistent in using G to denote a formal group, and Gf to denote the formal

group law associated to G (obtained after picking a coordinate on G; the

choice of coordinate will be clear from context).

We will use Zp to denote the p-adics (and W(k) to denote the ring of Witt

vectors of a perfect field), Z(p) to denote the localization of Z at (p), and we

will distinguish between Cp, Z/p and Fp by using the Cp to denote the integers

modulo p viewed as a group, Z/p to denote the integers modulo p viewed

as a group with a chosen generator, and Fp to denote the integers modulo p

viewed as a ring. The only exception will be in Section 4 (particularly, during

the proof of Theorem 1.0.1), where we write (Z/p)× to denote the group of

units in the field Fp. The reason for this exception is that there will be an

action of F×p2 in sight, but the source of this action will be different from the

source of the action of (Z/p)×.

Although this notation will appear infrequently in the paper, we will

use X to denote a classical stack, and X to denote a derived stack with

underlying stack X. The exceptions will be moduli problems such as Mfg

and MBT.

All limits and colimits should automatically assumed to be homotopy

limits and colimits, taken in the appropriate ∞-category/model category.

We will often use the term “category” to refer to an ∞-category.
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2 Homotopy-theoretic prerequisites

2.1 E∞-rings

Two classical examples of cohomology theories are given by ordinary co-

homology H∗(−;A) and (complex) K-theory K(−). Let X be a compact

Hausdorff space, and suppose A is a ring. Then the graded abelian group

H∗(X;A) canonically endowed with the structure of a graded ring via the

cup product. Similarly, K(X) is a commutative ring, since one can con-

sider the Whitney sum and tensor product of vector bundles on X. Both

of these functors are also representable by spectra, denoted (abusively, in

the first case) by A, the Eilenberg-Maclane spectrum, (see Section 1.2) and

K, respectively. It is natural to ask that the cup product on H∗(−;A) and

and tensor product on K(−) are representable by ring objects in the homo-

topy category of spectra. Let us consider, for simplicity, the zeroth space

Ω∞K = Z × BU of complex K-theory. The existence of a canonical iso-

morphism of vector bundles F ⊗ (G ⊕ G ′) ∼= (F ⊗ G ) ⊕ (F ⊗ G ′) posits

the existence of more structure on Z× BU : it is equipped with an addition

(Whitney sum) and multiplication (tensor product) for which the usual ax-

ioms lead to diagrams which commute not just up to homotopy, but rather

up to coherent homotopy.

Let us be a little more explicit in the case of Z×BU , where we will only

consider the associativity axiom (describing the associativity isomorphism for

the tensor product of vector bundles). For simplicity of notation, let us write

X = Z × BU . The tensor product of vector bundles gives a multiplication

µ : X × X → X, along with a homotopy µ ◦ (1 × µ) ' µ ◦ (µ × 1) —

this is the assocativity. This homotopy is a map µ3 : X3 × [0, 1] → X. In

order to proceed, we need to consider four-fold multiplications. There are

five ways to take the product of four elements (in general, if Cn denotes

the nth Catalan number, then there are Cn ways to take the product of

n elements), so one can think of these different products as sitting on the

vertices of a pentagon P ; the homotopy µ3 connects consecutive edges of

this pentagon. This begets a map ∂P × X4 → X, and the condition that

all of these different methods of taking the product of four vector bundles

should be canonically isomorphic is precisely the condition that this map

extends to a map µ4 : P × X4 → X (which is appropriately coherent with
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respect to µ and µ3). One can proceed in this manner, and find that one

obtains a coherent family of maps µn : Kn×Xn → X, where the Kn are the

(contractible) Stasheff associahedra.

One can run a similar argument when studying the commutativity axiom

(for tensor products of vector bundles). In this case, one obtains a coherent

family of maps µn : EΣn×ΣnX
n → X. Of course, there was no need to work

with spaces in this definition: we could equally as well have worked with the

K-theory spectrum (and the Eilenberg-Maclane spectrum A). Let us make

these ideas precise.

Let FinSet' denote the category of (nonempty) finite sets and bijections.

Definition 2.1.1. A symmetric sequence is a functor FinSet' → Top. The

category of symmetric sequences is the functor category Fun(FinSet',Top).

The category of symmetric sequences has a composition product, which

may be described as follows. Let X and Y be two symmetric sequences.

Then X ◦ Y is defined as

(X ◦ Y )(S) =
∐

S=
∐
i∈I Si

(
X(I)×

∏
i∈I

Y (Si)

)
,

where the coproduct is taken over all unordered partitions of S into nonempty

subsets Si. Note that this defines a monoidal structure on Fun(FinSet',Top)

which is not symmetric. An operad O is defined to be a monoid in the

category of symmetric sequences equipped with the composition product.

Such an object defines a monad on the category Sp of spectra via TO(X) =∨
n≥0 O(n)×Σn X

∧n. There is a model structure on the category of operads

(see [GH04] for more details) such that if O is cofibrant as an operad, then

AlgTO
admits a model structure for which there is a Quillen adjunction

Sp
←→ AlgTO

.

An E∞-operad is an operad O such that O(S) is a contractible space with

a free ΣS-action, where ΣS is the symmetric group on the set S.

Definition 2.1.2. An E∞-ring spectrum is a TO-algebra in Sp, where O is

an E∞-operad.

In this paper, we will choose a particular E∞-operad, called the Barratt-

Eccles operad; for this operad, the associated symmetric sequence sends S to
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EΣS. We will often abuse terminology by referring to an E∞-ring spectrum

as an E∞-ring.

Remark 2.1.3. In classical algebra, the only datum required to specify a

ring structure on an abelian group A is a multiplication map µ : A⊗A→ A

which makes certain diagram commute; however, in the setting of E∞-rings,

the (homotopy) commutativity of the diagrams is not a property, but rather

extra structure: this extra data is exactly what is specified in the definition

above.

At this point, the reader might — rightly — ask why one needs to work

with E∞-rings; why do homotopy commutative rings not suffice? For an an-

swer, we refer the reader to the incomplete list [May77, BMMS86, EKMM97,

May09, Lur16] of books and papers on this topic. However, we will mention

two important reasons: first, it is possible to develop a good theory of mod-

ules and algebras over E∞-rings (see [EKMM97, Lur16], for instance), which

allows one to construct a derived affine scheme associated to an E∞-ring

such that quasicoherent sheaves over such an object recovers the associated

category of modules; and second, the ∞-category of E∞-rings is closed un-

der homotopy limits (which is essential in defining sheaves of E∞-rings (as

in Theorem 3.1.7, for instance) — it is for this reason that “sheaves” of ho-

motopy commutative ring spectra are insufficient; one can, however, work in

some appropriate model category, as described in [Goe10, Remark 2.7]).

Before concluding this subsection, we will just recall the following result,

a modern proof of which can be found as [AB14, Corollary 3.2].

Theorem 2.1.4. Let X be an infinite loop space, and let X → BGL1(S) be

an infinite loop map classifying a spherical bundle on X. Then the associated

Thom spectrum admits the structure of an E∞-ring.

2.2 Bousfield localization

Let E be a spectrum. Say that a map f : X → Y is an E-equivalence

if it induces an isomorphism in E-homology. We would like to localize the

category Sp with respect to the collection of E-equivalence. However, some

care is required to make this a well-defined procedure. To do so, we need some

definitions. A spectrum X is said to be E-acyclic if X ∧ E is contractible.
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Let Spacyc
E denote the category of E-acyclic spectra. It is clear that Spacyc

E is

closed under shifts and colimits. Moreover, there is a small subcategory of

Spacyc
E which generates it under colimits. By general nonsense, the inclusion

Spacyc
E ⊆ Sp preserves all colimits, so the adjoint functor theorem begets a

functor CE : Sp→ Spacyc
E which is right adjoint to this inclusion.

Let LE denote the cofiber of the natural transformation CE → id; this

called Bousfield localization. Say that X is E-local if every map Y → X is

null for any E-acyclic Y . Then LEX is E-local, and the map X → LEX is

an isomorphism on E-homology. In fact, these two properties characterize

the functor LE. The spectrum LEX is called the E-localization of X. In

many cases, there is an equivalence LEX → lim(X ∧ E∧n+1).

2.3 Complex oriented cohomology theories

Recall the Thom isomorphism theorem, which states that if ξ : E → B

is a rank n complex vector bundle over a base space B, then there is an

isomorphism H∗(B; F2)
x 7→x∪u−−−−→ H̃∗+2n(Th(ξ); F2), where Th(ξ) is the Thom

space of ξ, and u ∈ H2n(Th(ξ); F2) is the Thom class of ξ. In order to

get a general result along these lines, there is no need to restrict to mod 2

cohomology. Indeed, we can attempt to study those cohomology theories E

for which there exists a good notion of “Thom classes”. Such a theory is said

to be complex-oriented. One way to make this notion precise is by asking that

there be an isomorphism E∗(CP∞) ' E∗[[t]], where t is a generator in degree

2. It is not immediately clear why this implies a theory of Thom classes, so

we will briefly explain the relationship. A complex vector bundle ξ : E → B

is the same as a map B
fξ−→ BU . The classifying space BU has a filtration

by the classifying spaces BU(n) as n varies. If we have compatible choices of

elements cn ∈ E2n(BU(n)), then we can just pull back along f ∗ξ to get Thom

classes for every vector bundle. One can prove using the splitting principle

for vector bundles to prove that E∗(BU(n)) ' E∗(CP∞ × · · · ×CP∞)Σn '
E∗[[t1, · · · , tn]]Σn ' E∗[[c1, · · · , cn]], where the ci ∈ E2i(BU(n)) denotes the

ith elementary symmetric polynomial in the tk. The element that is the

“universal orientation” in E2n(BU(n)) is therefore completely determined

by our choice of t ∈ E2(CP∞).

It turns out that there is an analogous Thom isomorphism for such

complex-oriented cohomology theories. Let γ → BU be the universal com-
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plex vector bundle over BU , and let BU → BGL1(S) classify its one-point

compactification. This is a map of infinite loop spaces, so by Theorem 2.1.4

begets an E∞-ring MU , called the complex cobordism spectrum. It is often

common to replace MU with its 2-periodic version, MUP =
∨
k∈Z Σ2kMU .

Then, we have isomorphisms E∗(BU) ∼= E∗(MU). In fact, a complex orien-

tation of E is the same data as a homotopy commutative ring map MU → E.

