
Fast Algorithms for Solving SDPs on Graphs
SPUR Final Paper, Summer 2014

Yibo Gao and Yuzhou Gu
Mentor: Adrian Vladu

Project Suggested By Richard Peng

July 30, 2014

Abstract

Semidefinite programming (SDP) is a basic optimization primitive, which has
been successfully applied to many combinatorial graph algorithms. Unfortunately,
in the era of big data, standard methods for solving SDP’s (Interior Point, Ellipsoid)
are prohibitively slow. Instead of focusing on these, we shift our attention to first
order methods, which appear to be very fast for practical purposes. It turns out
that simply by applying mirror descent, one can solve SDP’s within ε accuracy using
O(ε−2) iterations, each of them consisting of simple matrix operations. However,
the standard setup for mirror descent has the fundamental flaw that iterations are
computationally expensive. In this work, we consider the SDP relaxation for MAX-
CUT, and attempt to provide an efficient algorithm for solving it, which takes into
account the sparsity of the input. We provide a different (and simpler) setup for
mirror descent in hope of achieving cheaper iterations.

1

1 Introduction

Semidefinite programming (SDP) is a fundamental primitive employed in modern ap-
proximation algorithms. Starting with the work of Goemans and Williamson [GW95],
algorithmists started focusing on using the power of this method. One prohibitive factor
though, remains the efficiency of solving semidefinite programs. While we have a pretty
good understanding of linear programs, and standard approaches such as the Interior
Point or Ellipsoid Method work very well in practice, SDP’s remain more elusive. One
insight that came to the rescue was that in many cases, when solving SDP’s we only need
need to find solutions that satisfy the set of constraints approximately. Therefore, one
can use first order methods to find a good solution in a small number of iterations. Arora
and Kale [AK07] formalized this intuition and provided a new approach to solving SDP’s,
where the linear constraints are satisfied within a 1 + ε multiplicative factor.

While this looks pretty promising, the ε dependency in the running time is quite bad
(ε−5), and it would be nicer to produce efficient algorithms that solve SDP’s crafted for
specific problems. More specifically, we consider two SDP relaxations arising in combi-
natorial graph problems: MAX-CUT and the Lovász Theta Function. Past work shows
that at least in the case of LP’s, underlying graph structure enables computation of much
more efficient iterations, using primitives such as Laplacian solvers [DS08]. Therefore, our
goal is two-fold: we want to find a more structured way of approximately solving SDP’s,
and we want to exploit the underlying graph structure in order to efficiently solve each
iteration of our algorithm.

Our work so far consists of providing a proper setup for first order methods, in our
case mirror descent [NY83], in order to replace the multiplicative weights update. We
first describe the standard setup which achieves a converge rate of ε−2, but it has the
fundamental flaw that each iteration is expensive because it requires computing matrix
exponentials. Then we give a simpler setup, that is more similar in spirit to projected
gradient descent: after taking gradient steps, we project back onto our domain simply by
zeroing out the negative eigenvalues of our current iterate.

We also discovered that one specific condition from the setup is unneeded. Namely,
after we add a penalty term to the objective function [Lee14], we no longer need the trace
constraints. Although deleting it will theoretically make our algorithm faster, it results in
slow convergence experimentally. We are now trying to fix that problem and also working
on different setups for mirror descent and custom iterative methods.

2

2 Preliminaries

2.1 Semidefinite Programming

A semidefinite program (SDP) is a problem in the form

min C ·X
s.t. Ak ·X ≤ bk, k = 1, . . . ,m

X � 0

where C,Ak,X ∈ Sn, the space of n×n symmetric matrices equipped with inner product
· defined as A ·B = tr(ATB).

A special subclass of SDP is linear programming (LP), which is SDP where C and Ak

are all diagonal.

2.2 Examples

We look at some examples of SDPs on graphs.

2.2.1 MAX-CUT Problem

In the MAX-CUT problem, we are given a positively weighted undirected graph G =
(V,E,W). The objective is to find a partition {S1, S2} of V such that

∑
e∈(S1×S2)∩E w(e)

is maximized. The decision version of the MAX-CUT problem is known to be NP-
Hard [Kar72]. Goemans and Williamson [GW95] gave a randomized polynomial-time
γ-approximation algorithm for MAX-CUT, where γ = 2

π
minθ∈[0,π]

θ
1−cos θ

≈ .87856. The
Goemans-Williamson algorithm involves solving the SDP

max LG ·X
s.t. diag(X) = 1

X � 0

where LG is the Laplacian of G.
[WFLM13] and [BC06] are two applications in machine learning of variations of the

MAX-CUT problem.

3

2.2.2 Lovász Theta Function

The Lovász theta function is another SDP problem on graphs. Given an unweighted
undirected graph G = (V,E), the Lovász theta function ϑ(G) is defined as

max 1 ·X
s.t. tr X = 1

Xij = 0, ∀(i, j) ∈ E, i 6= j

X � 0

2.3 Algorithms

We summarize two methods used to solve semidefinite programs.

