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Abstract. We consider the convergence of the eigenvalues to the support of
the equilibrium measure in the β ensemble model under a critical condition.
We show a phase transition phenomenon, namely that all eigenvalues will fall
in the support of the limiting spectral measure when β > 1, whereas this
always fails when β < 1.

1. introduction and statement of the result

1.1. De�nitions and Known Results. Let B be a subset of the real line. B can
be chosen as the whole real line, an interval, or the union of �nitely many disjoint
intervals. For now, let V : B → R be an arbitrary function, and let β > 0 be a
positive real number. In this paper, we consider the β ensemble, i.e a sequence of

N random variables (λ1, . . . , λN ) with law µV ;B
N,β on RN .

The β matrix model with potential V on the set B is de�ned as the probability
measure on RN given by

dµV ;B
N,β (λ) =

1

ZV ;B
N,β

N∏
i=1

dλie
−Nβ2 V (λi)1B(λi)

∏
1≤i<j≤N

|λi − λj |β , (1.1)

where ZV ;B
N,β is the partition function

ZV ;B
N,β =

ˆ
R
· · ·
ˆ
R

N∏
i=1

dλie
−Nβ2 V (λi)1B(λi)

∏
1≤i<j≤N

|λi − λj |β . (1.2)

If β is equal to 1, 2, or 4, µV ;R
N,β is the probability measure induced on the eigen-

values of Ω by the probability measure dΩe−
Nβ
2 Tr(V (Ω)) on a vector space of real

symmetric, Hermitian, and self-dual quaternionic N × N matrices respectively,
see[Meh04].
Therefore, the β ensemble can be viewed as the natural generalization of these
matrix models and we will refer to λi as �eigenvalues� of a "matrix model". For a
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quadratic potential, the β ensemble can also be realized as the eigenvalues of tridi-
agonal matrices [DE02]. Eventhough such a construction is not known for general
potentials, β matrix models are natural Coulomb interaction probability measures
which appear in many di�erent settings. These laws have been intensively studied,
both in physics and in mathematics. In particular, the convergence of the em-
pirical measure of the λi's was proved [ST97, Dei99, AGZ10], and its �uctuations
analyzed [Joh98, Pas06, Shc13]. Moreover, the partition functions as well as the
mean Stieltjes transforms can be expanded as a function of the dimension to all
orders [BIPZ78, ACKM93, ACM92, Ake96, CE06, Che06, BG11, BG13]. It turns
out that both central limit theorems and all order expansions depend heavily on
whether the limiting spectral measure has a connected support. Indeed, when the
limiting spectral measure has a disconnected support, it turns out that even though
most eigenvalues will stick into one of its connected components, some eigenvalues
will randomly switch from one to the other connected components of the support
even at the large dimension limit. This phenomenon can invalidate the central limit
theorem in [Pas06, Shc13] and result with the presence of a Theta function in the
large dimension expansion of the partition function. In the case where the limiting
measure has a connected support S, and that the eigenvalues are assumed to belong
asymptotically to S, even more re�ned information could be derived. Indeed, in
this case, local �uctuations of the λi's could �rst be established in the case corre-
sponding to Gaussian random matrices, β = 1, 2 or 4 and V (x) = x2 [Meh04], then
to tridiagonal ensembles (all β ≥ 0 but V (x) = x2) [RRV06] and more recently
for general potentials and β ≥ 0 [BEY12, BEY, Shc13, FB]. However, local �uc-
tuations have not yet been studied in the case where the limiting measure has a
disconnected support nor when it is critical. We shall below de�ne more precisely
the later case but let us say already that a non-critical potential prevents the eigen-
values to deviate from the support of the limiting spectral measure as the dimension
goes to in�nity. In fact, the later property is one of the most fundamental question
when one wants to study the local �uctuations of the eigenvalues. We study in this
article β models with critical potentials and whether the eigenvalues stay con�ned
in the limiting support. In fact, we exhibit an interesting phase transition; we show
that if β > 1 the eigenvalues stay con�ned whereas if β < 1 some deviate towards
the critical point with probability one. We postpone the study of the critical case
β = 1 to further research. Let us �nally point out that the case where the poten-
tial is critical, but with critical parameters tuned with the dimension so that new
phenomena occur, was studied in [Cla, Eyn06]. We restrict ourselves to potentials
independent of the dimension.

We next describe more precisely some of the results stated above, the de�nition
of criticality and our results.

Consider the spectral measure LN := 1
N

∑N
i=1 δλi , where δλi is the Dirac measure

centered on λi. LN belongs to the set M1(B) of probability measures on the real
line. We endow this space with the weak topology. Then, LN converges almost
surely. This convergence can be derived from the following large deviation result
(see [BAG97], and [AGZ10, Theorem 2.6.1]) :

Theorem 1.1. Assume that V is continuous and goes to in�nity faster than 2 log |x|
(if B is not bounded). The law of LN under µV ;B

N,β satis�es a large deviation prin-

ciple with speed N2 and good rate function E, where Ẽ = E − inf{E(µ), µ ∈M1(B)}
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with

E [µ] =
β

2

¨
(V (ξ) + V (η)− log |ξ − η|) dµ(ξ)dµ(η) . (1.3)

In other words,

(1) Ẽ : M1(R) → [0,∞] possesses compact level sets {v : Ẽ(v) ≤ M} for all
M ∈ R+.

(2) for any open set O ⊂M1(B),

lim inf
N→∞

1

N2
logµV ;B

N,β (LN ∈ O) ≥ − inf
O
Ẽ .