The fact that E is a cohomology theory gives us a little more: the space

CP∞ has a multiplication CP∞ × CP∞ → CP∞ (corresponding to the

tensor product of line bundles), which induces a map E∗[[t]] ' E∗(CP∞)→
E∗(CP∞ ×CP∞) ' E∗[[x, y]] in the opposite direction in cohomology. The

image of t under this comuliplication gives us a formal group law f(x, y) ∈
E∗[[x, y]]. Forgetting about the particular choice of complex orientation t, we

learn that Spf E0(CP∞) is itself the formal group associated to a complex-

orientable homotopy commutative ring spectrum E.

A theorem of Lazard’s states that a formal group law over a ring R is

the same as a map L → R, where L is the Lazard ring. The Lazard ring is

isomorphic (noncanonically) to a polynomial ring over Z in infinitely many

generators, and the identity map L → L gives a universal formal group law

over L. In particular, any complex oriented cohomology theory E determines

a map L → E∗. In particular, the “universal complex-orientation” MU →
MU gives a formal group law over MU∗. We then have the following miracle:

Theorem 2.3.1 (Quillen). The map L→MU∗ classifying the formal group

law over MU∗ is an isomorphism.

If E is a cohomology theory, the algebra of homology operations E∗E

acts on the E-homology of anything; in particular, it acts on E∗ = E∗(∗).
We therefore have an action of MU∗MU on MU∗. It is useful to determine

MU∗MU :

Theorem 2.3.2 (Landweber, Novikov). We can identify MU∗MU with the

ring MU∗[b1, b2, · · · ] (with |bi| = 2i) parametrizing automorphisms of the

universal formal group law over MU∗.

This is precisely the group scheme of automorphisms of the universal

formal group law over MU∗. This allows us to identify the stack associated
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with the (graded1) Hopf algebroid (MU∗,MU∗MU) is precisely the moduli

stack Mfg of formal groups. In particular, we learn that a complex oriented

homotopy commutative ring spectrum E has a canonically associated formal

group GE over E∗, and that the choice of a complex orientation (i.e., a map

MU → E) is the same data as a choice of coordinate on GE.

Many cohomology theories are naturally complex oriented. A complex

orientation of a homotopy commutative ring spectrum E can equivalently be

thought of as an extension of the canonical generator of Ẽ2(S2), thought of

as a map S2 → Ω∞E, to a map CP∞ → Ω∞E. Suppose that πoddE = 0.

The obstruction to extending the map CP n → Ω∞E through CP n+1 lives

in π2n+1E, which vanishes by our condition. It follows that any cohomology

theory concentrated in even degrees is complex-orientable. We will consider

a subclass of such spectra.

Definition 2.3.3. An even periodic ring spectrum is a homotopy commuta-

tive ring spectrum E such that πoddE = 0 and such that π2E is an invertible

module over π0E with inverse π−2E such that π2kE ∼= (π2E)⊗k for k ∈ Z

under multiplication.

As proved above, all such spectra are canonically complex-oriented.

Let us now localise everything at a fixed prime p. In that case, Quillen

and Brown–Peterson showed that MU splits as MU '
∨

Σ?BP, where BP

is the Brown–Peterson spectrum. The homotopy groups of BP are also

polynomial: BP∗ ' Z(p)[v1, v2, · · · ], where |vn| = 2(pn − 1). They’re much

sparser than that of MU , which is useful in analyzing the BP -based Adams

spectral sequence (i.e., the Adams-Novikov spectral sequence). The ring BP∗
admits a moduli-theoretic interpretation very similar to that of MU∗: every

formal group law over a p-local ring M is isomorphic to a p-typical formal

group law (Cartier’s theorem), and just like MU∗ classifies formal group laws,

BP∗ classifies p-typical formal group laws.

We warn the reader that there are multiple different choices of the vns; see

[Rav86, Theorem A2.2.3]. Nonetheless, the spectrum BP has a unique addi-

tive structure, and a unique homotopy commutative multiplication. It turns

out that, as with the situation for MU , the ring of co-operations BP∗BP is

polynomial over BP∗ (so it is flat over BP∗).

1See [Mil] for a more careful study of this theory, which works out the gradings involved
in detail.
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Warning 2.3.4. Unlike MU , the spectrum BP is not an E∞-ring. This was

proved recently in [Law17, Sen17].

Let In = (p, v1, · · · , vn−1) ⊆ BP∗ denote the ideal generated by the first

few vi’s. These ideals are invariant under the action of BP∗BP , and in fact

comprise all of the invariant prime ideals (see [Lan73]).

Bousfield proved that LBPX ' X(p) for X a finite spectrum. We would

like to use the connection between formal groups and homotopy theory de-

scribed by Theorem 2.3.1 and Theorem 2.3.2 to find a filtration of every

p-local finite spectrum. To do so, it will be useful to have an interpreta-

tion of the elements vi. Let us briefly recall some facts about heights of

formal groups (which we are assuming the reader is already familiar with);

see [Goe08, Goe10].

Definition 2.3.5. Let G be a formal group over a (classical) Fp-scheme S,

and let ψ(p) : G → G(p) denote the relative Frobenius. Then G has height

≥ n if there is a factorization2

G
ϕ //

[p]

++

G(p) ϕ(p)
// · · · ϕ

(pn−1)
//G(pn)

T
��

G

Construction 2.3.6. The map T induces a map T ∗ : ωG → ωG(pn) ' ω⊗p
n

G .

As ωG is a line bundle, this is the same as a map OS → ω
⊗(pn−1)
G . This defines

a global section vn ∈ ω⊗(pn−1)
G , called the nth Hasse invariant.

Let G be a formal group over a ring R. After picking a coordinate on

G, we obtain a map BP∗ → R; then, one might (reasonably) expect that

the vi from Definition 2.3.5 are exactly the images of the elements vi ∈ BP∗
under this map. This is not exactly true: the two elements coincide modulo

(p, v1, · · · , vi−1).

2It is possible to make this definition more concrete after choosing a coordinate. Let
f(x, y) be a formal group law over a ring R. We define [1]f (x) = x, and set [n]f (x) =
f([n − 1]f (x), x). The formal power series [n]f (x) is called the n-series. One can prove
that if R is a commutative ring in which p = 0, and f(x, y) a formal group law over R,

then the p-series [p]f (x) of f has leading term axp
n

. Let vi denote the coefficient of xp
i

in
[p]f (x, y). The formal group law has height ≥ n if vi = 0 for i < n, and f(x, y) has height
exactly n if it has height ≥ n and vn is invertible.

13



The moduli stack Mfg of formal groups is stratified by height, such that

the stratum M≤n
fg of formal groups of height ≤ n can be described as follows.

Let G = SpecBP∗BP denote the group scheme over SpecBP∗ parametriz-

ing isomorphisms of the universal p-typical formal group; then, M≤n
fg =

Spec(v−1
n BP∗/(vn+1, vn+2, · · · ))//G. Similarly, M≥n

fg = (SpecBP∗/(p, v1, · · · , vn−1))//G.

The natural suggestion for spectrally realizing this filtration M≤1
fg ⊆M≤2

fg ⊆
· · · , therefore, is to “kill off vn+1, vn+2, · · · , and then invert vn”. In order

make this precise, we need to describe a geometric way to cone off elements

in the homotopy of a ring spectrum. If R is a ring spectrum and x ∈ π∗R,

we can take the cofiber of the map Σ|x|R = S|x| ∧ R x∧1−−→ R ∧ R µ−→ R,

and this is denoted R/x. Likewise, we can iterate the map to get a system

R→ Σ−|x|R→ Σ−2|x|R→ · · · , and the (homotopy) colimit is denoted x−1R,

for obvious reasons.

Warning 2.3.7. In general, if R is an E∞-ring spectrum, there is no reason

for the cone R/x to be an E∞-ring spectrum, in contrast to classical algebra.

However, x−1R is always an E∞-ring spectrum. This problem is the raison

d’être of this paper.

One way to obtain Q from BP is by coning off the elements v1, v2, · · · , and

then inverting p. In other words, Q ' p−1BP/(v1, v2, · · · ). Motivated by this,

we define E(0) = Q, and let L0 denote Bousfield localization with respect to

E(0). We then define E(n) = v−1
n BP/(vn+1, vn+2, · · · ), and let Ln denote lo-

calization with respect to E(n). The spectrum E(n) is called Johnson-Wilson

theory. We can also construct the spectrum BP 〈n〉 = BP/(vn+1, vn+2, · · · ),
so that v−1

n BP 〈n〉 = E(n). Note, however, that these spectra depend on the

choices of the vi’s; see Proposition 2.4.9.

We can also define spectra which detect “exactly” vn. The nth Morava K-

theory is defined to be K(n) = v−1
n BP/(p, v1, · · · , vn−1, vn+1, · · · ). Let LK(n)

denote Bousfield localization with respect to K(n). For instance, E(0) =

K(0) = Q, and E(1) is one of the (p − 1) summands of p-local complex K-

theory. The spectrum K(1) is a retract of mod p complex K-theory. Ravenel

proved in [Rav84] that E(n) is a ring spectrum. However, it is not known in

general whether E(n) admits the structure of an E∞-ring spectrum for n ≥ 2

— Theorem 1.0.1 provides an affirmative answer for n = 2 at any prime.

The following few (standard) results will be crucial in the sequel; we

include the proofs for the sake of completeness. Note, however, that the
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proofs use more background than we can provide in this section.

Proposition 2.3.8. Let R be a complex oriented ring spectrum (not neces-

sarily an E∞-ring). Then there is an equivalence

R //

))

LK(n)R

∼
��

holimJ∈Nn v−1
n R/IJn =: Rvn ,

where In = (p, v1, · · · , vn−1) ⊆ BP∗ and IJn = (pJ0 , vJ11 , · · · , v
Jn−1

n−1 ).

Proof. We must first show that the map R → Rvn factors through LK(n)R.

It suffices to show that each v−1
n R/IJn is K(n)-local. The spectrum v−1

n R/IJn
is built from v−1

n R/In by a finite number of cofiber sequence, so it suf-

fices to prove that the spectrum v−1
n R/In is K(n)-local. This spectrum is

a v−1
n BP/In-module, hence v−1

n BP/In-local. As 〈v−1
n BP/In〉 = 〈K(n)〉, it is

also K(n)-local. To prove that the map LK(n)R → Rvn is an equivalence,

we must show that K(n)∗R
∼−→ K(n)∗Rvn . It suffices to prove this after

smashing the map R → Rvn with a finite complex of type n. Consider the

type n complex X = S/(pI0 , vI11 , · · · , v
In−1

n−1 ) for some cofinal (I0, I1, · · · , In−1)

coming from the Devinatz-Hopkins-Smith periodicity theorem; then Rvn ∧
X ' holimJ∈Nn(v−1

n R/IJn ∧ X) ' v−1
n R/IIn. Therefore, as K(n)∗(R ∧ X) '

K(n)∗(R/I
I
n), we learn thatK(n)∗(R∧X) ' K(n)∗(v

−1
n R/IIn) ' K(n)∗(Rvn∧

X), as desired.