2.3.1 Multiplicative Weights Update Method

The multiplicative weights update (MWU) method is a widely used primitive. [AHK12]
It appeared independently in a number of different places (Machine Learning, approxi-
mation algorithms). Plotkin et al. [PST95] used this method to solve fractional packing
and covering problems. More specifically, given an LP from this class, they use MWU
in order to efficiently obtain a solution that satisfies all the linear constraints within a
multiplicative (1 + ε) factor. Later, Arora and Kale [AK07] generalized this method and
applied it to solving SDP’s.

2.3.2 Mirror Descent

While MWU is a tempting approach, it is formulated using an oracle used for solving
each iteration, and is essentially applied in a black box manner. Instead of this, we
would like to resort to a more structured method, where we have a more solid handle
on our algorithms. Therefore, we shift our attention to the textbook numerical methods.
Lee [Lee14] and Zhu & Orecchia [AZO14] showed that the MWU method is a special
case of mirror descent. [NY83] Our goal is to push this intuition further, and obtain a
customized algorithm that beats MWU. In the following section, we present the standard
implementation of mirror descent.

2.4 Mirror Descent Method

This method was first introduced by Nemirovski and Yudin [NY83], in order to generalize
the projected gradient descent method whenever the domain we want to optimize over
is an arbitrary convex set. For the sake of our presentation, we follow the description
from [Bub14].

4

Suppose we would like to minimize an L−Lipschitz (with respect to a norm || · ||)
convex function f(x) over a convex set X ⊆ Rn. Let D ∈ Rn be an open convex set such
that X ⊆ D and D ∩ X 6= 0. Let Φ : D → R be a map such that

(1) Φ is α-strongly convex with respect to || · || and differentiable;

(2) For any x ∈ X ∩D, η > 0, there exists y ∈ D such that ∇Φ(y) = ∇Φ(x)− η∇f(x);

(3) limx→∂D ||∇Φ(x)|| = +∞.

in which α-strongly convexity of Φ is defined by

∀x, y ∈ X ∩ D,Φ(x)− Φ(y) ≤ ∇Φ(x)T (x− y)− α

2
||x− y||2

We call Φ a mirror map.
Define ΠΦ

X : D → X ∩D as

ΠΦ
X (y) = arg min

x∈X∩D
DΦ(x, y)

where DΦ(x, y) is a distance function, called the Bregman divergence induced by Φ. It is
defined as

DΦ(x, y) = Φ(x)− Φ(y)−∇Φ(y)T (x− y)

Let x∗ = arg minx∈X f(x). Choose an R such that R ≥ DΦ(x∗, x1). The mirror descent
algorithm is given below.

Algorithm 1 Mirror Descent

Input: f,X ,D,Φ, t
Output: x ∈ X such that f(x)−miny∈X f(y) ≤

√
2RL2

αt

1: η ←
√

2αR
L2t

.

2: Choose initial value x1 ∈ X ∩ D.
3: for s = 1→ t do
4: Choose ys+1 ∈ D such that ∇Φ(ys+1) = ∇Φ(xs)− η∇f(xs).
5: xs+1 ← ΠΦ

X (ys+1).
6: end for
7: return 1

t

∑t
s=1 xs.

We have the following theorem.

Theorem 2.1. In t iterations, the mirror descent method produces a solution x such that

f(x)− f(x∗) ≤
√

2RL2

αt
.

5

2.5 Approximation

Suppose we are to maximize a function f(x) over some constraint set X . Let x∗ =
arg minx∈X f(x). We assume that f(x) ≥ 0. We call a solution x ∈ X an ε-approximate
solution if f(x) ≥ (1− ε)f(x∗).

3 Setup for Example Problems

In this section we show how to set up the Goemans-Williamson relaxation for MAX-CUT
in order to solve it using mirror descent. In the near future, we will also consider the
Lovász Theta function, which seems to be slightly harder.

3.1 MAX-CUT SDP

We make an interpretation of [Lee14].
Let C be a given graph Laplacian. Recall that the MAX-CUT problem is

Minimize −C ·X subject to diag(X) = 1,X � 0.

We remove the constraint diagX = 1 by adding an L1 penalty and transform the
problem to

Minimize −C ·X +
∑
ρi(Xi,i − 1)+ subject to X � 0.

Here x+ is defined as max{0, x}.

Theorem 3.1. The above two problems have the same optimal values if ρi ≥ 2
∑n

j=1 |Cij|.

Proof. For simplicity of proof, we rewrite the two problems as follows:

• MAX-CUT-SDP-1: Minimize g(X) = −C ·X over Xg = {X : X � 0,diagX = 1}.

• MAX-CUT-SDP-2: Minimize h(X) = −C ·X +
∑
ρi(Xii − 1)+ over Xh = Sn.

Let the optima of MAX-CUT-SDP-1 and MAX-CUT-SDP-2 be X∗g and X∗h respec-
tively. Let g∗ = g(X∗g), h

∗ = h(X∗h). Xg ⊆ Xh, so g∗ ≥ h∗. So we only need to prove
h∗ ≥ g∗.

