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Abstract

In this paper, the action of Mullineux Involution on the b-core and b-quotient of
a partition is studied. We then offer a new perspective on a conjecture regarding
Mullineux Involution by considering the implicit extension of the involution present in
the conjecture, which is then approached via its action on the b-quotient. When the
b-quotient has rank at most 2, we give a description of this action and a conjecture on
the distribution of lengths of cycles it creates among partitions with size n. The original
conjecture is then revisited, where future approaches for work on the conjecture and
the extension of Mullineux Involution are given.

1 Introduction

The purpose of this paper is to investigate Mullineux involution. In representation theory,
Mullineux involution is strongly tied to the representation theory of the symmetric group
Sn when working in characteristic p. As the irreducible representations are in bijection
with p-regular partitions of n, Mullineux involution induces an involution on the p-regular
partitions. In [?], Mullineux gives a purely combinatorial description of this algorithm,
and moreover one that works for parameters b that are not necessarily prime. We are also
motivated by an unpublished conjecture of Bezrukavnikov, in which there is an extension
of the involution to non b-regular partitions. We rephrase the conjecture in terms of the
functions C∗b and investigate them through the use of b-cores and b-quotients. We then
conjecture that for the cases when the b-quotient is small, the behavior of Cb follows the
same behavior independent of n.

This paper is organized as follows. Section 2 of this paper outlines some of the basic theory
behind partitions, as well as an overview of b-cores, b-quotients, and their relationship.
Section 3 then defines Mullineux involution and begins to describe the effect of the involution
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on the b-core and -quotient. Then, Bezrukavnikov’s conjecture is given, and the function C2
b

is defined with reference to the conjecture. Finally, Section 4 details some of our conjectures
about C2

b for both the general case and for the case where there are at most two b-ribbons.

2 Partitions

2.1 Basic definitions

In this paper, a partition will be written as an ordered tuple of positive and non-increasing
integers.

λ = (λ1, . . . , λk), where λ1 ≥ λ2 ≥ · · · ≥ λk > 0

Given a partition λ, it has size |λ| equal to the sum of its parts. Throughout this paper,
we will identify a partition with its Young tableaux, a collection of boxes whose centers are
lattice points in the following set.

{(i, j) ∈ N2 : i+ 1 ≤ λj+1}

We will draw Young tableauxs using English notation, where the axes go down and to the
right. An example of the Young tableaux (7, 6, 4, 1) and its transpose is shown below.

All partitions have a transpose λt, which can be formed by taking the Young tableaux of λ
and reflecting over the line y = x. The transpose of can also be determined directly from
the numerical data of a partition.

λt = µ, where µi = |{j ∈ N : λj ≥ i}|

Given a partition λ, we will occasionally abuse notation and say that it is comprised of cells
(i, j) ∈ λ if (i, j) is a lattice point in the Young tableaux of λ. The content of a cell (i, j) is
then defined to be c(i, j) = i − j. The arm of a cell is all the cells to its right and the leg
consists of all cells below it.
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Finally, the rim of a partition refers to the cells in bottom-right portion of a partition.
Equivalently, they can be thought of as the following set.

λrim = {(i, j) ∈ λ : (i+ 1, j + 1) /∈ λ}

2.2 Cores and Quotients

In this section, we will describe the cores and quotients of a partition. After defining them,
some basic facts and results will be described and proven. For the rest of this discussion,
we fix some natural number b ≥ 2.

Definition 2.1. A b-ribbon of a partition λ is a connected subset S ⊂ λrim such that
|S| = b and λ \S is a partition. A partition µ is a b-core of λ if it has no b-ribbons and can
be obtained from λ by successively removing b-ribbons.

For example, the following partition shows two example of finding a 3-core from the same
partition.

3 1 1
3 3 1
2

2 2

3 3 3
2 2 2
1

1 1

Note that both examples remove different 3-ribbons but end up with the same 3-core. In
fact, this result holds more generally, as described in [?].

Proposition 2.2. The b-core of a partition λ is independent of the choice of ribbons re-
moved. Thus, the b-core Coreb(λ) is well-defined.

For every partition λ we will also define a corresponding b-tuple of partitions which encodes
the ribbons whose length is a multiple of b. To do this, for every cell x = (i, j) ∈ λ, let
ρ(x) be the content of the cell at the end of the arm of x and let γ(x) be the content of
the cell at the end of the leg of x, both modulo b. Then, for every residue class r modulo
b, consider the cells x ∈ λ such that ρ(x) = r and γ(x) = r − 1. Note that each such cell
corresponds to a path along the rim of λ, starting at the end of the arm and going to the
end of the leg of x, whose length is a multiple of b. These will necessarily form an exploded
Young tableaux inside of λ. Let λr denote the corresponding partition.