(3) for any closed set F ⊂M1(B),

lim inf
N→∞

1

N2
logµV ;B

N,β (LN ∈ F ) ≤ − inf
F
Ẽ .

The minimizers of E are described as follows (see [AGZ10, Lemma 2.6.2]):

Theorem 1.2. E achieves its minimal value at a unique minimizer µeq. Moreover,
µeq has a compact support S. In addition, there exists a constant Cβ,V such that:{

for x ∈ S 2
´
R dµeq(ξ) ln |x− ξ| − V (x) = Cβ,V

for x almost everywhere in Sc 2
´
R dµeq(ξ) ln |x− ξ| − V (x) < Cβ,V .

(1.4)

Here the almost everywhere means almost everywhere with respect to Lebesgue mea-
sure.

We will refer to µeq, which is compactly supported, as the equilibrium measure.

Remark 1.3. Theorem 1.1 and Theorem 1.2 imply that under µV ;B
N,β , LN converges

to (in weak topology) to the equilibrium measure µeq almost surely.

Once the existence of the equilibrium measure is established, one may explore
the convergence of the eigenvalues to the support of the equilibrium measure µeq.
It is shown in [BG11, BG13](also see Theorem 1.4 below) that the probability that
eigenvalues escape this limiting support is governed by a large deviation principle
with rate function given by

J̃ V ;B(x) = J V ;B(x)− Cβ,V (1.5)

with

J V ;B(x) =

{
β V (x)

2 − β
´
dµeq(ξ) ln |x− ξ| x ∈ B\S

Cβ,V otherwise.
(1.6)

The large deviation states as follows:

Theorem 1.4. Assume V continuous and going to in�nity faster than 2 log |x| (in
the case where B is in�nite).

(1) J̃ V ;B
max is a good rate function .

(2) We have large deviation estimates: for any F ⊆ B\S closed and O ⊆ B\S
open,

lim sup
N→∞

1

N
lnµV ;B

N,β [∃i λi ∈ F] ≤ −β
2

inf
x∈F
J̃ V ;B(x),

lim inf
N→∞

1

N
lnµV ;B

N,β [∃i λi ∈ O] ≥ −β
2

inf
x∈O
J̃ V ;B(x).



Convergence of eigenvalues to the support of the limiting measure 4

The last theorem shows that the support of the spectrum is governed by the
minimizers of J̃ V ;B .

De�nition 1.5. Assume V is continuous. We say that V is non-critical i� J V ;B

is positive everywhere outside of the support of µeq.

A consequence of the second part of the aforementioned theorem is the following:

Corollary 1.6. Let the assumptions in Theorem 1.4 hold. Assume that V is non-
critical. Then

lim
N→∞

µV ;B
N,β (∃λi /∈ A) = 0 , (1.7)

where A := ∪gh=1[a−h , a
+
h ] with min{|x− y|, x ∈ Ac, y ∈ S} > 0.

Remark 1.7. Since the law of the eigenvalues satis�es a large deviation principle
with rate N, the eigenvalues actually converges to the support exponentially fast (or

be more precisely, ∃Γ > 0, s.t, µV ;B
N,β (∃λi /∈ A) ≤ e−ΓN ).

Remark 1.8. By the de�nition of the partition function, 1 − µV ;B
N,β (∃λi /∈ A) =

ZV ;A
N,β

Z
V ;[b−.b+]
N,β

, thus,

(1.7)⇔ lim
N→∞

ZV ;A
N,β

ZV ;B
N,β

= 1. (1.8)

In the rest of this article we investigate what happens in the case where V is
critical. This investigation will require the uses of precise estimates on β models
partitions functions derived in [BG11, BG13] and to apply their results we shall
make the following assumption :

Assumption 1. • V : B → R is a continuous function independent of N .
• If τ∞ ∈ B,

lim inf
x→τ∞

V (x)

2 ln |x|
> 1. (1.9)

• supp (µeq) is a �nite union of disjoint intervals, i.e. supp (µeq) of the form
S =

⋃g
h=1 Sh, where Sh = [α−h , α

+
h ].

• S(x) > 0 whenever x ∈ S, where

S(x) = π
dµeq

dx

√∣∣∣∣∏τ ′∈Hard(x− ατ ′)∏
τ∈Soft(x− ατ )

∣∣∣∣.
and where τ ∈ Hard (resp. τ ∈ Soft) i� bτ = ατ (resp. τ(bτ − ατ ) > 0).

• V extends to a holomorphic function in some open neighborhood of S.

We want to investigate whether (1.7) still holds when the restriction on J V ;B is
weakened so that it vanishes outside the support S. Our working hypothesis will
be the following:

Assumption 2. J̃ V ;B vanishes only on the support of the equilibrium measure S
and at one point c0 outside S. We also require ∂2J̃ V ;B(c0) > 0, and for technical
reason we require ∂2V ≥ σ > 0 on A.
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1.2. Main Results.