Lemma 2.3.9. Let E and F be spectra such that every E-local spectrum is

F -acyclic, i.e., that F∗(LEX) ' 0. Then there is a pullback square:

LE∨FX //

��

LEX

��
LFX // LELFX.

Proof. The map LE∨FX → LFX is the unique factorization of the map

X → LFX through LE∨FX since the map X → LE∨FX is an E-equivalence.

The map LE∨FX → LEX admits a similar description. To establish the

existence of the pullback square, let Y denote the pullback of the diagram.

15



We need to show that the map X → Y is an E- and F -equivalence, and that

Y is (E∨F )-local. Let us first show that X → Y is an E- and F -equivalence.

Since both X → LEX and Y → LEX are E-equivalences, we find that

X → Y is an E-equivalence. Moreover, the map X → Y is an F -equivalence

since, again, X → LFX is an equivalence and Y → LFX is an F -equivalence

(since both spectra on the right hand vertical map are F -acyclic). It remains

to show that Y is (E ∨ F )-local. For this, it suffices to show that if Z is any

(E∨F )-acyclic spectrum, then [Z, Y ] is zero. This follows from the long exact

sequence · · · → [Z, Y ]→ [Z,LEX]⊕ [Z,LFX]→ [Z,LFLEX]→ · · ·

Corollary 2.3.10. For any m < n, there is a pullback square

LK(n)∨K(m)X //

��

LK(n)X

��
LK(m)X // LK(m)LK(n)X.

Proof. By Lemma 2.3.9, it suffices to prove that K(n)∗(LK(m)X) is zero

for any spectrum X. Let Y be a K(m)-local spectrum. By the period-

icity theorem, we can inductively construct spectra S/(pi0 , vi11 , · · · , vimm ) for

sufficiently large (i0, i1, · · · , im) which are type m finite spectra. In par-

ticular, K(n)∗(S/(p
i0 , vi11 , · · · , vimm )) is not zero (since n > m); it therefore

suffices to show that Y ∧ S/(pi0 , vi11 , · · · , vimm ) is K(n)-acyclic. The period-

icity theorem also begets a self-map vNm : Σ2(pm−1)NS/(pi0 , vi11 , · · · , vimm ) →
S/(pi0 , vi11 , · · · , vimm ) which is an isomorphism on K(m)-homology, but is zero

onK(n)-homology. Therefore, the map vNm : Y ∧Σ2(pm−1)NS/(pi0 , vi11 , · · · , vimm )→
Y ∧S/(pi0 , vi11 , · · · , vimm ) is zero on K(n)-homology, but is an isomorphism on

K(m)-homology (so, in particular, it is a homotopy equivalence since both Y

and S/(pi0 , vi11 , · · · , vimm ) are K(m)-local). If a homotopy equivalence is zero

on K(n)-homology, then K(n)∗(Y ∧ S/(pi0 , vi11 , · · · , vimm )) must be zero, as

desired.

2.4 Landweber exactness

We warn the reader beforehand that we will not pay attention to the grading.

Let M be a ring with a formal group law. According to Quillen’s theorem,

this is equivalent to a ring map MU∗ →M .
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Question 2.4.1. When can this map be lifted to a map of spectra out of

MU?

Landweber’s theorem is an answer to this question. The most natural

way to define a homology theory, given the map MU∗ →M , is via the func-

tor X 7→MU∗(X)⊗MU∗ M. This satisfies all the Eilenberg-Steenrod axioms

— except the axiom that cofiber sequences go to long exact sequences. Since

MU is a homology theory, the failure of this functor to be a homology theory

can be thought of as the failure of M to be a flat MU∗-module. If M is a flat

MU∗-module, this functor certainly is represented by a homology theory. In

general, this condition is too strict, and there are not many interesting ex-

amples of homology theories stemming this way. To give a simpler condition,

we must get into the inner workings of MU .

Without loss of generality, let us assume that M has a p-typical formal

group law defined over it, so that there is a ring map BP∗ →M .

Theorem 2.4.2. Let M be as above. Then the functor X 7→ BP∗(X)⊗BP∗M
is a homology theory iff for all n, the sequence (p, v1, · · · , vn) is a regular se-

quence in M (in other words, vk is a non-zero-divisor in M/(p, v1, · · · , vk−1)).

Before we give the (short) proof, let us recall the Landweber filtration

theorem.

Lemma 2.4.3 (Landweber filtration theorem). Any BP∗BP -comodule M

which is finitely presented as a BP∗-module has a filtration 0 = Mk ⊂ · · · ⊂
M1 ⊂ M where Mj/Mj+1 is isomorphic as a BP∗BP -comodule to (a shift

of) BP∗/Inj .

Proof of Theorem 2.4.2. Suppose that (p, v1, · · · , vn) forms a regular sequence

in M . Then tensoring with M preserves the short exact sequences 0 →
BP∗/In

·vn−→ BP∗/In → BP∗/In+1 → 0. In particular, TorBP∗1 (BP∗/In,M) '
0 for all n. By Lemma 2.4.3, we find that TorBP∗1 (N,M) ' 0 for every

BP∗BP -comodule N which is finitely presented as a BP∗-module. If X is a

finite complex, then BP∗(X) is such a comodule, so TorBP∗1 (BP∗(X),M) ' 0.

It follows immediately that the functor X 7→ BP∗(X)⊗BP∗ M defines a ho-

mology theory on finite spectra; since every spectrum is a filtered colimit of

finite spectra, the result follows. We will not prove the converse.
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There is an analogue (a corollary, in fact) of Theorem 2.4.2 for MU (both

integrally and p-locally):

Theorem 2.4.4 (Landweber exact functor theorem). Let M be an MU∗-

module. Then the functor X 7→MU∗(X)⊗MU∗M is a homology theory iff for

every prime p and integer n, multiplication by vn is monic on M/(p, v1, · · · , vn−1).

If E is a complex oriented cohomology theory such that the induced

formal group law on E∗ is Landweber exact, then the map MU → E induces

an isomorphism MU∗(X)⊗MU∗ E∗ → E∗(X) for all spectra X. Indeed, both

sides are homology theories by Theorem 2.4.4, so it suffices to prove that the

map is an isomorphism when X is the sphere spectrum. In this case, the

result is obvious.

To apply Theorems 2.4.2 and 2.4.4, we only need to know that multiplica-

tion by vn is injective modulo (p, v1, · · · , vn−1), so the discrepancy discussed

after Definition 2.3.5 is not relevant.

Warning 2.4.5. The module K(n)∗ = v−1
n BP∗/(p, v1, · · · , vn−1, vn+1, · · · ) is

the graded ring associated to the complex-oriented cohomology theory K(n)

given by Morava K-theory (discussed above) which is not Landweber exact.

The fact that complex K-theory can be recovered from its formal group

law should not be very surprising, particularly in light of the following ob-

servation.

Example 2.4.6. The module E(n)∗ = v−1
n BP∗/(p, v1, · · · , vn−1) is Landwe-

ber exact; the associated homotopy commutative ring spectrum E(n) is

precisely the Johnson-Wilson theory constructed earlier. We will reiter-

ate here that this spectrum might depend on the choice of the elements

v1, · · · , vn−1, vn; see Proposition 2.4.9. If n = 1, then the spectrum E(1)

admits the structure of an E∞-ring, and can be identified (up to extension of

scalars) with the Adams summand of p-adic K-theory. The primary question

answered by Theorem 1.0.1 is the existence of an E∞-structure on E(2) at

all primes p.

Conjecture 2.4.7. Let E and E ′ be two homotopy commutative complex-

oriented ring spectra such that there are choices of vE1 , · · · , vEn and vE
′

1 , · · · , vE′n
such that the maps Z(p)[v

E
1 , · · · , vEn ] ⊆ BP∗ → E∗ and Z(p)[v

E′
1 , · · · , vE′n ] ⊆
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BP∗ → E ′∗ send vEn and vE
′

n to invertible elements and such that the induced

map Z(p)[v
E
1 , · · · , vEn−1, (v

E
n )±1] → E∗ and Z(p)[v

E′
1 , · · · , vE′n−1, (v

E′
n )±1] → E ′∗

are isomorphisms. Then there is an equivalence between the spectra under-

lying E and E ′ (i.e., they are the same “additively”).

The analogous statement for BP 〈n〉 is true, by [AL17]:

Theorem 2.4.8. Let E and E ′ be two homotopy commutative complex-

oriented ring spectra such that there are choices of vE1 , · · · , vEn and vE
′

1 , · · · , vE′n
such that the maps Z(p)[v

E
1 , · · · , vEn ] ⊆ BP∗ → E∗ and Z(p)[v

E′
1 , · · · , vE′n ] ⊆

BP∗ → E ′∗ are isomorphisms. Then there is an equivalence between the spec-

tra underlying E and E ′.

Recall that the spectrum E(2) has homotopy groups Z(p)[v1, v
±1
2 ]. How-

ever, there are multiple different choices of the elements v1 and v2, and if

one wants to construct an E∞-ring structure “on the spectrum E(2)” (note

that, by Conjecture 2.4.7, the spectrum E(n) is expected to be unique, just

as with BP 〈n〉∧p ), then we would at least need to know that any two choices

of v1 and v2 give the same homotopy commutative ring structure. However,

this is false, as proved in [Str10]:

Proposition 2.4.9 (Strickland). The BP 〈2〉’s (and E(2)’s) associated to

the Hazewinkel generators and the Araki generators (see [Rav86, Theorem

A2.2.3]) are not equivalent as homotopy commutative ring spectra.

This illustrates why some care is required in making Theorem 1.0.1 pre-

cise. We will study this problem in more detail below. However, note that if

p > 2, then the spectra K(n) admit the structure of homotopy commutative

rings, but they never admit the structure of an E∞-ring (in fact, even the

structure of an E2-ring). Indeed, suppose that K(n) did admit the structure

of an E2-ring. Since p = 0 in π0K(n) ∼= Fp, the Hopkins-Mahowald theorem

expressing Fp as the initial E2-algebra with p = 0 would show that K(n) is

an Fp-algebra. In particular, K(n)∧Fp would be nonzero. This, however, is

impossible, since this ring would carry an isomorphism between the additive

formal group and a formal group of height n.