Because X∗h � 0 , there exist v1, . . . ,vn such that X∗h,i,j = vi · vj,∀i, j. Then

h∗ = −
∑
i,j

Cijvi · vj +
n∑
i=1

ρi(vi · vi − 1)+

We use L2−norm || · ||2 for vectors in the analysis below.

6

For a vector vk, the terms in h∗ relevant to it is

−2

(∑
j 6=k

Ckjvj

)
· vk −Ckkvk · vk + ρk(vk · vk − 1)+

If
(∑

j 6=k Ckjvj

)
· vk < 0, we simply change the sign of vk and get a smaller answer. If(∑

j 6=k Ckjvj

)
· vk = 0, we replace vk by v′k so that |vk| = |v′k| and

(∑
j 6=k Ckjvj

)
· v′k 6=

0. Then either the v′k or−v′k will yield a smaller answer. So we have
(∑

j 6=k Ckjvj

)
·vk > 0

for all k. If for some k, |vk| < 1, we replace it by v′k = vk

|vk|
. The answer will become

smaller. So |vk| ≥ 1 for all k.
Let vk be the vector that has the greatest norm. We replace it by v′k = vk

|vk|
. The

change of h is(
−
∑
j 6=k

2Ckjv
′
k · v′j −Ckkv

′
k · v′k + ρk(v

′
k · v′k − 1)+

)

−

(
−
∑
j 6=k

2Ckjvk · vj −Ckkvk · vk + ρk(vk · vk − 1)+

)

=

(
1− 1

|vk|

)∑
j 6=k

2Ckjvk · vj +

(
1− 1

|vk|2

)
Ckkvk · vk − ρk(|vk|2 − 1)

=
|vk| − 1

|vk|

(
2
∑
j 6=k

Ckjvk · vj +
|vk|+ 1

|vk|
Ckkvk · vk − (|vk|2 + |vk|)ρk

)

≤ |vk| − 1

|vk|

(
2
∑
j 6=k

|Ckj||vk||vj|+ 2|Ckk||vk|2 − ρk|vk|2
)

≤ |vk| − 1

|vk|

(
2
∑
j 6=k

|Ckj||vk|2 − 2
∑
j

|Ckj||vk|2
)

≤ 0

Repeat the process and we will get a optimum X∗h ∈ Xg. So h∗ ≥ g∗ and we are
done.

We can further rewrite the problem by rescaling the variable as

Minimize −
√

diag(ρ−1)C
√

diag(ρ−1) ·X +
∑n

i=1(Xii − ρi)+ subject to X � 0.

Aside from conceptual convenience (note that −
√

diag(ρ−1)C
√

diag(ρ−1) can be set
to a multiple of the normalized Laplacian of the graph), this is going to be a useful trick

7

in order to make the function we are trying to optimize 1-Lipschitz. This renormalization
is going to be reflected in the convergence rate of the algorithm.

For the standard setup of mirror descent to work, we need to add a trace constraint.
That is, we solve

Minimize −
√
diag(ρ−1)C

√
diag(ρ−1) ·X +

∑n
i=1(Xii − ρi)+

subject to X � 0, tr X =
∑

1≤i≤n ρi.

It is easily proved that this SDP has exactly the same solution as the previous one.

4 Analysis of the Standard Setup for Mirror Descent

on Example Problems

In this section we analyze the number of iterations needed for mirror descent with standard
setup to get an ε-approximation on example problems.

4.1 MAX-CUT SDP

Define f(X) = −
√

diag(ρ−1)C
√

diag(ρ−1) ·X +
∑n

i=1(Xii − ρi)+. Let r =
∑

1≤i≤n ρi.
Let X = {X : X � 0, tr X = r}.

Then the problem we want to solve is

Minimize f(X) subject to X ∈ X .

Let X∗ = arg minX∈X f(X). Let R,L, α be defined as in section 2.4. By theorem 2.1,

we need t = 2RL2

αf(X∗)2
ε−2 iterations to find an ε-approximate solution.

We first bound f(X∗) because it is independent of the setup we use. Let m =∑
1≤i<j≤n |Ci,j| be sum of weight of edges in the graph. We have

Theorem 4.1. f(X∗) ≥ m
2

.

Proof. An X that f(X) ≥ m
2

can be achieved by a simple greedy algorithm which was
introduced by Sahni and Gonzalez [SG76].

We actually have r = 8m because

r =
∑

1≤i≤n

ρi

= 2
∑

1≤i≤n

∑
1≤j≤n

|Ci,j|

= 2(
∑

1≤i≤n

Ci,i) + 4(
∑

1≤i<j≤n

|Ci,j|)

= 8
∑

1≤i<j≤n

|Ci,j| = 8m

8

Then we bound L,R, α. One thing noteworthy is that we need to modify the standard
setup in appendix B a little bit because here the trace is r which is not 1. However it
is easily shown that the gradient step does not change and the projection step becomes
ΠΦ
X (Y) = rY

trY
.

Theorem 4.2. f is 3
2
-Lipschitz with respect to the trace norm.

Proof. Let Q =
√

diag(ρ−1)C
√

diag(ρ−1). Let f1(X) = Q ·X, f2(X) =
∑

1≤i≤n(Xi,i −
ρi)

+. Then f(X) = −f1(X) + f2(X). Let L1 be the Lipschitz constant of f1, L2 be the
Lipschitz constant of f2. Then L ≤ L1 + L2.