Theorem 1.9. Given Assumptions 1 and 2, we have the following alternative:

• when β > 1,

lim
N→∞

µV ;B
N,β (∃λi /∈ A) = 0, (1.10)

• when β < 1,

lim sup
N→∞

µV ;B
N,β (∃λi /∈ A) = 1. (1.11)

The behavior below β = 1 can be illustrated with the case β = 0 where one
would consider a potential V vanishing on a support S and at a point c0 (where its
second derivative is positive), being strictly positive everywhere else. This corre-
sponds to N independent variables with probability of order N−1/2 to belong to a
small neighborhood of c0 (where the latter probability can be estimated by Laplace
method). In this case, it is clear that some eigenvalues will lie in the neighborhood
of c0 with positive probability. The existence of a phase transition for this phe-
nomenon at β = 1 is however new to our knowledge. It suggests that the support
of the eigenvalues of matrices with real coe�cients corresponding to β = 1 matrix
models might be more sensible to perturbations of the potential than matrices with
complex coe�cients (corresponding to β = 2). This is however apparently not
supported by �nite dimensional perturbations since the BBP transition [BBAP05]
does not vary much between these two cases. Let us observe that our arguments
could be carried similarly with several critical points similar to c0 without changing
the phase transition. However, if the second derivative of J at these critical points
could vanish so that J V ;B behaves as |x − c0|q for some q > 2 in the vicinity of
c0, the phase transition would occur at a threshold βq depending on q (see remark
5.17).

1.3. Structure of the paper. In Section 2 we reduce the problem to the analysis
of (2.2). (2.2) relies heavily on the estimate for the probability that M eigenval-
ues are contained in a small neighborhood of c0 while the rest of the N-M of the
eigenvalues are contained in A. The entirety of section 5 is devoted to the proof of

proposition 2.1, which gives the desired estimate for ΦV ;B
N,M,β . Section 3 deals with

the case β > 1 and Section 4 with the case β < 1. The Appendix contains some
useful results for our problem.

1.4. Notation. We use the notation A . B (resp. A & B) to denote A ≤ CB +

e−δN
2

(resp. A ≥ CB − e−δN2

) for some universal constant C and some δ > 0
independent of N . A ≈ B when both A . B and A & B hold. Moreover, we use
A .Q B to denote A ≤ CQB, i.e, the constant C may depend on Q. c usually
denotes a small constant while C denotes a large constant. The values of these
constants may change line by line. We sometimes use a � 1 to denote that a is
smaller than any universal constant involved in the proof.

2. Preliminary and Basic analysis

The probability that a speci�c subset of M eigenvalues are contained in a small
neighborhood of c0 while the other N −M of the eigenvalues are contained in A

shall be denoted as ΦV ;B
N,M,β :

ΦV ;B
N,M,β := µV ;B

N,β (λN−M+1, ..., λN ∈ [c0 − ε, c0 + ε], λ1, ...λN−M ∈ A) . (2.1)
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where ε > 0 is a small �xed constant. The key to prove our main result is calculating

the speed at which ΦV ;B
N,M,β approaches 0 as N approaches +∞.

Note that

µV ;B
N,β (∃λi /∈ A) = µV ;B

N,β (∃λi /∈ (A ∪ [c0 − ε, c0 + ε]))

+
∑
M
N >δ

µV ;B
N,β (M eigenvalues are in [c0 − ε, c0 + ε], N −M eigenvalues are in A)

+
∑

1≤M≤δN

(
N
M

)
ΦV ;B
N,M,β

=: P1 + P2 + P3. (2.2)

Here δ > 0 is a small �xed constant.
Since J is a good rate function which is positive outside A ∪ [c0 − ε, c0 + ε] ,

Theorem 1.4 implies that for any �xed ε > 0, P1 approaches 0 exponentially fast.
In other words, it is controlled by e−Ncε for some cε > 0.

By the large deviation principle for the law of the empirical measure LN described

in Theorem 1.1, P2 is controlled by e−cεN
2

. Therefore we deduce that for any δ > 0
there exists c(δ) > 0 such that

µV ;B
N,β (∃λi /∈ A) = P3 +O(e−c(δ)N ). (2.3)

Our goal, therefore, is to control the third term P3.
Since J goes to in�nity at in�nity, Theorem 1.4 also shows that the probability

to have an eigenvalue above some �nite threehold M goes to zero exponentially
fast. Therefore, we may assume without loss of generality that B is a bounded set.

Thus, we are left to analyze ΦV ;B
N,M,β .

We prove the following upper bound in section 5:

Proposition 2.1. Let Assumption 1 and 2 hold. Then, there exists a δ > 0 such
that when M

N ≤ δ, we have uniformly in M ≤ δN

ΦV ;B
N,M,β .

1

N
M(β+1)

2

. (2.4)

On the other hand,

1

N
(β+1)

2

ZV ;A
N,β

ZV ;B
N,β

. ΦV ;B
N,1,β . (2.5)

The calculation is based on the precise estimate derived in [BG13] for the par-
tition function and correlators for �xed �lling fraction measure, that is with given
number of eigenvalues in each connected part of the support S. The proof of this
proposition will be the subject of section 5. We next give the proof of our main
result.

3. Convergence of the eigenvalues to the limiting support S when

β > 1

Now, we return to the estimate in (2.3) and use the upper bound provided by
Proposition 2.1 to �nd

P3 ≤
∑

1≤M<δN

(
N
M

)
ΦV ;B
N,M,β .

(
1 +N−

(β+1)
2

)N
− 1 . (3.1)
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where we �nally noted that any error of order e−cN
2

in ΦV ;B
N,M,β , 1 ≤ M ≤ δN is

neglectable in the above sum . Hence, when β > 1, P3 goes to 0 as N approaches
+∞. This �nishes the proof of the �rst half of our main Theorem 1.9.

4. Escaping eigenvalues when β < 1

We prove that when β < 1 the probability that no eigenvalues lies in the neigh-
borhood of c0 goes o zero, that is by Remark 1.8, that we have:

lim
N→∞

ZV ;A
N,β

ZV,BN,β

= 0. (4.1)

This is done by lower bounding the probability pVN,β that one eigenvalue exactly

lies in the neighborhood of c0. Indeed, as Ai = {λi ∈ [c0 − ε, c0 + ε], λj ∈ A, j 6= i}
are disjoint as soon as [c0 − ε, c0 + ε] ∩A = ∅, we have

pVN,β = NΦV ;B
N,1,β .