2.5 Morava E-theory

We will now use Theorem 2.4.4 to construct Morava E-theory, denoted En.

(This is not the same as the Johnson-Wilson theory E(n).) The formal group
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law over π∗En will have an explicit algebro-geometric interpretation. We

begin with an analysis of the local structure of formal group laws, following

[Lur10]. Fix a perfect field k of characteristic p and a formal group G0 over

k.

Definition 2.5.1. Let R be a local Artinian ring with a map k → R/m

(so the maximal ideal m of R is nilpotent, and each quotient mk/mk+1 is a

finite-dimensional k-vector space). A deformation of G0 is a formal group G

over R along with an isomorphism G ⊗R R/m ∼= G0 ⊗k R/m. Let Def(R)

denote the groupoid of deformations (up to isomorphism) of G.

Theorem 2.5.2 (Lubin-Tate). Let R be any local Artinian ring with residue

field k. Then Def(R) is discrete, and there is a complete local ring OLT(k,G0)

such that {local ring maps OLT(k,G0) → R} → Def(R) is a bijection.

By Theorem 2.5.2, there is a universal deformation G of G0 living over

Spf OLT(k,G0) =: LT(k,G0). We can choose a coordinate x on G to obtain

a formal group law Gf such that its p-series is [p]Gf
(x) = px +Gf

u1x
p +Gf

· · ·+Gf
un−1x

pn−1
+Gf

xp
n
, where n denotes the height of G0. This defines an

isomorphism OLT(k,G0)
∼= W(k)[[u1, · · · , un−1]] which is noncanonical since it

depends on a choice of coordinate on G. parametrizes universal deformations.

Applying the Landweber exact functor theorem, we get a cohomology theory

E(k,G0) for which π∗E(k,G0) ∼= OLT(k,G0)[u
±1] with |u| = 2.

Definition 2.5.3. The even periodic homotopy commutative ring spectrum

E(k,G0) is called Morava E-theory.

For example, when n = 1 and G = Ĝm is the usual multiplicative formal

group, this is exactly p-adically complete K-theory.

Let G0 be a formal group law of height n over k = Fpn . Then every

automorphism of G0 gives rise to an automorphism of the discrete groupoid

Def(R); by Theorem 2.5.2, this begets an action of Aut(G0) on π∗En. This

action lifts to the level of spectra: every element of Aut(G0) gives rise to an

automorphism of En. These automorphisms are very well-behaved; in fact,

we have:

Theorem 2.5.4 (Goerss-Hopkins-Miller). The spectrum E(k,G0) admits

the structure an E∞-ring; moreover, this E∞-ring structure is unique if k
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is algebraically closed. The space AutE∞(E(k,G0)) of E∞-ring maps is dis-

crete, and there is a continuous isomorphism between AutE∞(E(k,G0)) and

Aut(G0).

In the proof of Theorem 3.3.2 (which is crucial for Theorem 1.0.1), we

will rely heavily upon this moduli-theoretic interpration. The group Γ :=

Aut(G0) is a profinite p-adic Lie group, as can be proved using Dieudonné

theory; it is called the Morava stabilizer group.

Remark 2.5.5. Note that E is complex-oriented by construction — however,

it is not known whether there is an complex orientation MU → E which is

an E∞-ring map.

3 p-divisible groups and power operations

3.1 p-divisible groups

The theory of p-divisible groups was originally introduced by Tate in [Tat67].

We will recall some of the basic theory. Good references for this material

include Tate’s original paper, as well as [Mes72, Goe09], the latter of which

we will be closely following. Fix a prime p, and assume that p is topologically

nilpotent.

Definition 3.1.1. Let R be a Zp-algebra. A p-divisible group G of height

n over R is an fppf sheaf of abelian groups on R such that

1. the map [pk] : G→ G is a surjection in the fppf topology;

2. the kernel G[pk] of [pk] is a finite flat group scheme of constant rank

pnk; and

3. G is the colimit of G[pk].

A morphism between p-divisible groups is simply a homomorphism of fppf

sheaves.

The first and second conditions are equivalent to the seemingly weaker

requirements that [p] : G→ G is a surjection in the fppf topology, and that

G[p] is a finite flat group scheme (of constant rank pn).
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There are numerous facts about p-divisible groups which we will utilize

below. Let 1 ∈ G denote the identity section, and let G◦ be the comple-

tion at 1. This is a formal group, and will generally be referred to as the

formal group associated to G. The dimension of G will be defined to be

the dimension of G◦. Note that G◦ is not necessarily 1-dimensional. It is

a theorem of Messing’s from [Mes72] that this is the fppf sheaf defined by

G◦(A) = ker(G(A) → G(Ared)) if p is nilpotent in R. Moreover, the quo-

tient G/G◦ =: Get is an étale group scheme over R, so we obtain a short

exact sequence 0→ G◦ → G→ Get → 0. Say that a p-divisible group G is

connected if G◦ = G. By [Tat67, Proposition 1], there is an equivalence of

categories between connected p-divisible groups and p-divisible formal groups

(i.e., formal groups for which the multiplication by [p] map is an isogeny) over

a complete Noetherian local ring of mixed characteristic (0, p).

p-divisible groups are very natural objects to consider. For example, if

A is an abelian variety over a Zp-algebra R of dimension g, then A[p∞] =

colimA[pn] is a p-divisible group over R of dimension g and height 2g. If E is

an elliptic curve (i.e., an abelian variety of dimension 1) over R, then E[p∞]

is connected if and only if E is supersingular. If the p-divisible group E[p∞]

has a nontrivial étale component, then it is ordinary, and the connected

component E[p∞]◦ is the formal group associated to E (i.e., the relative

Picard scheme Pic0
E/SpecR).

Since homotopy theory is concerned with formal groups of dimension 1,

the simplest entrance of the theory of p-divisible groups into homotopy the-

ory comes from spectra associated to (certain) elliptic curves. The example

of elliptic curves also illustrates an important fact about p-divisible groups

which is simply false for formal groups (and makes them a lot more conve-

nient to work with): the height of a p-divisible group remains constant under

base change. Let us give two examples showing that the height of a formal

group can vary (it can only decrease) after base change.

Example 3.1.2. Let E be the elliptic curve defined by the Weierstrass form

y2 = x(x−1)(x+2) over Z[1/6]. It is easy to check (by computing the Hasse

invariant, or by glancing at [Har77, Example 4.23.6]) that E is supersingular

when p = 23 (so its associated formal group has height 2), but that for

5 ≤ p ≤ 73 and p 6= 23, this curve is ordinary (so its associated formal group

has height 1).
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Example 3.1.3. Another example (more relevant, perhaps) to our discussion

below, is the following. Let (G0)f be a formal group law over Fp2 , and

let Gf be its universal deformation over W(Fp2)[[u1]]. This has p-series

[p]Gf
(x) = px+Gf

u1x
p+Gf

xp
2
. If we base change via the map W(Fp2)[[u1]]→

Fp2 [[u1]] ↪→ Fp2((u1)), then we find that the p-series is u · xp +Gf
xp

2
, where

u is a unit in Fp2((u1)). In particular, the height of the formal group is now

1.

A deformation of a connected p-divisible group need not remain con-

nected, which implies that the height of the connected component of a defor-

mation can decrease. For this reason, it is more natural to study p-divisible

groups deforming a (formal) connected p-divisible group, rather than con-

nected p-divisible groups deforming a connected p-divisible group.

Warning 3.1.4. From this point onwards, we will only consider 1-dimensional

p-divisible groups (i.e., p-divisible groups whose associated connected com-

ponent is a formal group of dimension 1).

Then, one has the following result (see [BL10, Theorem 7.1.3] and [Goe09,

Remark 4.12]):

Theorem 3.1.5. Let G0 be a p-divisible group over a perfect field k of finite

height n. Consider the moduli problem sending a complete local Noetherian

ring (R,m) to the groupoid of p-divisible groups G over R along with an iso-

morphism ι : G⊗RR/m
∼=−→ G0⊗kR/m, where morphisms are isomorphisms

of p-divisible groups restricting to the identity on G0. Then this moduli

problem is represented by an affine scheme LT(G0), which is noncanonically

isomorphic to Spf W(k)[[u1, · · · , un−1]].

Remark 3.1.6. In particular, a deformation of a p-divisible group of height

n and formal height n need not have formal height n. This will be used a

great deal in the next subsection.

The primary relationship between p-divisible groups and homotopy theory

can be phrased as follows (see [BL10, Theorem 8.1.4] and [Lur18]; in the latter

reference, the result is not phrased like this, but it is not hard to extrapolate

from there).
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Theorem 3.1.7 (Lurie). Let X be a locally Noetherian separated Deligne-

Mumford stack over Spec Zp, and let G → X be a p-divisible group over X

of constant height n and (formal) dimension 1. Suppose that there exists an

étale cover π : Y → X by a scheme Y such that for every point in x ∈ Y ∧p ,

the induced map Y ∧x → LT(π∗G)x classifying the deformation (π∗G)|Y ∧x of

(π∗G)x is an isomorphism of formal schemes. Then there exists a sheaf of

E∞-rings OX on the étale site of X∧p such that

• for every formal affine étale open f : Spf R → X∧p , the E∞-ring

OX (Spf R) is an even periodic E∞-ring with π0OX (Spf R) = R; and

• there is an isomorphism (natural in the map f) between the formal

group associated to OX (Spf R) and f ∗G.

Remark 3.1.8. A simpler way to state the theorem is: let MBT(n) be

the moduli stack of p-divisible groups of height n, and suppose that X is

a locally Noetherian separated Deligne-Mumford stack over Spec Zp. Let

f : X → MBT(n) classify a p-divisible group of height n over X. If f is

formally étale, then there is a sheaf of E∞-rings on the étale site of X∧p
satisfying the conditions of Theorem 3.1.7. We warn the reader that one

needs to be a lot more careful when stating the result in this way: for one,

the stack MBT(n) is not an algebraic stack in the fpqc topology; rather, it

is a pro-Artin stack. (Note that the moduli of p-torsion finite flat group

schemes is not a tame stack: the automorphism group of the étale group

scheme (Z/pk)n of rank pnk is GLn(Z/pk), which has order divisible by p.)