We first prove that L1 ≤ 1
2
. Recall that the trace norm ||X|| =

∑
1≤i≤n |λi| where λi

are eigenvalues of X. We have

L1 = sup
X,Y∈X ,X6=Y

f1(X)− f1(Y)

||X−Y||

= sup
X,Y∈X ,X6=Y

f1(X−Y)

||X−Y||

= sup
X∈Symn,trX=0,X6=0

f1(X)

||X||

≤ sup
X∈Symn,X6=0

f1(X)

||X||

= sup
X∈Symnp,X6=0

tr(QX)

||X||

We write X = VDV−1 where V is orthogonal and D is diagonal. Then

tr(QX)

||X||
=

tr(QV−1DV)

||V−1DV||
=

tr(VQV−1D)

||D||
= tr(VQV−1 D

||D||
).

|| D
||D|| || = 1. So

L1 ≤ sup
D diagonal,V orthogonal,||D||=1

tr(VQV−1D).

D is diagonal, so ||D|| =
∑

1≤i≤n |Di,i|. Let Q′ = VQV−1. Let M = max1≤i≤n Q′i,i.
Q � 0, so Q′ � 0. So Q′i,i ≥ 0 for all i. Then

tr(Q′D) =
∑

1≤i≤n

Q′i,iDi,i ≤
∑

1≤i≤n

M |Di,i| = M.

So L1 ≤M .
Let λmax be the largest eigenvalue of Q. Then it is also the largest eigenvalue of Q′

because basis change preserves eigenvalues. Note that Q is 1
4

the normalized Laplacian

9

matrix of the original graph. It is a standard result [Chu97] that all eigenvalues of the
normalized Laplacian matrix are no greater than 2. So λmax ≤ 1

2
.

By the Courant-Fischer theorem, M ≤ λmax. Combine the inequalities above and we
get L1 ≤ 1

2
.

Then we prove that L2 ≤ 1.
Let M ∈ Symn. Let v1, . . . ,vn be its eigenvectors. Let λ1, . . . , λn be the corresponding

eigenvalues. Let e1, . . . , en be standard basis of Rn. Let ei =
∑

1≤j≤n ai,jvj. Then∑
1≤i≤n

|Mi,i| =
∑

1≤i≤n

|eTi Mei| =
∑

1≤i≤n

|
∑

1≤j≤n

a2
i,jλj|

≤
∑

1≤i≤n

∑
1≤j≤n

a2
i,j|λj| =

∑
1≤j≤n

(|λj|
∑

1≤i≤n

a2
i,j) =

∑
1≤j≤n

|λj| = ||M||

Let X,Y ∈ X ,X 6= Y. Then

|f2(X)− f2(Y)|
||X−Y||

=
|
∑

1≤i≤n((Xi,i − ρi)+ − (Yi,i − ρi)+)|
||X−Y||

≤
∑

1≤i≤n |Xi,i −Yi,i|
||X−Y||

≤ 1

So L2 ≤ 1.

Theorem 4.3. R ≤ r log n.

Proof. Choose X1 = r
n
I. Let X′ = X∗

r
. Then

DΦ(X∗,X1)

= tr(X∗ log X∗)− tr(X∗ log X1)

= tr(rX′(log X′ + log rI))− r log
r

n
= tr(X′ log X′) + r log n

≤ r log n

Theorem 4.4. Φ is 1
2r

-strongly convex over X with respect to the trace norm.

Proof. Suppose X,Y ∈ X . Let X′ = X
r

, Y′ = Y
r

. By theorem B.1 we know that

−Φ(X′)− Φ(Y′)−∇Φ(X′) · (X′ −Y′)
1
2
||X′ −Y′||2

≥ 1

2
.

10

Then

− Φ(X)− Φ(Y)−∇Φ(X) · (X−Y)
1
2
||X−Y||2

= − tr((rX′)(log X′ + log rI)− (rY′)(log Y′ + log rI)

− (I + log X′ + log rI)(rX′ − rY′))/(1

2
r2||X′ −Y′||2)

= −tr (r(X′ log X′ −Y′ log Y′ − (X′ −Y′) log X′))
1
2
r2||X′ −Y′||2

= −1

r

Φ(X′)− Φ(Y′)−∇Φ(X′) · (X′ −Y′)
1
2
||X′ −Y′||2

≥ 1

2r

Theorem 4.5. In 2304 logn
ε2

iterations, the standard setup for mirror descent produces an
ε-approximate solution.

Proof. By theorem 2.1, theorem 4.1, theorem 4.2, theorem 4.3, theorem 4.4 and the fact
that r = 8m.

5 A Simpler Setup for SDP

Here we let the norm || · || be the Frobenius norm || · ||F defined as ||X||F =
√

tr(X2). Let
D = Symn, the space of n × n symmetric matrices. Let Φ(X) = 1

2
||X||2. For this choice

of mirror map, the Bregman divergence is given by

DΦ(X,Y) = Φ(X)− Φ(Y)−∇Φ(Y) · (X−Y)

=
1

2
tr X2 − 1

2
tr Y2 −Y · (X−Y)

=
1

2
tr (X−Y)2

= Φ(X−Y)

Theorem 5.1. Φ satisfies the required properties for a mirror map.