Since pVN,β ≤ 1, we deduce from (2.5) that there exists a �nite constant C such that

N

N
(β+1)

2

ZV ;A
N,β

ZV ;B
N,β

≤ C ,

which results with
ZV ;A
N,β

ZV ;B
N,β

≤ CN
β−1
2 ,

so that (2.5) follows.

5. Proof of the main Proposition 2.1

Our proof is based on estimates from [BG13] on the �xed �lling fraction measure
which will allow us to estimate precisely the probability that N −M eigenvalues
stay in A, whereas Laplace methods will be used to control the probability that M
eigenvalues are close to c0. Let us introduce some extra notations to describe these
estimates. Let Eg := {(ε1, · · · , εg)|

∑
εh = 1, ε1, . . . , εg > 0} denote the interior of

the standard g − 1 simplex. Let

ε? := (µeq(S1), · · · , µeq(Sg)) (5.1)

be the g-tuple denoting the value of the equilibrium measure on each of the intervals
that comprise the support of the equilibrium measure.

De�nition 5.1. Let the �xed �lling fraction probability measure dµV ;A
N,ε,β be given

by:

dµV ;A
N,ε,β(λ) :=

1

ZV ;A
N,ε,β

g∏
h=1

[ Nh∏
i=1

dλh,i 1Ah(λh,i) e
− βN2 V (λh,i)

∏
1≤i<j≤N

|λh,i − λh,j |β
]

×
∏

1≤h<h′≤g

∏
1≤i≤Nh
1≤j≤Nh′

|λh,i − λh′,j |β ,

where ZV ;A
N,ε,β is the partition function. The �xed �lling fraction measure dµV ;A

N,ε,β

can be viewed as the probability measure induced by dµV ;A
N,β conditioned on that the

number of the eigenvalues in [ah−, ah+] is �xed as Nh = [Nεh], 1 ≤ h ≤ g − 1,
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Ng = N −
∑g−1
h=1Nh. We alternatively denote by µV ;A

N,
−→
N ,β

= µV ;A
N,ε,β for Nh = [Nεh],

−→
N = (N1, . . . , Ng).

The following precise estimate from [BG13, Theorem 1.4] will be essential in our
proof (up to corrections of order K = 0):

Theorem 5.2. If V satis�es Assumption 1 and 2 on A, there exists t > 0 such
that, uniformly for ε ∈ Eg that satis�es |ε− ε?| < t, we have:

N !∏g
h=1(Nh)!

ZV ;A
N,ε,β = N ( β2 )N+e exp

( K∑
k=−2

N−k F
{k}
ε,β + o(N−K)

)
, (5.2)

Here Nh := [Nεh]. e is a constant depending only whether each edge is soft or

hard. F
{k}
ε,β is a smooth function for ε close enough to ε?, and at the value ε = ε?,

the derivative of F
{−2}
ε,β vanishes and its Hessian is negative de�nite. Moreover, the

law of the empirical measure LN under µV ;A
N,ε,β satis�es a large deviation principle

with speed N2 and good rate function Ẽε which is minimized at a unique probability

measure µeq,ε. In particular LN converges µV ;A
N,ε,β almost surely to µeq,ε.

One can also estimate precisely the correlators of the �xed fraction measure:

De�nition 5.3. The correlators of the �xed �lling fraction measure are given for
x ∈ C\A :

Wε(x) := µV ;A
N,ε,β{

∑ 1

x− λi
}, W {−1}

ε (x) := µeq,ε(
1

x− λ
). (5.3)

A consequence of [BG13, Theorem 1.3] also gives us the following theorem re-
garding the correlators:

Theorem 5.4. [BG13] If V satis�es Hypotheses 1 and 2 on A, there exists t > 0
such that, uniformly for ε ∈ Eg and |ε − ε?| < t, we have an expansion for the
correlators:

Wε(x) = NW {−1}
ε (x) +O(1). (5.4)

(5.4) holds uniformly for x in compact regions outside A(in our case in particular

near the critical point c0). W
{−1}
ε is smooth for ε close enough to ε?

Remark 5.5. Alternatively, we can view [c0− δ, c0 + δ] as a degenerate, additional
cut of the support of µeq. However, even if we can achieve an analogue of Theorem
5.2, taking this alternate viewpoint into account, which is likely to be a di�cult task,
we still cannot exclude the possibility that �nite eigenvalues are concentrated near
the critical point c0. Thus, we do not apply this alternate strategy.

Our goal is to split ΦV,BN,M,β into components and estimate the value of each

component. Then, we combine the values of the components to estimate ΦV,BN,M,β .
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We start with the explicit formula for ΦV,BN,M,β :

ΦV ;B
N,M,β =

1

ZV ;B
N,β

ˆ
[c0−ε,c0+ε]M

N∏
j=N−M+1

dλje
−Nβ2 V (λj)

∏
N−M+1≤k<l≤N

|λk − λl|β

×
ˆ
λi∈A

N−M∏
i=1

dλie
− β(N−M)

2 ( N
N−M V (λi))

N∏
j=N−M+1

|λi − λj |β


×

 ∏
1≤i<j≤N−M

|λi − λj |β
 . (5.5)

We want to rewrite ΦV ;B
N,M,β in terms of µ

N
N−M V ;A

N−M,β , the law of the N−M eigenvalues

in A. Note that ΦV ;B
N,M,β is equal to µ

N
N−M V ;A

N−M,β multiplied by the law of the M

eigenvalues in [c0− ε, c0 + ε] conditioned on the values of the N −M eigenvalues in

A. Also, note that the
∏
N−M+1≤k<l≤N |λk−λl|β term is controlled by (2ε)

βM(M−1)
2 .