3.2 Constructing power operations

Let E be an E∞-ring spectrum. The product of cocycles in E-cohomology

is generally not strictly commutative. Power operations provide a concrete

method to measure this discrepancy. In this section, we review the requisite

background from [AHS04].

Let X be a space. Consider a cohomology class α ∈ E0(X) = [Σ∞+X,E],

represented by a map α : Σ∞+X → E. The nth power of α is represented by a

map αn : (Σ∞+X)∧n → E∧n → E, where the latter map is the multiplication

on E. Since E is an E∞-ring, the map E∧n → E factors through (Σ∞+EΣn ∧
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E∧n)/Σn = (E∧n)hΣn . It follows that the map αn in turn factorizes as a map

α̃n : (Σ∞+ (EΣn ×X×n))/Σn → (E∧n)hΣn → E.

Since X is a space, it is in particular an E∞-coalgebra (via the diagonal map

Σ∞+ ∆ : Σ∞+X → Σ∞+X
×n), so we obtain a composite map

α̃n : Σ∞+EΣn/Σn ∧ Σ∞+X ' Σ∞+ (BΣn ×X)→ (E∧n)hΣn → E.

This defines a map Pn : E0(X) → E0(BΣn ×X), which is easily seen to be

multiplicative. Note that if the multiplication on E was strictly commutative,

so that the multiplication map factored through E∧n/Σn, the map Pn would

simply be the nth power map.

Example 3.2.1. One can extend the above construction to a map Pn :

E∗(X)→ E∗(BΣn×X). We illustrate this concretely with the case when E

is the Eilenberg-Maclane spectrum F2. Let n = 2. Suppose X is an arbitrary

space, and consider the composite P2 : H∗(X; F2) → H∗(BΣ2 × X; F2) ∼=
H∗(BΣ2; F2) ⊗F2 H∗(X; F2). Since BΣ2 ' RP∞ and H∗(RP∞; F2) ∼= F2[t],

this is a map P2 : H∗(X; F2)→ H∗(X; F2)[t]. If α ∈ H∗(X; F2), then P2(α) =∑
i≥0 fi(α)ti, and one can prove that fi(α) = Sqi(α).

The map Pn is not additive. Since the space X will be irrelevant in

the sequel, we will restrict to the case X = ∗. Even in this case, the map

Pn : E0(∗) → E0(BΣn) is not additive. Indeed, one can prove the following

result.

Lemma 3.2.2. Let Trk denote the map E0(BΣk)⊗E0E0(BΣn−k)→ E0(BΣk×
BΣn−k) → E0(BΣn) induced by the transfer map along the inclusion Σk ×
Σn−k → Σn on E-cohomology. Then

Pn(x+ y) = Pn(x) + Pn(y) +
∑

1≤k≤n−1

Trk(Pk(x)⊗ Pn−k(y)).

To obtain a ring map, we therefore need to quotient out E0(BΣn) by

the image of Trk for 1 ≤ k ≤ n − 1. In other words, if I denotes the ideal

generated by the image of Trk as k ranges between 1 and n − 1 (inclusive),

then the map ψn : E0 → E0(BΣn)/Tr is a ring map. For p prime, the
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composite E0 → E0(BΣn)/Tr → E0/n is precisely the pth power map, so

the map ψp is a lift of the pth power map.

Let us now specialize to the case when E is an even-periodic E∞-ring such

that E0 is a p-torsion free complete local ring with maximal ideal m such

that p ∈ m, and such that if G is the formal group on E0, then G⊗E0 E0/m

has finite constant height. There is a fiber sequence Z
pn−→ Z → Z/pn of

Eilenberg-Maclane spectra, which gives a fiber sequence S1 → BCpn → CP∞

after rotating and delooping. The associated Gysin sequence shows that

E0(BCpn) ∼= E0[[t]]/[pn](t), where t is a complex orientation of E (corre-

sponding to a choice of coordinate on the universal deformation G). In

particular, SpecE0(BCpn) is precisely the group scheme G[pn] of pn-torsion

in the universal deformation G.

One then obtains the following result (see [AHS04, Theorem 3.25]):

Theorem 3.2.3 (Ando-Hopkins-Strickland, Rezk). Let ψ∗G denote the in-

duced formal group over Spf E0(BΣpn)/Tr, and let SpecE0(BCpn) ⊆ ψ∗G

denote the canonical subgroup of rank pn. Then (Spf E0(BΣpn)/Tr, SpecE0(BCpn))

is universal among pairs (A,C) of E0-algebras f : E0 → A and cyclic sub-

groups C ⊆ f ∗G of rank pn.

In particular, any such pair (A,C) gives rise to an E0-algebra map f̃ :

E0(BΣpn)/Tr→ A such that the map f ∗G→ f̃ ∗ψ∗G of formal groups is an

isogeny of degree p with kernel C.

Remark 3.2.4. It is interesting and useful to consider the case of height

1. Indeed, in this case, there is exactly one subgroup scheme of rank pn,

given by G[pn] ⊆ G. It follows from Theorem 3.2.3 that there is a canonical

isomorphism E0(BΣpn)/Tr ∼= E0, and the resulting map ψp
n

is just a ring

endomorphism E0 → E0. We will denote by θ : E0 → E0 the map of sets

defined by θ(x) = (ψp(x)− xp)/p.

Example 3.2.5. Let E = Kp be p-adic K-theory, so that the associated

formal group does indeed have height 1. Then the map ψp
n

is the pnth

Adams operation.

In the case of Morava E-theory, this result is even simpler to state. Recall

that if k is a perfect field of characteristic p (we did not need this assumption

for Theorem 3.2.3) and G0 is a formal group of height n over k, then we get an
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E∞-ring E = E(k,G0) functorially in the pair (k,G0) such that π0E(k,G0)

is the universal ring representing deformations of G0. Let G denote the

universal formal group over π0E(k,G0). Then:

Corollary 3.2.6. The affine formal scheme LTΓ0(pn) = Spf E0(BΣpn)/Tr

represents the moduli problem sending an Artinian local W(k)-algebra (A,mA)

to the groupoid (which is a posteriori a set) of formal groups G′ over A along

with an isomorphism ι : G⊗AA/mA
'−→ G0⊗kA/mA as well as a cyclic sub-

group scheme C of rank p.

Remark 3.2.7. The notation LTΓ0(pn) is not an accident: if G0 is the comple-

tion at the identity section of a supersingular curve C over Fp2 , for instance,

then LTΓ0(pn) is the completion of the Artin stack MΓ0(pn) of (smooth, but

one could equally well work with generalized) elliptic curves with a Γ0(pn)-

structure (i.e., a cyclic subgroup of order pn) at the geometric point defined

by C.

Remark 3.2.8. This interpretation of E0(BΣpn)/Tr is quite helpful; it gives

a far more conceptual (and purely algebraic!) construction of power op-

erations on Morava E-theory, for instance. To explain this construction,

note that the scheme LTΓ0(pn) has a universal formal group G′ defined over

it, along with a canonical subgroup C of rank pn. This defines two maps

π1, π2 : LTΓ0(pn) → LT, roughly given on the level of moduli problems by

π1(G′, C) = G′ (which is just the universal deformation G itself), and

π2(G′, C) = G′/C (the quotient of G′ by the subgroup C). On the level

of coefficient rings, the first map is simply the map E0 → E0(BΣpn)/Tr

given by the projection BΣpn → ∗, while the second is precisely the power

operation ψp
n

(as can be deduced from Theorem 3.2.3).

Remark 3.2.9. The scheme LTΓ0(pn) admits an Atkin-Lehner involution

(see, e.g., [KM85, Example 11.3.1] for the discussion in the case of elliptic

curves, which passes through to the setting of p-divisible groups with a little

bit of work): the universal deformation G and its subgroup C of rank pn is

sent to the deformation G/C with subgroup G[pn]/C. One must still check

that G/C is a deformation of G0, but this follows from the discussion in

[AHS04, Section 12.3].
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Warning 3.2.10. Although the mapping spectrum Map(Σ∞+BΣpn , E) is an

E∞-E-algebra, it is not true that the E0-algebra E0(BΣpn)/Tr can in general

be realized as the π0 of an E∞-E-algebra. This is proved as [Dev17, Theorem

3.5] for the formal affine scheme LTΓ1(p), which is the formal affine scheme

Spf E0(BCp)/Tr. To observe this, note that the discussion prior to Theorem

3.2.3 shows that SpecE0(BCp) may be regarded as the p-torsion G[p] of the

universal deformation G.

It is not hard to come up with a moduli-theoretic interpretation for points

of G[p]: an A-point of G[p] is precisely a formal group over A deforming G0

along with a p-torsion point. This, however, does not prohibit the choice

of the identity as the p-torsion point. (The Γ1(p)-moduli problem precisely

restricts away from this degenerate case.) Nevertheless, the stable transfer

map Σ∞+BCp → Σ∞+ ∗ = S0 induces a map E0 → E0(BCp), and the ideal

generated by its image is the transfer ideal Tr; quotienting out by this ideal

precisely kills the choice of the identity. It follows that the formal scheme

Spf E0(BCp)/Tr is precisely the moduli problem whose A-points are formal

groups over A deforming G0 with a chosen point of order exactly p, which is

precisely the moduli problem LTΓ1(p).

3.3 Transchromatic compatibility

Let E denote a Morava E-theory at height n, so there is a ring map ψp :

E0 → E0(BΣp)/Tr. Let m < n, so LK(m)E is a K(m)-local E∞-ring.

Choose a (noncanonical) isomorphism π∗E ∼= W(k)[[u1, · · · , un−1]][u±1]. It

follows from Proposition 2.3.8 that π0LK(m)E is the degree 0 component of

the graded ring (u−1
m W(k)[[u1, · · · , un−1]])∧(p,u1,··· ,um−1). Let G=m denote the

formal group of height m defined over π0LK(m)E coming from its complex

orientation. The goal of this section is to prove Theorem 3.3.2, which is a

generalization of [LN12, Proposition 8.1] to higher chromatic heights. Since

the discussion is a little technical, we recommend that the casual reader only

look at Corollary 3.3.4 (which is simply [LN12, Proposition 8.1]) and the

preceding paragraph before moving on, since that is the only result which

will be used in the proof of Theorem 1.0.1.