Proof. Let X,Y ∈ D.
(1): Φ(X)−Φ(Y)−∇Φ(X)T (X−Y) = 1

2
tr(X2)− 1

2
tr(Y2)−X·(X−Y) = −1

2
||X−Y||2.

So Φ is 1-strongly convex. ∇Φ(Y) = Y. So Φ is differentiable.
(2): We can let Y = X− η∇f(X).
(3): D is unbounded. As X approaches to infinity, ||∇Φ(X)|| = ||X|| also approaches

to infinity.

11

Because ∇Φ(M) = M, our iterations are simply given by Ys+1 = Xs − η∇f(Xs).
We still need to understand how to project back on to the domain, after taking a

gradient step. We present the projection algorithm below. Depending on whether there
is the trace constraint tr X = r, we have two different projections.

5.1 Projection without Trace Constraint

In this case, X = Sn.

Algorithm 2 Calculate ΠΦ
X (Y) where X = Sn

Input: Y ∈ Symn

Output: X = ΠΦ
X (Y)

1: Write Y as Y = VDV−1 where V is orthogonal and D is diagonal.
2: Let C be defined as Ci,j = max{Di,j, 0} for 1 ≤ i, j ≤ n.
3: return VCV−1

Theorem 5.2. The above algorithm produces the correct projection.

Proof. First, note that

||VMV−1||2 = tr(VMV−1VMTV−1) = tr(VMMTV−1) = tr(M2) = ||M||2

which means that change of basis preserves Frobenius norm. Also, it preserves the domain
X . At this point we only need to calculate ΠΦ

X (D).
Let C = ΠΦ

X (D). If C is not diagonal, let C′ be diagonal of C. Because C ∈ X ⊆ Sn,
entries of C′ are all non-negative. Also, tr C′ = tr C. So C′ ∈ X . We have that

Φ(C−D) =
1

2

∑
1≤i,j≤n

|Ci,j −Di,j|2 ≥
1

2

∑
1≤i≤n

|Ci,i −Di,i|2 = Φ(C′ −D)

So C is diagonal.
For any diagonal positive semidefinite matrix C′, we have ||C′−D||2 =

∑
1≤i≤n(C′i,i−

Di,i)
2 ≥

∑
1≤i≤n(max{Di,i, 0} −Di,i)

2 = ||C−D||2.

5.2 Projection with Trace Constraint

In this case, X = {X : tr X = r,X � 0}.

Theorem 5.3. The above algorithm produces the correct projection.

Proof. As in the proof of theorem 5.2, we only need to find projection of D, and C =
ΠΦ
X (D) must be diagonal.

12

Algorithm 3 Calculate ΠΦ
X (Y) where X = {X : tr X = r,X � 0}

Input: Y ∈ Symn

Output: X = ΠΦ
X (Y)

1: Write Y as Y = VDV−1 where V is orthogonal and D is diagonal. W.l.o.g, suppose
∀i,Di,i ≤ Di+1,i+1.

2: Choose the smallest k so that r ≥
∑n

i=k(Di,i −Dk,k).

3: Let C be defined as: Ci,j = 0 for i 6= j, Ci,i = 0 for i < k, Ci,i = Di,i +
r−

∑n
i=k Di,i

n−k+1
for

i ≥ k.
4: return VCV−1

Suppose there exist i < j such that Ci,i 6= 0 and Di,i − Ci,i 6= Dj,j − Cj,j. Let U
be some neighbourhood of 0 in R. Define C′ : U → X as C′(x) differs with C only at
C′(x)i,i = Ci,i + x and C′(x)j,j = Cj,j − x. Then

∂Φ(C′(x)−D)

∂x
|x=0 =

∂ 1
2
((Ci,i + x−Di,i)

2 + (Cj,j − x−Dj,j)
2)

∂x
|x=0

=
∂x(Ci,i −Di,i −Cj,j + Dj,j)

∂x
|x=0

= Ci,i −Di,i −Cj,j + Dj,j 6= 0

So C is not the best answer. So for all i < j, either Ci,i = 0 or Di,i −Ci,i = Dj,j −Cj,j.
Hence there exist k and C such that for i < k, Ci,i = 0 and for i ≥ k, Ci,i = Di,i +C.

Also, by the trace constraint, C =
r−

∑n
i=k Di,i

n−k+1
. It is obvious that a choice of k is valid if

and only if Ck,k ≥ 0, which is equivalent to Dk,k +
r−

∑n
i=k Di,i

n−k+1
≥ 0, which is equivalent

to r ≥
∑n

i=k(Di,i −Dk,k).
∑n

i=k(Di,i −Dk,k) is non-increasing with respect to k. So if k
satisfies the property, so does k + 1.

Let k satisfy the property, and k′ = k + 1. Let C be the matrix corresponding to k
and C′ be the matrix corresponding to k′. For the simplicity of proof, let S =

∑n
i=k Di,i.