Thus, let:

YN,M :=
Z

N
N−M V ;A

N−M,β

ZV ;B
N,β

=

∑
N1+···+Ng=N−M

(N−M)!
N1!···Ng ! · Z

N
N−M V,A

N−M,
−−−−→
N−M
N−M ,β

ZV ;B
N,β

Ξ(η1, · · · , ηM ) := µ
N

N−M V ;A

N−M,β (

M∏
j=1

eβ
∑N−M
i=1 ln |ηj−λi|− β2 (N−M)V (ηj)), (5.6)

LN,M :=

ˆ
[c0−ε,c0+ε]M

Ξ(λN−M+1, · · · , λN )

N∏
j=N−M+1

e−
Mβ
2 V (λj)dλj

where
−−−−−→
N −M := (N1, · · · , Ng) with

∑
Ni = N −M .

Then, we have:

ΦV ;B
N,M,β ≤ (2ε)

βM(M−1)
2 YN,MLN,M . (5.7)

When M=1, the inequality (5.7) becomes an equality:

ΦV,BN,1,β = YN,1LN,1 (5.8)

(5.8) will be applied when we prove (2.5). We wish to split YN,M into components
for further analysis. We make the decomposition;

YN,M =
ZV,AN,β

ZV,BN,β

ỸN,M , ỸN,M = FN,MGN,M , (5.9)

where

FN,M =
Z

N
N−M V ;A

N−M,β

ZV ;A
N−M,β

, GN,M =
ZV ;A
N−M,β

ZV ;A
N,β

. (5.10)

By estimating FN,MLN,M and GN,M , we end up with an estimate of ỸN,M , which

is an upper bound on YN,M as ZV,AN,β ≤ Z
V,B
N,β . It will also provide a lower bound for

Φ1,M to prove (2.5). Thus one rewrites formula (5.7) as:

ΦV ;B
N,M,β ≤ (2ε)

βM(M−1)
2 GN,MFN,MLN,M . (5.11)
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Remark 5.6. We always consider M
N < δ � 1.The δ should be chosen to be smaller

than the constant t in Theorem 5.2, and in practice we need to make it even smaller
s.t we can use Taylor expansions near the ε?(see Theorem 5.2 and (5.1)).

We next estimate GN,M , FN,M and LN,M .

5.1. step 1: Estimating GN,M .

Proposition 5.7. There exists small δ > 0, s.t when M ≤ δN , we have

GN,M ≈ CM
1

N
Mβ
2

eNM(infξ∈B J V ;B(ξ)+ β
2

´
V (η)dµeq(η)). (5.12)

Furthermore, there exists a �nite constant C such that for all 1 ≤ M ≤ δN , CM
satisfy the control

CM ≤ CeCM
2

. (5.13)

Proof. Proposition 5.7 follows directly from the Lemma 5.9 and Corollary 5.12
below. �

Remark 5.8. The term eCM
2

does not a�ect the �nal estimate due to the presence

of (2ε)
βM(M−1)

2 in (5.11). Also, M is always much smaller than N , even though M
is not �xed for all N .

To prove Proposition 5.7 we �rst show the following Lemma.

Lemma 5.9.

GN,M ≈ eMNAβ
1

N
Mβ
2

CM , (5.14)

where Aβ does not depend on N or M and CM . eCM
2

The value of Aβ will be given by Corollary 5.12.

Proof. By the partition function estimate from Theorem 5.2, for a su�ciently small
δ,

ZV,AN−M,β =
∑

N1+···+Ng=N−M

(N −M)!

N1! · · ·Ng!
· Z

N
N−M V,A

N−M,
−−−−→
N−M
N−M ,β

,

≈
∑

N1+···+Ng=N−M,

|
−−−−→
N−M
N−M −ε?|<δ

(N −M)( β2 )(N−M)+e exp

(
(N −M)2F

{2}
−−−−→
N−M
N−M

+ (N −M)F
{1}
−−−−→
N−M
N−M

)
.

(5.15)
In the last step we applied the large deviation principle for the empirical measure

LN ; in other words, the sum over all
−−−−→
N −M such that |

−−−−→
N−M
N−M −ε?| ≥ δ is negligible.

Similarly,

ZV,AN,β =
∑

N1+···+Ng=N

(N −M)!

N1! · · ·Ng!
· Z

N
N V,A

N,
−→
N
N ,β

,

≈
∑

N1+···+Ng=N,

|
−→
N
N −ε?|<δ

(N)( β2 )(N)+e exp

(
(N)2F

{2}
−→
N
N

+ (N)F
{1}
−→
N
N

)
.

(5.16)
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We point out by large deviation of the empirical measure LN , we need only consider−→
N
N ,
−−−−→
N−M
N−M su�ciently close to ε?. By Theorem 5.2, for

−→
N
N su�ciently close to ε?,

F {1} and F {2} are smooth, and because the Hessian of F {2} is negative de�nite,

F
{2}
ε − F {2}ε? ≈ −|ε− ε?|2.
All that is left to do is to analyze the limiting behavior of :

LK :=
∑

N1+···+Ng=K,

|
−→
K
K−ε?|<δ

exp((K)2F
{2}
−→
K
K

+ (K)F
{1}
−→
K
K

). (5.17)

HereK = (N1, · · · , Ng) with
∑
Ni = K. The following lemma su�ces to complete

the proof.