Definition 2.3. The b-quotient of a partition λ is defined to be

Quotb(λ) = (λ0, . . . , λb−1)
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The 3-quotient of the partition (5, 4, 2, 2) is (∅, , ), as is worked out below.

2
1
1

Given the b-core and b-quotient of a partition λ, one can rebuild λ with the information
provided, as discussed in [?]. This is explained more concretely below.

Proposition 2.4. Fix some b-core ν. Then, the map φ : λ 7→ Quotb(λ) is a bijection from
partitions with b-core ν to b-tuples of partitions.

Remark 2.5. Proposition ?? provides another way to visualize a partition. Rather than
viewing it as a Young tableaux, it can be thought of as starting with the b-core and building
up in a way described by the b-quotient. This method of building up is explicitly described
in the next theorem.

Theorem 2.6. Given a partition λ and some partition λ′ formed by adding a b-ribbon to
λ, then the tuple Quotb(λ′) is formed by adding a cell to one of the partitions in Quotb(λ).

Proof. To check this, we will want to observe what happens to the exploded partitions
when adding a ribbon to λ. For this proof, a cell being labelled means that it is part of
an exploded partition in the p-quotient. Let R be the set of cells contained in the ribbon.
Now, suppose that a cell x = (i0, j0) is labelled in λ′. This can be divided into four cases
based on whether the arm and leg of x end in R.

If neither arm nor leg ends in R, then both ends are also present in λ, which means that
x is labelled by the same number in λ. If both the arm and leg are present in λ, then the
corresponding path on the rim must lie entirely inside R. However, since R has b cells, the
path must be exactly of length b and correspond to the entire ribbon. So, exactly one cell
will be in this case and its content will be determined by the content of the top-right cell
in the rim.

We will now deal with the case where the end of the arm is not in R but the leg is, as the
final case can be treated very similarly. Let (i1, j0) ∈ R be at the end of x’s leg. Now, check
whether (i1, j0−1) ∈ R. If it is not, then since we know that (i1+1, j0) /∈ R, it follows that
(i1, j0) is the bottom-left cell in the ribbon. Now, consider the top-right cell in the ribbon
y = (i2, j2). Th is cell must be below row i0, as we know that the arm of x does not hit R.
Furthermore, the cell right above this cell has the same content modulo b as (i1, j0). So,
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from this we know that (i0, j2) is labelled in λ with the same label that (i0, j0) is labelled
with in λ′.

Next, assume that (i1, j0 − 1) ∈ R. Then, we know that (i1 − 1, j0 − 1) /∈ R and has the
same content as (i1, j0), so we know that λ has a cell labelled at (i0, j0 − 1). Furthermore,
the same argument shows that the converse is true. If a cell in λ shares only a column with
a cell in R, then this shift must happen. Note that this shift can be described as follows.
For every cell in λ that moves, it will shift cyclically to the right in the columns that the
ribbon is present in.

So, it follows that each labelled cell in λ′ except for one corresponds to a labelled cell in λ.
Furthermore, we also know explicitly that the exploded shape cannot change, as the ribbon
has one cell of each possible content, meaning that different columns cannot get shifted
around each other. So, the only change to the p-quotient is the single block added whose
arm and leg both end in R. That is, the only change is that one block is added to one of
the partitions, as desired.

To see an example of this theorem, consider the following partitions, where a 3-ribbon is
added.

2
1
1

2
1

2
1

This theorem inductively shows the relationship between the sizes of λ, Coreb(λ), and
Quotb(λ), as also stated in [?].
Corollary 2.7. For a partition λ, let ν be the b-core and let (λ0, . . . , λb−1) be the b-quotient.

|λ| = |ν|+ b

b−1∑
i=0

∣∣λi∣∣

3 Mullineux Involution

In this section, we begin with a description of Mullineux involution, as described by
Mullineux in [?]. We then describe some basic results and relate them to the b-core and b-
quotient. In this section, b will be fixed as before. The case where b is prime is of particular
interest due to its connections with representation theory.
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3.1 Defining the Involution

To define Mullineux Involution, it is first necessary to introduce the concept of a b-regular
partition, as well as that of the b-edge.

Definition 3.1. A partition λ = (λ1, . . . , λk) is b-regular if does not have b parts of the
same size.

Now consider the following subset of the cells on the rim of a partition. Starting at the top
right of the rim, take the first b-elements on the rim. Then, move to the right-most cell on
the rim in the next row of the partition, and take the next b-elements of the rim. Continue
this until the end of the rim, where in the last segment it is possible that fewer than b cells
are chosen. An example of this process is shown below when b = 3. The number in a cell
indicates that it has been picked and indicates the order in which cells are chosen.