13

Then

2 (Φ (C′ −D)− Φ (C−D))

=
k′−1∑
i=1

D2
i,i +

(r −
∑n

i=k′ Di,i)
2

n− k′ + 1
−

k−1∑
i=1

D2
i,i −

(r −
∑n

i=k Di,i)
2

n− k + 1

= D2
k,k +

(r −
∑n

i=k′ Di,i)
2

n− k′ + 1
− (r −

∑n
i=k Di,i)

2

n− k + 1

= D2
k,k +

(r − S + Dk,k)
2

n− k′ + 1
− (r − S)2

n− k + 1

= D2
k,k +

(r − S)2

n− k
+

2Dk,k(r − S)

n− k
+

D2
k,k

n− k
− (r − S)2

n− k + 1

=
n− k + 1

n− k
D2
k,k +

(r − S)2

(n− k) (n− k + 1)
+

2Dk,k (r − S)

n− k
≥ 0

So the smallest k must be the best choice.

6 Analysis of the Simple Setup for Mirror Descent

on Example Problems

In this section we analyze the number of iterations needed for mirror descent with the
simple setup to get an ε-approximation on example problems.

6.1 MAX-CUT SDP

Define f(X) = −
√

diag(ρ−1)C
√

diag(ρ−1) ·X +
∑n

i=1(Xii − ρi)+. Let r =
∑

1≤i≤n ρi.
Let X = Sn. Note that there is not trace constraint here.

We would like to solve

Minimize f(X) subject to X ∈ X .

Let X∗ = arg minX∈X f(X). Let R,L, α be defined as in section 2.4. By theorem 2.1,

we need t = 2RL2

αf(X∗)2
ε−2 iterations to find an ε-approximate solution.

We have bounded f(X∗) in section 4.1. Then we bound L, R and α.

Theorem 6.1. f is 3
2

√
n-Lipschitz with respect to the Frobenius norm.

Proof. We first prove that for X ∈ Sn, we have ||X||1 ≤
√
n||X||F , where || · ||1 is the

trace norm and || · ||F is the Frobenius norm.
Let X = VYV−1, where Y is diagonal and V is orthogonal. The diagonal entries of

Y are the eigenvalues of X.

14

||X||F =

√√√√ n∑
i=1

|Y2
i,i| ≥

√
1

n
(
∑
|Yi,i|)2 =

√
1

n

n∑
i=1

|Yi,i| =
√

1

n
||X||1

According to theorem 4.2,

∀X,Y ∈ D, f(X)− f(Y) ≤ 3

2
||X−Y||1 ≤

3

2

√
n||X−Y||F .

So f is 3
2

√
n-Lipschitz with respect to the Frobenius norm.

Theorem 6.2. R ≤ 1
2
(1− 1

n
)r2.

Proof. We first prove that for all 1 ≤ i, j ≤ n, |X∗i,j| ≤
√

X∗i,iX
∗
j,j. Suppose for some i, j,

|X∗i,j| >
√

X∗i,iX
∗
j,j. Obviously i 6= j.

Suppose X∗i,j < 0. We define a vector v as vk = 0 for k 6= i, j, vi =
√

X∗j,j and

vj =
√

X∗i,i. Then

vTX∗v

= v2
iX
∗
i,i + v2

jX
∗
j,j + 2vivjX

∗
i,j

< v2
iX
∗
i,i + v2

jX
∗
j,j − 2vivj

√
X∗i,iX

∗
j,j

= (vi

√
X∗i,i − vj

√
X∗j,j)

2 = 0

Suppose X∗i,j > 0. We define a vector v as vk = 0 for k 6= i, j, vi =
√

X∗j,j and

vj = −
√

X∗i,i. Then

vTX∗v

= v2
iX
∗
i,i + v2

jX
∗
j,j + 2vivjX

∗
i,j

< v2
iX
∗
i,i + v2

jX
∗
j,j + 2vivj

√
X∗i,iX

∗
j,j

= (vi

√
X∗i,i + vj

√
X∗j,j)

2 = 0

Both cases contradict the positive-semidefiniteness of X∗. So we must have |X∗i,j| ≤√
X∗i,iX

∗
j,j for all 1 ≤ i, j ≤ n.

By theorem 3.1, diag(X∗) = ρ. We choose the initial point X1 to be the diagonal

15

matrix with diagonal equal to ρ. Then

DΦ(X∗,X1) =
1

2
||X∗ −X1||2

=
1

2

∑
1≤i,j≤n,i6=j

|X∗i,j|2

≤ 1

2

∑
1≤i,j≤n,i6=j

X∗i,iX
∗
j,j

=
1

2

∑
1≤i,j≤n,i6=j

ρiρj

=
1

2
((
∑

1≤i≤n

ρi)
2 −

∑
1≤i≤n

ρ2
i)

≤ 1

2
(r2 − r2

n
)

=
1

2
(1− 1

n
)r2

Theorem 6.3. Φ is 1-strongly convex over X with respect to the Frobenius norm.

We have proved this in theorem 5.1.