Lemma 5.10.

L−→
K
≈ exp(K2F

{2}
ε∗ +KF {1}ε? ) (5.18)

Clearly, Lemma 5.10 plus (5.15), (5.16) imply (5.14). �

Now we give the proof of the lemma.

Proof of lemma 5.10. According to Theorem 5.2, we can �nd constant c, C s.t

|F {1}ε − F {1}ε? | ≤ C|ε− ε?|, (5.19)

F {2}ε − F {2}ε? ≤ −c|ε− ε?|
2, (5.20)

|F {2}ε − F {2}ε? | ≤ C|ε− ε?|
2. (5.21)

By the smoothness of F {1} and F {2} and because there exists at least one
−→
K1,

s.t |
−→
K1

K − ε?| .
1
K , we can easily get the lower bound(using (5.19), (5.21):

L−→
K
& exp(K2F

{2}
ε∗ +KF {1}ε? ). (5.22)

Next, we calculate the upper bound. Actually, since we only sum over |
−→
K
K −ε?| �

1 we only need to establish by (5.19) and (5.20) that

∑
|
−→
K
K−ε?|�1

exp(−cK2|
−→
K

K
− ε?|2 + CK|

−→
K

K
− ε?|) . 1. (5.23)

Clearly, (5.23) plus (5.19) and (5.20) will give the upper bound:

L−→
K
. exp(K2F

{2}
ε∗ +KF {1}ε? ). (5.24)
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To prove (5.23), let Q be a large constant such that cQ>100C, then∑
|
−→
K
K−ε?|�1

exp(−cK2|
−→
K

K
− ε?|2 + CK|

−→
K

K
− ε?|)

≤
∑

|
−→
K
K−ε?|≤

Q
K

exp(−cK2|
−→
K

K
− ε?|2 + CK|

−→
K

K
− ε?|),

+
∑

|
−→
K
K−ε?|>

Q
K

exp(−cK2|
−→
K

K
− ε?|2 + CK|

−→
K

K
− ε?|),

.Q 1 +
∑

|
−→
K
K−ε?|>

Q
K

exp(−1

2
cK2|

−→
K

K
− ε?|2),

. 1.

(5.25)

which proves the Lemma. �

Having established Lemma 5.9, we complete the proof of Proposition 5.7 by
computing Aβ . As Aβ does not depend on M it is enough to prove the following
lemma:

Lemma 5.11. Given η′, η′′ > 0 and N large enough,

GN,1 ≥ eN(−η′+infξ∈A J (ξ)+ β
2

´
V (η)dµeq(η)),

GN,1 ≤ eN(η′′+infξ∈A J (ξ)+ β
2

´
V (η)dµeq(η)).

(5.26)

Proof of the lemma almost exactly follows the same computation in the appendix
A of [BG11]; For completeness, we include the proof in our Appendix, see lemma
A.3.

Thus, we simply take M=1 in Lemma 5.9. By Lemma 5.9, for each η′, η′′ > 0,
and for large N,

N(−η′ + inf
ξ∈A
J (ξ) +

β

2

ˆ
V (η)dµeq(η)) ≤ NAβ + C ln(N + 1),

N(η′′ + inf
ξ∈A
J (ξ) +

β

2

ˆ
V (η)dµeq(η)) ≥ NAβ − C ln(N + 1).

(5.27)

since we can choose η′, η′′ > 0 arbitrarily and also note

inf
ξ∈A
J = inf

ξ∈B
J . (5.28)

Thus we get the value of Aβ :

Corollary 5.12.

Aβ = { inf
ξ∈B
J (ξ) +

β

2

ˆ
V (η)dµeq(η)}. (5.29)

Thus we get the value of Aβ ,which completes with Lemma 5.9, the proof of
Proposition 5.7.
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5.2. step 2: Estimating the product FN,M×LN,M . To bound FN,M and LN,M
from above uniformly on |M | ≤ δN , we wish to use concentration inequalities

under µV,AN,β This is the point where we will use the strict convexity of V on each
connected components of A, see Assumption 2. However, when A is not connected,
the density of this measure is not strictly log-concave and standard concentration
of measure results do not apply. To remedy this point, we will expand the product

FN,M × LN,M in terms of the �xed �ling fractions µV ;A
N,ε,β which have a strictly

log-concave density under Assumption 2. Indeed we then have, see [[2.3.2], [4.4.17],
[4.4.26] ] in [AGZ10] for more details,

Lemma 5.13 (Concentration Inequality). Let ε be given. Let V be a smooth func-
tion such that V ′′(x) ≥ C > 0 for all x ∈ A. Let f be a function that is class C1

on RN . Then
µV ;A
N,ε,β

[
e(f−µ

V ;A
N,ε,β(f))

]
. e

1
NC ‖f‖

2
L , (5.30)

where

‖f‖L :=

√√√√ N∑
i=1

‖∂λif‖2∞.

Remark 5.14. In practice, we only need the information of f on A, in other words
we only require f to be smooth near A and ‖f‖L in the above lemma can be replaced
by ‖f‖L(A).