The construction described in Section 3.2 gives a map π0LK(m)E →
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(LK(m)E)0(BΣp)/Tr. This begets a natural commutative square

E0 ψpn //

f

��

E0(BΣp)/Tr

f̃
��

π0LK(m)E
ψpm

// (LK(m)E)0(BΣp)/Tr

Note that the maps f and f̃ are not decorated with m; we hope that the

dependence on m will be evident in what follows. In this section, we will

prove Theorem 3.3.2, which dictates the (purely algebraic) construction of a

map ψ̃pn such that ψ̃pn = ψpm.

In order to do so, we need to be able to relate the p-divisible group

defined over Spf(LK(m)E)0(BΣp)/Tr with the p-divisible group defined over

Spf E0(BΣp)/Tr. We begin by noting that the work in [Sta13, Section 2.1]

implies the following result.

Lemma 3.3.1. There is an exact sequence

0→ G=m → f ∗G→ (f ∗G)et → 0

which exhibits G=m as the connected component of the p-divisible group f ∗G

over Spf π0LK(m)E.

Note that f ∗G is of height n as a p-divisible group, but its connected

component is of height m.

The E∞-ring LK(m)E satisfies the conditions of Theorem 3.2.3, so Spf(LK(m)E)0(BΣp)/Tr

has a universal formal group (i.e., connected p-divisible group) G=m
Γ0(p) defined

over it, which has a canonical subgroup scheme of rank p. We will denote

the underlying formal group of the universal deformation with a subgroup

scheme of rank p defined over LTΓ0(p) by GΓ0(p).

Let im : π0LK(m)E → (LK(m)E)0(BΣp)/Tr denote the map induced by

the projection BΣp → ∗; this is simply the inclusion. This induces a map,

also denoted im, after taking Spf. By construction, there is an isomorphism

between i∗mG=m and G=m
Γ0(p). Let in : E0 → E0(BΣp)/Tr denote the map

induced by the projection BΣp → ∗ (again, this is just the inclusion). There
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is a commutative diagram

E0 in //

f

��

E0(BΣp)/Tr

f̃
��

π0LK(m)E im
// (LK(m)E)0(BΣp)/Tr,

which gives natural isomorphisms i∗mf
∗ ∼= f̃ ∗i∗n. In particular, we learn that

i∗mf
∗G ∼= f̃ ∗i∗nG = f̃ ∗GΓ0(p).

The morphisms in and im are flat, so the pullback functors i∗n and i∗m are

exact (on fppf sheaves). It follows that the exact sequence of Lemma 3.3.1

pulls back to an exact sequence

0→ G=m
Γ0(p) → f̃ ∗GΓ0(p) → (f̃ ∗GΓ0(p))

et → 0

where (f̃ ∗GΓ0(p))
et is defined to be i∗m(f ∗G)et. This exact sequence exhibits

G=m
Γ0(p) as the connected component of the p-divisible group f̃ ∗GΓ0(p). Let

ι : G=m
Γ0(p) → f̃ ∗GΓ0(p) denote the inclusion of this connected component.

Let C=m ⊆ G=m
Γ0(p) denote the universal subgroup scheme of order p (which

exists because of Theorem 3.2.3). Then the map ι : G=m
Γ0(p) → f̃ ∗GΓ0(p)

defines a subgroup ι(C=m) ⊆ f̃ ∗GΓ0(p) of order p. By construction, the

quotient f̃ ∗GΓ0(p)/ι(C
=m) is another deformation (with formal height m) of

the connected p-divisible group G0 (of height n) over the perfect field k.

If the formal affine scheme Spf π0LK(m)E classified the moduli problem of

p-divisible groups of height n and formal height m which deform G0, then

we would obtain a map ψ̃pn : π0LK(m)E → (LK(m)E)0(BΣp)/Tr classifying

the deformation f̃ ∗GΓ0(p)/ι(C
=m). Unfortunately, this is not quite true —

the ring π0LK(m)E classifies a more sophisticated moduli problem [MPS15];

nevertheless, it is possible to show using [MPS15, Theorem 36] that one can

indeed construct a map ψ̃pn as above3.

3We provide a brief sketch, using the tools from [MPS15]. The subgroup C=m ⊆ G=m
Γ0(p)

is the pullback f̃∗C of the universal subgroup scheme C ⊆ GΓ0(p) (on LTΓ0(p)) of rank
p. There is a map Spp (LK(m)E)0(BΣp)/Tr→ Spf(LK(m)E)0(BΣp)/Tr, which induces a
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The main result regarding the map ψ̃pn is the following.

Theorem 3.3.2. The maps ψ̃pn, ψpm : π0LK(m)E → (LK(m)E)0(BΣp)/Tr con-

structed above are the same.

Proof. We argue as in [LN12, Proposition 8.1]. As discussed in Remark 3.2.8,

the universal property of the map ψpm : π0LK(m)E → (LK(m)E)0(BΣp)/Tr is

that it classifies the universal deformation f̃ ∗GΓ0(p)/ι(C
=m); this is precisely

the characterization of the map ψ̃pn.

Theorem 3.3.2 is a compatibility between power operations of different

heights.

Remark 3.3.3. As with Theorem 3.2.3, it is possible to prove Theorem 3.3.2

in the case when E is an even-periodic E∞-ring such that E0 is a p-torsion

free complete local ring with maximal ideal m such that p ∈ m, and such

that if G is the formal group on E0, then G ⊗E0 E0/m has finite constant

height. This can also be generalized to a result involving (the global sections

of) those derived stacks arising from Theorem 3.1.7; however, we will not do

so here. Since the arguments provided above are very general, the key tool is

writing down a precise relationship between XΓ0(p) = X×MBT(n) MBT(n)Γ0(p)

and Γ(X ,OX )0(BΣp)/Tr. We note that shadows of this result have already

appeared in the literature: for instance, the work in [AHR10] relies heavily

on a related result.

formal group, also denoted f̃∗GΓ0(p)/ι(C
=m) over Spp (LK(m)E)0(BΣp)/Tr (by [MPS15,

Lemma 20] when m = 1 and k = 0 ). It follows that there is a commuting diagram

G0

��

// GΓ0(p)/C

��

f̃∗GΓ0(p)/ι(C
=m)

��

oo

Spec k // Spf E0(BΣp)/Tr Spp (LK(m)E)0(BΣp)/Tr .
f̃

oo

By [MPS15, Definition 35 and Theorem 36], this defines a point in the moduli prob-
lem defined by the 1-staged pipe ring E0 → π0LK(m)E, and in particular (e.g. by the
restatement of [MPS15, Theorem 36] as [MPS15, Main theorem]) defines a ring map

ψ̃p
n : π0LK(m)E → (LK(m)E)0(BΣp)/Tr, as desired. More care is required to make this

precise, but we will not do so here.
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For the sake of concreteness, let us specialize to the case m = 1, and

let us pick an isomorphism E0 ∼= W(Fp2)[[u1]] (this is the same as picking a

coordinate on G). Then, we get a diagram

E0 ∼= W(Fp2)[[u1]]
� _

f

��

ψp2 // E0(BΣp)/Tr

f̃
��

π0LK(1)E ∼= W(Fp2)((u1))∧p ψp1

// (LK(1)E)0(BΣp)/Tr ∼=
// π0LK(1)E

The canonical isomorphism on the bottom line comes from Remark 3.2.4.

The ring E0(BΣp)/Tr is isomorphic to W(Fp2)[[u1]][d]/w(d), where w(d) is

a monic polynomial with coefficients in W(Fp2)[[u1]] since E0(BΣp) is free of

finite rank over E0 (by [Str98, Theorem 3.2]). Solutions of w(d) give rise to

subgroups of order p, so again by the discussion in Remark 3.2.4, we learn

that there is a unique solution to w(d) in the ring W(Fp2)((u1))∧p . The map

ψ̃p2 defined above is then just the canonical extension of ψp2 : W(Fp2)[[u1]]→
W(Fp2)[[u1]][d]/w(d) to a ring map W(Fp2)((u1))∧p → W(Fp2)((u1))∧p . We

can then conclude the following result, which is stated as [LN12, Proposition

8.1], from Theorem 3.3.2:

Corollary 3.3.4. The maps ψ̃p2, ψ
p
1 : W(Fp2)((u1))∧p → W(Fp2)((u1))∧p are

the same.

4 Constructing E(2)

4.1 Realization problems

To fix the issue brought up by Proposition 2.4.9, we will take a hint from

the statement of Conjecture 2.4.7, and make the following definition (also

see [HM17, Definition 3.14]):

Definition 4.1.1. An E(n)-realization problem (E∗,Gf ) is a graded ring

E∗ along with a formal group law Gf classified by a map MU∗ → E∗, such

that if f : BP∗ → E∗ is the p-typification of its formal group law, then there

is a choice of indecomposables v1, · · · , vn ∈ BP∗ with |vi| = 2(pi − 1), such
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that the image of vn under f is invertible, and such that the induced map

Z(p)[v1, · · · , vn−1, v
±1
n ]→ E∗ is an isomorphism.

If E is p-completed, then we will often abuse terminology by saying

that (E∗,Gf ) is a (p-complete) E(n)-realization problem if the induced map

Z(p)[v1, · · · , vn−1, v
±1
n ]∧p → E∗ is an isomorphism.

Definition 4.1.2. A solution to an E(n)-realization problem (E∗,Gf ) is a

complex-oriented E∞-ring A such that there is an isomorphism π∗A → E∗
which sends the formal group law of A to the formal group law Gf over E∗.

4.2 The proof of Theorem 1.0.1

In this section, we will begin the proof of Theorem 1.0.1 using the tools

described above. We will restrict ourselves to the case when p > 2, although it

is possible to remove this restriction. Most of the arguments are very similar

to those provided in [LN12, Sections 5 and 6]. In order to apply Goerss-

Hopkins obstruction theory, we will need to specify the homotopy groups

of R; after choosing Zhu’s Pn-model for E (which picks out the element

u1), we will define R to be a complex-oriented homotopy commutative ring

spectrum with homotopy groups R∗ = W(Fp2)[u1][u±1] such that the complex

orientation MU∗ → E∗ factors through R∗. It is not immediately evident that

the homotopy commutative ring spectrum R exists; however, since the map

MU∗ → R∗ is flat, the Landweber exact functor theorem provides us with

such a homotopy commutative ring spectrum R.

We will delay the proofs of the following two technical results to the next

two sections.