2 1
3

1
3 2
1

Definition 3.2. The algorithm described above produces the b-edge of a partition.

With these tools in hand, it is now possible to describe the algorithm for Mullineux invo-
lution.

Starting with λ, continue removing b-edges until the empty partition is reached, giving a
sequence of partitions λ = λp, . . . , λ1, λ0 = ∅. For each i = 1, . . . , p, let ai be the number of
cells in the b-edge of λi and let ri be the number of rows in the same partition. From this,
we define si as follows.

si =

{
ai − ri if b|ai

ai − ri + 1 otherwise

Now, starting from the empty partition, define a new sequence of partitions ν0 = ∅, ν1, . . . , νp =
ν such that νi has si rows and its b-edge has ai cells. Then, ν is the Mullineux involution
of λ, written ν =Mb(λ).
Theorem 3.3. The algorithm described above is well-defined and is an involution on the
set of b-regular partitions.

Proof. See [?].

Remark 3.4. As written, nothing in the algorithm for Mullineux involution suggests that
it is necessary for the starting partition to be b-regular. However, it proves to be impossible
to carry out the algorithm on a p-irregular partition, as one may end up getting si = 0 or
some other impossible set of parameters ai, si.
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Remark 3.5. The motivation for this involution comes from representation theory. When
b is prime, it is well known that the irreducible representations over Fb of Sn, the symmetric
group, are indexed by the b-regular partitions. Furthermore, there is a natural action on
these representations given by tensoring with the sign representation, which is nontrivial
for b > 2. Mullineux involution is the map induced onto the p-regular partitions by this
correspondence, as was proven in [?]

3.2 Relationship with Cores and Quotients

We will now more closely examine the relationship between Mullineux involution and its
effect on the b-core and b-quotient. In the case of the b-core, the answer turns out to be
surprisingly simple and was proven by Mullineux in [?].

Theorem 3.6. Let λ be a partition. Then, the b-core of Mb(λ) is the transpose of the core
of λ.

Coreb(Mb(λ)) = Coreb(λ)t

With this clean relationship between the b-core and Mullineux involution, a natural ques-
tion to then ask is what the map induced by this involution on the b-quotient is.

Question 3.7. Fix some b-core ν. For λ with Coreb(λ) = ν, describe the map Quotb(λ) 7→
Quotb(Mb(λ)

t). Note that by composing with the transpose, this becomes a map that fixes
the b-core and is thus a bijection.

Unfortunately, this question turns out to be difficult. With the aid of a computer, this
map on b-quotients was worked out for n ≤ 40 and for different values of b. Despite this,
the map is quite complicated, even in simple cases. In the case of a core and one ribbon,
this map permutes the entries of the b-quotient, but this permutation is dependent on the
choice of b-core. At two ribbons, it already becomes much more complicated, and there is
little correlation between the structure of the b-quotient of λ and Mb(λ)

t.

One particular difficulty in answering this question is that Mullineux involution is defined
only for b-regular partitions, whereas the p-quotient applies for all partitions, regardless of
regularity. Moreover, we were unable to find a way to tell from a b-quotient and the b-core
whether or not the corresponding partition is b-regular without first recovering the original
partition. So, for the rest of the paper, we will attempt to solve this by extending Mullineux
involution to apply to all partitions.
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3.3 A Conjecture

In this section, we will introduce an unpublished conjecture of Professor Bezrukavnikov,
which implicitly defines an extension of Mullineux involution. Before giving the conjecture,
though, we will need to define several more operations on partitions.

For partition λ, µ, let λ ∪ µ be the multiset union. Then, for an integer b, let bλ =
(bλ1 · · · , bλk) and let b ∗ λ = λ ∪ · · · · · ·λ (b times). Pn will be used to denote the set of
partitions of n.

Conjecture 3.8. Fix some positive integer n. The fractions with denominator at most n,
in simplified form, partition [0, 1] into intervals. For each interval I, define two bijections
B1

I , B
2
I : Pn → Pn and two functions D1

I , D
2
I : Pn → Z. These functions will be defined by

the following properties:

1. For I = [0, 1n ], B
1
I (λ) = B2

I (λ)
t = λ

2. Let I, I ′ be adjacent intervals such that I ∩ I ′ = a
b and I ′ comes after I. Then, write

B1
I (λ) = ν ∪ bµ, where ν has no parts divisible by b. From this, set

B1
I′(λ) = ν ∪ b(µt), D1

I (λ) = b |µ|

3. For I, I ′ as described above, write B2
I (λ) = ν ∪ b ∗ µ, where ν is b-regular. Then,

B2
I′(λ) =

(
Mb(ν) ∪ b ∗ (µt)

)t
, D2

I (λ) = b |µ|

Then, for all intervals I, we have D1
I = D2

I .