To use this lemma, we write the decomposition over the feeling fractions. By
the large deviation principle for the empirical measure Theorem 1.1 it is possible
to restrict ourselves to the case where the feeling fractions are closed to that of

the equilibrium, up to an error of order e−N
2

. Moreover, we �rst work with �xed
(λN−M+1, . . . , λN ). We shall prove the following upper bound

Proposition 5.15. There exists ε > 0 so that for any λN−M+1, · · · , λN belong to
[c0 − ε, c0 + ε], we have the following uniform estimate:

FN,MΞN,M (λN−M+1, · · · , λN ) . CeCM
2

e
´
− βNM2 V (η)dµeq(η)e−N

∑N
j=N−M+1 J

V ;B(λj).
(5.31)

Proof. From the above considerations, we can write up to this small error

FN,MΞ(λN−M+1, · · · , λN ) ≈
∑

N−M=N1+···+Ng,

|
−−−−→
N−M
N−M −ε?|<δ

c−−−−→
N−Md−−−−→

N−M , (5.32)

where

•

c−−−−→
N−M :=

1

ZV ;A
N−M,β

(N −M)!

N1! · · ·Ng!
· ZV,A

N−M,
−−−−→
N−M
N−M ,β

, (5.33)

•

d−−−−→
N−M := µV ;A

N−M,
−−−−→
N−M
N−M β

(

N∏
j=N−M+1

e
∑N−M
i=1 (− β2 V (λi)+ln |λj−λi|− β2 V (λj))). (5.34)
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We shall use Lemma 5.13 with f(λ1, . . . , λN−M ) =
∑N
i=N−M+1 gλi(λ1, · · · , λN−M )

with

gλ(λ1, · · · , λN−M ) :=

N∑
j=N−M+1

(−β
2
V (λ) + β ln |λ− λj|) .

Note that gλ is smooth for λ close to c0 and λi, i ≤ N −M in A, and such that
‖gλ‖2L is of order N . As a consequence, ‖f‖2L is of order NM2 for λN−M+1, . . . , λN
close to c0.

We �rst estimate d−−−−→
N−M and then substitute the estimate into (5.32). By the

concentration inequality,

d−−−−→
N−M =

N∏
j=N−M+1

e−
β
2 (N−M)V (λj)µV ;A

N−M,
−−−−→
N−M
N−M ;β

(e
∑N−M
i=1 f(λi)),

=

N∏
j=N−M+1

e−
β
2 (N−M)V (λj)µV ;A

N−M,
−−−−→
N−M
N−M ;β

(e

∑N−M
i=1 f(λi)−µ

N
N−M V ;A

N−M,
−−−−→
N−M
N−M ;β

(
∑N−M
i=1 f(λi))

),

∗ e
µV ;A

N−M,
−−−−→
N−M
N−M ;β

(
∑N−M
i=1 f(λi))

≤ CeCM
2

(

N∏
j=N−M+1

e−
β
2NV (λj))e

µV ;A

N−M,
−−−−→
N−M
N−M ;β

(
∑N−M
i=1 f(λi))

.

(5.35)
The last step is a consequence of concentration inequality, Lemma 5.13. We remark
here in the following estimate the constant C may change line by line.

Now we use the estimate of Lemma A.1, which is derived from Theorem 5.4.
Indeed, since we assumed V analytic in a neighborhood of A, f is also analytic in
a neighborhood of A (for [c0 − ε, c0 + ε] at positive distance of A), so that we can
use Lemma A.1 to deduce that

µV ;A

N−M,
−−−−→
N−M
N−M ,β

(

N−M∑
i=1

f(λi)) = (N −M)µ
eq,
−−−−→
N−M
N−M

(f(λ)) +O(M). (5.36)

Next, we want to substitute µ
eq,
−−−−→
N−M
N−M

by µeq By Appendix A.1 in [BG13](i.e the

smooth dependence), it is not hard to see(we point out here µeq = µeq,ε?):

|µeq{f}−µ
eq,
−−−−→
N−M
N−M

{f}| = |µeq,ε?{f}−µeq,
−−−−→
N−M
N−M

{f}| ≤ CM |
−−−−−→
N −M

N −M
−ε?|. (5.37)

Combining (5.35), (5.32), (5.36), (5.37) gives us

FN,MΞ (λN−M+1, · · · , λN ) . CeCM
2

(

N∏
j=N−M+1

e−
β
2NV (λj))

×
∑

|
−−−−→
N−M
N−M −ε?|<δ

c−−−−→
N−M exp

(
(N −M)(µV ;A

eq {g}+ CM |
−−−−−→
N −M

N −M
− ε?|) +O(M)

)
.

(5.38)
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Now in order to establish our desired estimate:

FN.MΞ(λN−M+!, · · · , λN ) . CeCM
2

(

N∏
j=N−M+1

e−
β
2NV (λj)) exp ((N −M)µeq{f})

≤ CeCM
2

e
´
− βNM2 V (η)dµeq(η)e−N

∑N
j=N−M+1 J

V ;B(λj).

(5.39)
We need only establish the inequality:∑

|
−−−−→
N−M
N−M −ε?|<δ

c−−−−→
N−MeCM(N−M)|

−−−−→
N−M
N−M −ε?| ≤ CeCM

2

, (5.40)

which is straightforward since c−−−−→
N−M has a sub-Gaussian tail

c−→
K
≤ Ce−cK

2|
−→
K
K−ε?|

2+CK|
−→
K
K−ε?|. (5.41)

(5.41) follows from Theorem 5.4 and (5.19), (5.20), (5.21).
�

From Proposition 5.15, we can easily obtain an upper bound on FN,MLN,M by
using classical Laplace method:

Proposition 5.16. Under Assumptions 1 and 2,

FN,MLN,M . Ce
CM2

e−
β
2NM

´
V (η)dµeq(η)−NM inf J V ;B 1

N
M
2

Proof. The proof is straightforward since by Proposition 5.15

FN,MLN,M . Ce
CM2

e−
β
2NM

´
V (η)dµeq(η)−NM inf J V ;B

(ˆ c0+ε

c0−ε
e−NJ̃

V ;B(x)e−M
β
2 V (x)dx

)M
where we can bound V from below, providing a term eCM

2

, and use Laplace method
(recall we assume J̃ ′′(c0) > 0, see [AGZ10, section 3.5.3] for details) to getˆ c0+ε

c0−ε
e−NJ̃

V ;B(λ)dλ ≈ 1√
N
.