Lemma 4.2.1. Let F = LK(1)LK(2)R = LK(1)E, and let T∗ ⊆ F∗ denote

the subring of F∗ given by the image of the monomorphism π∗LK(1)R →
π∗LK(1)LK(2)R. Then the degree zero component T0 of T∗ is closed under the

power operation θ if and only if there is an E∞-ring structure on the homotopy

commutative ring spectrum LK(1)R such that G = F×p2 oGal(Fp2/Fp) acts on

LK(1)R by E∞-ring maps, and such that there is an E∞-ring map LK(1)R→
F which is equivariant for the action of G.

Lemma 4.2.2. The subring W(Fp2)(u1)∧p is closed under the power operation

ψ̃p2 = ψp1 : W(Fp2)((u1))∧p →W(Fp2)((u1))∧p .
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We will now proceed to the proofs of Theorem 1.0.1 and Corollary 1.0.2

modulo Lemma 4.2.2 and Proposition 4.2.1.

Proof of Theorem 1.0.1. By Lemma 4.2.2 and Lemma 4.2.1, we conclude

that there is an E∞-ring LK(1)R with an action of G by E∞-ring maps, along

with G-equivariant E∞-ring maps LK(1)R → LK(1)LK(2)R ← LK(2)R = E.

Let R̃ be the E∞-ring obtained as the pullback

R̃ //

��

LK(2)R

��
LK(1)R // LK(1)LK(2)R.

We check that the E∞-ring R̃ satisfies the conditions of Theorem 1.0.1.

Part 1: There is a long exact sequence

0 = π2n+1LK(1)LK(2)R→ π2nR̃→ π2nLK(1)R⊕ π2nLK(2)R

→ π2nLK(1)LK(2)R→ π2n−1R̃→ π2n−1LK(1)LK(2)R = 0.

By Proposition 2.3.8, there are isomorphisms

π∗LK(2)R ∼= W(Fp2)[[u1]][u±1],

π∗LK(1)LK(2)R ∼= W(Fp2)((u1))∧p [u±1]

π∗LK(1)R ∼= W(Fp2)(u1)∧p [u±1].

It follows that the outer two terms in the above long exact sequence are

zero, since LK(1)LK(2)R is concentrated in even degrees. We also find that

every element of π2nLK(1)LK(2)R = W(Fp2)((u1))∧p {un} is a sum of ele-

ments in (the images of) π2nLK(1)R = W(Fp2)(u1)∧p {un} and π2nLK(2)R =

W(Fp2)[[u1]]{un}. In particular, π2n−1R̃ = 0, and π2nR̃ = W(Fp2)[u1]{un}.
As a ring, we have π∗R̃ = W(Fp2)[u1][u±1], so we obtain the desired E∞-ring

R of Theorem 1.0.1 as the E∞-ring R̃. This establishes part (1) of Theorem

1.0.1.

Part 2: It remains to prove part (2). To do so, we need to understand

the action of G on π∗R̃. Since there is a G-equivariant inclusion of π∗R̃

into π∗LK(2)R = π∗E, it will suffice to understand the G-action on π∗E ∼=
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W(Fp2)[[u1]][u±1]. Let σ ∈ Gal(Fp2/Fp) and ζ ∈ F×p2 be generators. Then

σ acts trivially on u1 and u, and acts by Galois conjugation on W(Fp2).

We will show that ζ sends u1 7→ ζp−1u1 and u 7→ ζ−1u. We follow [Hen07,

Equation (8), p. 32]. Let Gf denote the formal group law of Zhu’s preferred

Pn-model for E. If g is an element of the Morava stabilizer group, then

according to [DH95], the action of g is determined as follows. Lift g to

an element g̃ ∈ (π0E)[[x]], so that there is a unique continuous ring map

g∗ : π0E → π0E and an isomorphism h ∈ (π0E)[[x]] between g∗Gf and

F (x, y) = g̃−1Gf (g̃(x), g̃(y)). The action of g on the element u (note that in

[Hen07], the element u lives in degree −2, so his u is our u−1) is given by

g∗(u) = (g̃′(0)h′(0))−1u. Therefore, if g is the Teichmüller lift of an element

a ∈ Fp2 , then

[p]F (x) = a−1[p]Gf
(ax) = a−1(p(ax)+Gf

u1(ax)p+Gf
(ax)p

2

) = px+Fa
p−1u1x

p+Fx
p2 ,

so that h(x) = x, g∗(u1) = ap−1u1, and g∗(u) = a−1u. The desired result

follows by setting a = ζ.

There is a descent/homotopy fixed points spectral sequence converging

to π∗R
hG with E2-page H∗(G; π∗R). Since G has order 2(p2 − 1), which is

coprime to p, this spectral sequence collapses (there are no higher cohomology

groups), and we conclude that π∗R
hG ∼= (π∗R)G. This ring is isomorphic to

Zp[u1u
p−1, u±(p2−1)]. The complex orientation of R factors through RhG, so

there is an induced formal group law G′f on (π∗R)G. Let v1 and v2 be the

Hazewinkel generators coming from the p-typification of the formal group law

G′f . Then the E∞-ring RhG is a solution to (the p-completion of) the E(2)-

realization problem (Zp[u1u
p−1, u±(p2−1)],G′f ) in sense of Definition 4.1.1.

As a consequence, we have:

Proof of Corollary 1.0.2. This is the usual method of reconstructing a p-

local E∞-ring from its p-completion. Indeed, the formal group law G′f over

Zp[u1u
p−1, u±(p2−1)] is base changed up from a formal group law, also denoted

G′f , over Z(p)[u1u
p−1, u±(p2−1)]. Let E(2)Q denote the free E∞-Q-algebra on

a generator in degree 2(p − 1) and an invertible generator in degree 2(p2 −
1). This has homotopy groups given by Q[u1u

p−1, u±(p2−1)]. Rational stable

homotopy theory begets a natural map E(2)Q → LQR
hG of E∞-rings, so we
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define an E∞-ring E(2) via the pullback square

E(2) //

��

RhG

��
E(2)Q // LQR

hG.

Arguing as in Part 1 of the proof of Theorem 1.0.1, we conclude that E(2) is a

solution to the (p-local) E(2)-realization problem (Z(p)[u1u
p−1, u±(p2−1)],G′f ).

4.3 The proof of Lemma 4.2.1

The proof of Lemma 4.2.1 will need some results from [LN12], summarized

in the following theorem.

Theorem 4.3.1 (Lawson-Naumann). 1. Let F be a complex oriented ho-

motopy commutative ring spectrum such that F∗ is p-torsion free. Then

there is a natural isomorphism (K∗⊗MUP∗MUP∗MUP ⊗MUP∗ F∗)
∧
p →

K∨∗ F .

2. Let T is a p-adically complete ring, with a formal group law classified

by a map MUP0 → T such that the induced formal group law on T/p is

of exact height 1. Let V = (K0 ⊗MUP0 MUP0MUP ⊗MUP0 T )∧p . Then

the map T → V is an ind-Galois extension with Galois group Z×p .

3. Let A∗ be an even periodic graded p-adic θ-algebra which is concentrated

in even degrees such that

• A0 is the p-adic completion of an ind-étale extension of (A0)Z
×
p ,

• (A0)Z
×
p is the p-adic completion of a smooth Zp-algebra, and

• the continuous cohomology Hs
c(Z

×
p , A∗[t]) vanishes for s > 0 and

all t ∈ Z.

Then there exists a K(1)-local E∞-ring spectrum R, unique up to weak

equivalence, such that K∨∗ R
∼= A∗ as θ-algebras (under the power oper-

ation structure provided by Remark 3.2.4).
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4. Let E and E ′ be two K(1)-local even periodic complex oriented E∞-

rings such that E0 and E ′0 are p-torsion free, and such that E0 is the

p-adic completion of a smooth Zp-algebra. Then the map

π0MapE∞(E,E ′)→ Homθ-alg(K
∨
0 E,K

∨
0 E
′)

is bijective. Moreover, if G is a finite group of order prime to p, then

any action of G on E in the homotopy category of E∞-ring spectra lifts

uniquely (up to weak equivalence) to an action of G on E in the category

of E∞-ring spectra. In this case, if E and E ′ as above are equipped with

actions of G in the category of E∞-ring spectra, the natural map

π0MapGE∞(E,E ′)→ HomG
θ-alg(K

∨
0 E,K

∨
0 E
′)

is an isomorphism.

Proof. In order, citations for these results are [LN12, Lemma 5.4], [LN12,

Lemma 5.5.1], [LN12, Corollary 5.16], and [LN12, Proposition 5.18 and

Corollary 5.19].

Proof of Lemma 4.2.1. Using Theorem 4.3.1.3 and Theorem 4.3.1.4, we will

construct an E∞-ring structure on the homotopy commutative ring spectrum

LK(1)R and a G-equivariant E∞-ring map LK(1)R → F . Let T = LK(1)R.

The orientation MU∗ → F∗ factors through T∗, so let G denote the induced

connected p-divisible group over T∗. Note that this is an abuse of notation,

since G generally denotes the connected p-divisible group given by the uni-

versal deformation; however, this notation will only persist until the end of

the proof.

We begin by showing that the completed K-homology of T satisfies

the conditions of Theorem 4.3.1.3. Define graded rings A∗ = (K∗ ⊗MUP∗

MUP∗MUP ⊗MUP∗ T∗)
∧
p and B∗ = (K∗ ⊗MUP∗ MUP∗MUP ⊗MUP∗ F∗)

∧
p .

There is an action of G on each of these rings, given by the associated action

on T∗ and F∗. Moreover, there is an action of the group Z×p by the Adams

operations. By Theorem 4.3.1.1, we can identify A∗ ∼= K∨∗ T and B∗ ∼= K∨∗ F ,

equivariantly for the actions of G and Z×p . The subring B0 is closed under

the θ-operation, by Remark 3.2.4.

Using Theorem 4.3.1.2, we find that the maps T0 → A0 and F0 → B0

are ind-Galois extensions with Galois group Z×p . It follows that A∗ is the
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p-adic completion of a smooth Zp-algebra T∗ whose degree 0 component is

closed under the θ operation, and that the continuous cohomology Hs
c(Z

×
p ;A∗)

vanishes for s > 0. Therefore, Theorem 4.3.1.3 begets a unique (complex

oriented) K(1)-local E∞-ring spectrum T̃ such that K∨0 T̃ ' A0 as θ-algebras.

We also have an isomorphism π∗T̃ ∼= T∗, and the formal group law of T̃ is

given by the map MU∗ → T∗. It follows that there is an equivalence of

homotopy commutative ring spectra between T and the E∞-ring T̃ regarded

as a homotopy commutative ring. We will therefore drop the notation T̃ ,

and simply write T for this E∞-ring.