Theorem 6.4. In 576n
ε2

iterations, the simple setup for mirror descent produces an ε-
approximate solution.

Proof. By theorem 2.1, theorem 4.1, theorem 6.1, theorem 6.2, theorem 6.3 and the fact
that r = 8m.

7 Discussion

For now, we have two essentially different setups for the max-cut SDP. For the standard
setup, we need O(log n/ε2) iterations to get an ε−approximation. In each iteration, the
most expensive step is calculating a matrix exponential. For the simpler setup, we need
o(n/ε2) iterations to get an ε−approximation. In each iteration, we need to diagonalize
a matrix which is even more time consuming then computing matrix exponentials. In
experiment, both algorithms produce satisfying results while the standard setup indeed
is practically faster. However, it seems that the simpler setup can be improved in some
ways. Generally speaking, for simpler setup in each iteration, the gradient step is very
easy to do (simply by adding a matrix) but the projection step is harder. In order to
project the resulting matrix back to the space of positive semidefinite matrices, we use
diagonalization to eliminate negative eigenvalues. One thought is finding a polynomial

16

p(x) that approximates |x| really well. If we get such polynomial p, 1
2
(p(X) + X) will be

a reasonably good projection of X. Calculating a polynomial is significantly faster than
calculating exponentials. Another thought is adjusting step lengths. The general idea of
Nesterov’s method may apply here.

We are also trying new mirror maps to do mirror descent. For example, we intend to
use a polynomial to replace the standard mirror map tr(X log X).

Since what we have now is already good in practical purposes, we are trying to apply
the method to other SDP problems, such as Lovász Theta Function.

Acknowledgements

This project was done in the Summer Program in Undergraduate Research (SPUR) of the
Massachusetts Institute of Technology Mathematics Department. We thank Adrian Vladu
for being our mentor and helping us throughout the project. We thank Richard Peng for
suggesting this project and giving valuable suggestions. We thank Pavel Etingof and
David Jerison for giving valuable suggestions. We thank Slava Gerovitch for organizing
the SPUR program.

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing,
8(6):121–164, 2012. 4

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to
semidefinite programs. In Proceedings of the Thirty-ninth Annual ACM Sym-
posium on Theory of Computing, STOC ’07, pages 227–236, New York, NY,
USA, 2007. ACM. 2, 4

[AZO14] Zeyuan Allen-Zhu and Lorenzo Orecchia. A novel, simple interpretation of
nesterov’s accelerated method as a combination of gradient and mirror de-
scent. 2014. 4

[BC06] Tijl De Bie and Nello Cristianini. Fast sdp relaxations of graph cut cluster-
ing, transduction, and other combinatorial problems. J. Mach. Learn. Res.,
7:1409–1436, December 2006. 3

[Bub14] Sébastien Bubeck. Theory of Convex Optimization for Machine Learning.
ArXiv e-prints, May 2014. 4

[Chu97] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical
Soc., 1997. 10

17

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy general-
ized flow via interior point algorithms. CoRR, abs/0803.0988, 2008. 2

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidefinite pro-
gramming. J. ACM, 42(6):1115–1145, 1995. 2, 3

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. 3

[Kle31] Otto Klein. Zur quantenmechanischen begründung des zweiten hauptsatzes
der wärmelehre. Zeitschrift für Physik, 72(11-12):767–775, 1931. 21

[KSST09] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. On the duality
of strong convexity and strong smoothness: Learning applications and matrix
regularization, 2009. 20

[Lee14] Yin Tat Lee. Experiment on mmwu for max cut, 2014. 2, 4, 6

[NY83] Arkadi Semenovich Nemirovsky and David Borisovich Yudin. Problem com-
plexity and method efficiency in optimization. Wiley (Chichester and New
York), 1983. 2, 4

[PST95] Serge A. Plotkin, David B. Shmoys, and Eva Tardos. Fast approximation
algorithms for fractional packing and covering problems. Mathematics of
Operations Research, 20:257–301, 1995. 4

[SG76] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems.
Journal of the ACM (JACM), 23(3):555–565, 1976. 8

[WFLM13] Sida Wang, Roy Frostig, Percy Liang, and Christopher D. Manning. Relax-
ations for inference in restricted boltzmann machines. 2013. 3

A Analysis of Mirror Descent

First we have a theorem regarding the Bregman divergence.

Theorem A.1. DΦ(x, y) ≥ DΦ(x,ΠΦ
X (y)) +DΦ(ΠΦ

X (y), y).

Proof. Define gy(x) = Φ(x) − Φ(y) − ∇Φ(y)T (x − y). Then g is a convex function. By
the first order optimality condition and the definition of ΠΦ

X (y), we have

∇g(ΠΦ
X (y))T (ΠΦ

X (y)− x) ≤ 0,∀x ∈ X .