In working on this conjecture, it is useful to define two auxiliary functions C1
b , C

2
b such that

if I, I ′ are adjacent with common endpoint a
b , then B

∗
I′ = Cb ◦B∗I . That is, in the first type

of transformation, CI
b writes a partition as the union ν ∪ bµ and returns ν ∪ b(µt). In this

way, the conjecture becomes a question about the composition of these C∗b functions in an
order depending on the sequence of denominators in the partitioned interval [0, 1].

Of particular interest is C2
b , as for b-regular partitions, C2

b (λ) = (Mb(λ))
t. Furthermore,

note that b ∗ µ is a collection of |µ| b-ribbons , and so the b-core does not change under
C2
b . With this, we see that C2

b extends the definition of Mullineux involution while still
maintaining the b-core, thus allowing us to continue looking at the b-quotient.

4 Conjectures on C2
b

In this section, we will explore certain properties of the C2
b map defined in the previous

section. Unfortunately, we are not able to offer proof, though in all cases the results have
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been tested empirically for a wide range of partitions. The analysis will begin with general
properties of the map, and will then transition into looking at more specific examples.

When applying C2
b , one of the first noticeable things is that, for the most part, the action

of C2
b seems to shift blocks to the bottom left of the partition away from the top right.

Applying C2
b multiple times, this continues until eventually, a large amount of cells move

back to the top right. This qualitative observation then leads to the following conjecture.

Conjecture 4.1. Let c(λ), r(λ) denote the number of columns and rows in λ, respectively.
Then, if λ is b-regular, then the following inequalities hold.

c(λ) ≥ c(C2
b (λ)), r(λ) ≤ r(C2

b (λ))

Remark 4.2. One might also hope that the converse of Conjecture ?? is also true. However,
this is not the case, as for example when λ = (8, 8, 7, 3, 2, 1, 1, 1, 1, 1, 1) and b = 6. Despite
this, the converse holds very frequently, suggesting that there is perhaps some further
condition on when the number of columns decreases and the number of rows increases.

As before, determining the exact action of C2
b is difficult in general, though for certain

smaller cases the answer appears to be relatively simple. To tackle this, we will impose
restrictions on the size of the b-quotient and thus how close to a b-core the partitions are.
In the case where the quotient is always empty, the partitions in question are the b-cores,
for which the behavior of C2

b is already understood. So, the remainder of the paper will
focus on the case where the b-quotient is of size at most 2.

First, consider the case where there is only one ribbon. Given a fixed b-core ν, there are
exactly b possible ways to add a ribbon to ν, corresponding to each entry in the b-quotient
being . In this case, the simplest possible story is that C2

b cycles through all b possibilities.
In fact, this seems to be the case.
Conjecture 4.3. When restricted to partitions λ whose quotient has size exactly 1, (C2

b )
n(λ) =

λ if and only if b|n.

Put another way, C2
b breaks these partitions into cycles of length b. One can also ask what

happens to partitions with 2 ribbons. That is, we can write all such partitions as the disjoint
unions of cycles created by C2

b and attempt to characterize the resulting distribution. An
example of this for n = 40, 60 and b = 9 is shown below.

Surprisingly, the lengths of the cycles all cluster in two areas, one around 5 and one around
11. Furthermore, the distributions in these two examples appear to be similar. This, then,
leads to the following surprising conjecture.

Conjecture 4.4. Fix some integer b ≥ 5. Define a sequence of probability distributions
X2b, X2b+1, . . ., whereXn is the distribution of the lengths of cycles C2

b induces on partitions
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Figure 1: The number of cycles of certain length for b = 9. Left: n = 40. Right: n = 60

of size n with exactly 2 ribbons. Then, {Xn}n≥2b converges weakly to a bimodal distribution
with peaks at around 0.5b and 1.2b.
Remark 4.5. This conjecture has been tested for n ≤ 80 and b ≤ 10, above which point the
code runs extremely slowly. As a result, there is not enough data to feel fully confident about
the conjecture, though there is consistent behavior which seems to back it up. Furthermore,
it is similarly unclear whether stronger notions of convergence can be applied, again due to
the lack of data and somewhat slow convergence.

There are several other avenues of further research available. We would be very curious to
see progress on any of the conjectures mentioned in this paper. In particular, better under-
standing of the case with at most 2 ribbons could lead to a proof of Bezrukavnikov’s original
conjecture on the interval [0, 3n), where each partition has at most 2 ribbons. Additionally,
further exploration for more than 2 ribbons would yield more light on the distribution of
orders of cycles, and whether similar results to Conjecture 4.4 generalize.
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