We will now use Theorem 4.3.1.4 to show that there is a G-equivariant

E∞-ring map T → F . We will use the fact that T0 is closed under θ to

show that the subring A0 ⊆ B0 is closed under the θ-operation. Indeed,

A0 is the universal p-adically complete T0-algebra f : T0 → R equipped

with an isomorphism Ĝm → f ∗G. By Theorem 3.2.3, the map ψ : B0 =

π0LK(1)(Kp ∧ F ) → B0 gives a composite isogeny Ĝm

∼=−→ G → ψ∗G of

degree p over B0. Since Ĝm has only one subgroup of order p, this isogeny

factors as Ĝm
[p]−→ Ĝm

∼=−→ ψ∗G, so the universal property of A0 shows that the

map ψ : B0 → B0 restricts to a map ψ : A0 → A0, which is a lift of Frobenius

(again by the universal property). Observe that this map commutes with the

action of G.

Theorem 4.3.1.4 tells us that there is a unique map of E∞-rings T → F

lifting the map A∗ → B∗ of θ-algebras. Moreover, since |G| = 2(p2 − 1), and

p was assumed to be odd, there is a unique lift of the action of G to an action

by E∞-ring maps such that the map T → F is G-equivariant, as desired.

4.4 The proof of Lemma 4.2.2

We will now provide the proof of Lemma 4.2.2, which fills in the final gap

in the proof of Theorem 1.0.1. In order to do so, we will need to study

power operations on E2. The computation of these power operations was

conducted by Zhu in [Zhu12, Zhu15a, Zhu15b], so we will summarize his

results, and provide a proof of Lemma 4.2.2 at the end of this section. Let

n > 3 be an integer such that gcd(n, p) = 1; then, the moduli problem

MΓ1(n) (over Spec Z[1/n], but this is redundant if we work over Zp) of smooth

elliptic curves with a Γ1(n)-level structure (i.e., a chosen point of order n)

is affine. A Pn-model for E (which will always denote Morava E-theory
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at height 2) is (roughly) a supersingular elliptic curve E0/Fp2 along with

a deformation of the connected p-divisible group E0[p∞] and a choice of

coordinate on this deformation. The choice of a Pn-model for E gives an

isomorphism E0 ∼= W(Fp2)[[u1]] (as described in [Zhu15b, Example 2.6] in

the case n = 4 and p = 5). This data allows for explicit computations of

power operations, as we will now show.

Let MΓ1(n;p) be the moduli problem over Z[1/n] for (smooth) elliptic

curves equipped with simultaneous Γ1(n)-level structures and Γ0(p)-Drinfel’d

level structures. Then, the ringE0(BΣp)/Tr, which is isomorphic to W(Fp2)[[u1]][d]/w(d)

for some monic polynomial of degree p + 1 (see the discussion above Corol-

lary 3.3.4) can be thought of as the (global sections of the) completion of

MΓ1(n;p) at the supersingular point (given by the particular Pn-model).

Therefore, we can think of the elements t and d (now thought of as an ele-

ment of W(Fp2)[[u1]][d]/w(d)) as modular forms (simultaneously for Γ1(N)

and Γ0(p)). Then, one obtains [Zhu15a, Theorem 1.2]:

Theorem 4.4.1 (Zhu). The ring E0(BΣp)/Tr ∼= W(Fp2)[[u1]][d]/w(d) is

determined by the monic polynomial

w(d) = (d− p)(d+ (−1)p)p − (u1 − p2 + (−1)p)d

= dp+1 − u1d+ (−1)p+1p+

p∑
k=2

(−1)p(p−k+1)

((
p

k − 1

)
+ (−1)p+1p

(
p

k

))
dk.

We will denote by wk the coefficient of dk.

Let ψ denote ψp2. The Atkin-Lehner involution (see Remark 3.2.9) on

Γ0(p) sends u1 and d to other modular forms ũ1 and d̃. Then, by the dis-

cussion in Remark 3.2.8 and Remark 3.2.9, we find that ψ(u1) = ũ1. As is

evident from Theorem 4.4.1, the only term in w(d) whose coefficient involves

u1 is the coefficient of d (and in fact this coefficient is just −u1); all other

coefficients lie in pZ. Therefore, we may write

0 = w(d) = dp+1 + wpd
p + · · ·+ w2d

2 − u1d+ (−1)p+1p,

with wi ∈ pZ. By applying the Atkin-Lehner involution, it follows that

0 = w(d̃) = d̃p+1 + wpd̃
p + · · ·+ w2d̃

2 − ũ1d̃+ (−1)p+1p,
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By definition of the Atkin-Lehner involution, we have d̃d = (−1)p+1p. There-

fore,

ũ1 = d̃p + wpd̃
p−1 + · · ·+ w2d̃+ d.

We conclude that

d̃ =
(−1)p+1p− w(d)

d
= dp + wpd

p−1 + · · ·+ w2d− u1.

Substituting this formula for d̃, we find the following result, stated as [Zhu15a,

Theorem 1.6]:

Theorem 4.4.2 (Zhu). We have

ψ(u1) = ũ1 = d+

p+1∑
k=2

wk

(
p+1∑
k=2

wkd
k−1 − u1

)k−1

,

where, recall, that wk is the coefficient of dk in w(d).

We now provide the proof of Lemma 4.2.2.

Proof of Lemma 4.2.2. It suffices to check that ψ(u−1
1 ) has only finitely many

positive powers of u1, and that the negative powers of u1 have coefficients

which p-adically converge to zero. As mentioned above Corollary 3.3.4, the

polynomial w(d) has a unique solution, denoted α, in the ring W(Fp2)((u1))∧p .

Since α̃α = (−1)p+1p, we know that α is divisible by p. We define c = 1
p
αu1.

Then the relation w(α) = 0 translates into the relation

c = (−1)p+1 +

p+1∑
k=2

wkp
k−1cku−k1 .

The displayed equation is a well-defined recurrence relation since the only

powers of c appearing on the right hand side are divisible by c2. This can

be solved recursively, and it is evident from this relation that the coefficients

of u−k1 will p-adically converge to zero as k goes to ∞. The same therefore
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holds for α. Since

ψ(u1) = α +

p+1∑
k=2

wk

(
p+1∑
k=2

wkα
k−1 − u1

)k−1

,

we learn that ψ(u1) has only finitely many positive powers of u1. It follows

from this that ψ(u−1
1 ) = ψ(u1)−1 also has only finitely many positive powers

of u1, and that the negative powers of u1 in ψ(u−1
1 ) have coefficients which p-

adically converge to zero. We conclude that ψ̃p2 (in the notation of Theorem

3.3.2) preserves the subring W(Fp2)(u1)∧p ⊆ W(Fp2)((u1))∧p . The desired

result now follows from Corollary 3.3.4.

Remark 4.4.3. Taking a hint from the discussion in Warning 3.2.10, we

find that the data of the power operation is essentially contained in the

p-torsion group scheme G[p] along with its structure map to Spf π0E. In

[Lur17, Lur18], Lurie developed the theory of spectral formal groups and

spectral p-divisible groups. The (oriented) spectral formal group associated

to E is precisely Spf Map(Σ∞+ CP∞, E). Since Morava E-theory is K(n)-

local, this may be regarded as a connected spectral p-divisible group (see

[Lur18, Section 4.6]); we will denote this spectral p-divisible group by G̃.

Then G̃[p] = Hom(Cp, G̃) is a spectral refinement of the classical p-torsion

group scheme G[p]. As explained in [Lur09, Section 3], the structure sheaf

OG[p] should be regarded as the genuine Cp-equivariant version of E (if E =

Kp, so that G̃ = µp∞ , this is just a restatement of the classical Atiyah-

Segal completion theorem for Cp-equivariant K-theory). It is possible to use

this perspective to describe an alternative approach to understanding the

θ-closure condition. However, we will not describe this approach here, since

we have been unable to gain any mileage out of this perspective (the major

reason being that there is no geometric interpretation yet of the cocycles in

Morava E-theory).

4.5 Open questions

We conclude this paper with an incomplete list of questions left open.

Question 4.5.1. Does the additive structure of R depend on the choice of

Pn-model? Is there a choice of coordinate on E for which it is not possible
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to construct such an E∞-ring R?

Question 4.5.2. In light of Corollary 1.0.2, we can ask: does there exist a

solution to some E(n)-realization problem for n > 2?

Remark 4.5.3. In [Law10, Example 5.4], Lawson constructed an E∞-ring

realizing the K(2) ∨ · · · ∨K(n)-localization of the height n analogue of the

E∞-ring R constructed above (along with its G = F×pn oGal(Fpn/Fp)-action

by E∞-ring maps). In order to construct LK(1)∨K(2)∨···∨K(n)R as an E∞-ring,

it should be possible to argue as in Theorem 1.0.1 (which, as mentioned

before, is just the argument in [LN12, Sections 5 and 6]) and use Theorem

3.3.2 to conclude, if one has some control over power operations for Morava

E-theory at height n (in particular, one would need an analogue of Lemma

4.2.2). In particular, one would only need to know that the operation ψ̃pn =

ψp1 : π0LK(1)LK(2)∨···∨K(n)En → π0LK(1)LK(2)∨···∨K(n) stabilizes the subring

π0LK(1)R = W(Fp2)[u1, · · · , un−1][u−1
1 ]∧p ; in other words, one essentially needs

to show that the coefficient of ψ̃pn(u−1
1 ) contains only finitely many positive

powers of the ui’s, and that the p-adic valuations of the coefficients of terms

involving u−1
1 go to zero. (One should be careful to choose a good coordinate;

see also Question 4.5.1.) It might be possible to coax some information out

of Weinstein’s work on the Lubin-Tate tower in [Wei16], although we have

not explored this direction yet. However, with the pessimism stemming from

the results in [Law17, Sen17], we expect that the above question will admit

a negative answer.

Question 4.5.4. Does the particular E∞-ring E(2) constructed above arise

as the localization of some BP 〈2〉? Preliminary computations at the primes

3 and 5 suggest that the above question admits a negative answer. A related

question: is there an E∞-ring B with an action by G = F×p2 o Gal(Fp2/Fp)

such that BhG = BP 〈2〉 and u−1B ' R?

Question 4.5.5. Is the space of E∞-automorphisms of R discrete? If so, is

it the Morava stabilizer group? What is the moduli-theoretic interpretation

associated to the E∞-ring R?
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