18

Substituting in the gradient of g, ∇gy(x) = ∇Φ(x)−∇Φ(y), gives:

(∇Φ(ΠΦ
X (y))−∇Φ(y))T (ΠΦ

X (y)− x) ≤ 0,∀x ∈ X

Equivalently, by moving terms around, this can be rewritten as

−∇Φ(y)T (x− y) ≥− Φ(ΠΦ
X (y))−∇Φ(ΠΦ

X (y))T (x− ΠΦ
X (y))+

Φ(ΠΦ
X (y))−∇Φ(y)T (ΠΦ

X (y)− y)

Adding Φ(x)− Φ(y) to both sides yields

Φ(x)− Φ(y)−∇Φ(y)T (x− y) ≥
Φ(x)− Φ(ΠΦ

X (y))−∇Φ(ΠΦ
X (y))T (x− ΠΦ

X (y))+

Φ(ΠΦ
X (y))− Φ(y)−∇Φ(y)T (ΠΦ

X (y)− y)

which gives the desired inequality.

Let x∗ = arg minx∈X∩D f(x). Then

f(xs)− f(x∗)

≤ ∇f(xs)
T (xs − x∗)

=
1

η
(∇Φ(xs)−∇Φ(ys+1))T (xs − x∗)

=
1

η
(DΦ(x∗, xs) +DΦ(xs, ys+1)−DΦ(x∗, ys+1))

≤ 1

η
(DΦ(x∗, xs) +DΦ(xs, ys+1)−DΦ(x∗, xs+1)−DΦ(xs+1, ys+1))

We notice that the terms DΦ(x∗, xs)−DΦ(x∗, xs+1) will telescope when we sum over
all these inequalities from s = 1 to s = t.

Then we bound the other terms.

DΦ(xs, ys+1)−DΦ(xs+1, ys+1)

= Φ(xs)− Φ(xs+1)−∇Φ(ys+1)T (xs − xs+1)

≤ (∇Φ(xs)−∇Φ(ys+1))T (xs − xs+1)− α

2
||xs − xs+1||2

= η∇f(xs)
T (xs − xs+1)− α

2
||xs − xs+1||2

≤ ηL||xs+1 − xs|| −
α

2
||xs+1 − xs||2

≤ η2L2

2α

in which the first inequality comes from the α-strong-convexity of Φ and the second
inequality above comes from the assumption that f is L−Lipschitz.

19

Summing up all inequalities from s = 1 to s = t, we get

f

(
1

t

t∑
s=1

xs

)
− f (x∗)

≤ 1

t

t∑
s=1

f (xs)− f (x∗)

≤ DΦ(x∗, x1)−DΦ(x∗, xt+1)

ηt
+
ηL2

2α

=
R

ηt
+
ηL2

2α

Let η =
√

2αR
L2t

and we get f(1
t

∑t
s=1 xs)− f(x∗) ≤

√
2RL2

αt
.

B Standard Setup for Mirror Descent on SDP

Suppose we are optimizing a convex function f over X = {X|X � 0, tr(X) = 1}. We
let the norm || · || be the trace norm || · ||1. Namely, ||A||1 = tr(

√
ATA). Let Φ(x) =

tr(X log X), D = Sn.

Theorem B.1. Φ satisfies the required properties.

Proof. Let X,Y ∈ D.
(1): According to [KSST09], Φ is 1

2
−strongly convex and differentiable.

(2): ∇Φ(X) = I + log X. For any X ∈ D, η > 0, Y = exp(log X − η∇f(X)) satisfies
∇Φ(Y) = ∇Φ(X)− η∇f(X).

(3): The boundary of D is matrices with eigenvalue 0. Thus when X approaches the
boundary, ||∇Φ(X)|| = ||I + log X|| approaches infinity.

Theorem B.2. ΠΦ
X (Y) =

Y

tr(Y)
.

20

Proof. Let Z = Y
tr(Y)

, which is a positive semidefinite symmetric matrix with trace 1.

ΠΦ
X (Y) = arg min

X∈X∩D
DΦ(X,Y)

= arg min
X∈X∩D

(Φ(X)− Φ(Y)−∇Φ(Y)T (X−Y))

= arg min
X∈X∩D

(Φ(X)−∇Φ(Y)TX)

= arg min
X∈X∩D

(tr(X log X)− tr(X)− tr(X log Y))

= arg min
X∈X∩D

tr(X log X−X log Y)

= arg min
X∈X∩D

tr(X log X−X(log Z + log tr(Y)))

= arg min
X∈X∩D

(tr(X log X−X log Z)− log tr(Y))

= arg min
X∈X∩D

tr(X log X−X log Z)

= Z

where the last step comes from the Klein’s inequality [Kle31].

21

	Introduction
	Preliminaries
	Semidefinite Programming
	Examples
	MAX-CUT Problem
	Lovász Theta Function

	Algorithms
	Multiplicative Weights Update Method
	Mirror Descent

	Mirror Descent Method
	Approximation

	Setup for Example Problems
	MAX-CUT SDP

	Analysis of the Standard Setup for Mirror Descent on Example Problems
	MAX-CUT SDP

	A Simpler Setup for SDP
	Projection without Trace Constraint
	Projection with Trace Constraint

	Analysis of the Simple Setup for Mirror Descent on Example Problems
	MAX-CUT SDP

	Discussion
	Analysis of Mirror Descent
	Standard Setup for Mirror Descent on SDP