�

Remark 5.17. Note that if we would have assumed instead of J̃ ′′(c0) > 0 that for

some q > 0 J̃ ′′(x) ' |x− c0|q in a neighborhood of c0, we would have obtained

FN,MLN,M ≤ CeCM
2

e−
β
2NM

´
V (η)dµeq(η) 1

N
M
q

and criticality would have occurred at β = 2/q.

Propositions 5.16 and 5.7 give (2.4) since

ΦV ;B
N,M,β ≤ (2ε)

βM(M−1)
2 GN,MFN,MLN,M

≤ C ′(C ′ε)
βM(M−1)

2
1

N
M
2

1

N
Mβ
2

(5.42)

for some �nite constant C ′. Hence, if ε is chosen small enough, the result is proved.
This concludes the proof.
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5.3. Proof of (2.5). Simply recall that in this case we have equality:

ZV ;B
N,β

ZV ;A
N,β

ΦV ;B
N,M,β = YN,1

ˆ
[c0−ε,c0+ε]

Ξ(λN )e−
β
2 V (λN )dλN . (5.43)

When M = 1, we combine the estimate of (5.14) and apply central limit theorem
Lemma A.2. Then we get:

FN,1Ξ(λN ) ≈ e
´
− β2NV (η)dµeq(η)e−J (λN ). (5.44)

The estimate for GN,1 given in Proposition (5.7) holds. Thus,we get

ZV ;B
N,β

ZV ;A
N,β

ΦV ;B
N,1,β &

1

N
β
2

ˆ
[c0−ε,c0+ε]

e−NJ̃ (λN )dλN ,

&
1

N
β+1
2

.

(5.45)
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Appendix A. Supplementary Lemmas

A.1. How to make use of the correlator estimate. Here we prove the following
lemma by using the estimate for correlator.This technique is standard, we include
the proof for completeness.It also shows the reason why sometimes we need the
assumption that a function is analytic analytic (near the A); it guarantees that we
can use Stieltjes transform estimates.

Lemma A.1. Under the assumption in Theorem 5.4, let µV ;A
N,ε,βbe the �xed �lling

fractions measure, µeq,ε be its limiting measure, let h be a function that is holomor-
phic near A. Then,

|µV ;A
N,ε,β(

∑
h(λi))−Nµeq,ε(h)| . C. (A.1)

Proof. Using Cauchy's integral and the assumption h is holomorphic near A, we

�nd a contour Γ s.t h(λ) = 1
2πi

¸
Γ

hξ
ξ−λ . Thus

|µV ;A
N,ε,β(

∑
h(λi))−Nµeq,ε(h)|

. |Γ| sup
ξ∈Γ
{(|h(ξ)|)|µV ;A

N,ε,β

(∑ 1

ξ − λi

)
−NW−1

ε (ξ)|},

. |Γ| sup
ξ∈Γ
{|h(ξ)||Wε(ξ)−NW−1

ε (ξ)|}.

(A.2)

Our desired estimate follows from the expansion of the correlators given in Theorem
5.4. �
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A.2. Central limit for analytic functions. We want to establish estimate (sim-
ilar to the �xed fractals central limit theorem in section 5.5 of [BG13]). It is
essentially contained in[BG13], but we write down the proof to be self-contained.
we remark this h must be homomorphic near the neighborhood of A(since we want
to use the correlator estimate).Then we have:

Lemma A.2. Let Assumption 1 and 2 hold, and h be holomorphic near the neigh-
borhood of A, then:

µV ;A
N,β {exp(

∑
h(λi))} ≈ exp{N

ˆ
h(η)dµeq(η)}. (A.3)

Proof. By the large deviation principle of the limiting measure:

µV ;A
N,β {exp(

∑
h(λi))} ≈

∑
|
−→
N
N −ε?|<δ

c−→
N
µV ;A

N,
−→
N
N ,β
{exp(

∑
h(λi))}.

(A.4)

First, we calculate a lower bound. Let
−→
N be such that |

−→
N
N −ε?| <

Q
N and c−→

N
> cQ,

by Jensen's Inequality:

µV ;A

N,
−→
N
N ,β
{exp(

∑
h(λi))} ≥ exp(µV ;A

N,
−→
N
N ,β
{
∑

h(λi)}). (A.5)

Next, by Lemma A.1, we can deduce the estimate:

|µV ;A

N,
−→
N
N ,β

(
∑

h(λi))−Nµeq,
−→
N
N

(h)| . C. (A.6)

Using that µeq,ε(h) depends smoothly on ε (see appendix A.1 of [BG13]) and µeq,ε? is
exactly µeq, we have:

|µ
eq,
−→
N
N

(h)− µeq(h)| . C|
−→
N

N
− ε?|. (A.7)

Now , combing (A.4), (A.5), (A.6), (A.7), we get:

µV ;A
N,β {exp(

∑
h(λi))} & exp{N

ˆ
h(η)dµeq(η)}. (A.8)

The upper bound is based on the concentration equality for (�xed fractals mea-

sure) and the explicit estimate for the partition function (N)!
N1!···Ng ! ·Z

V ;A

N,
−→
N
N ,β

.Basically,

concentration inequality gives the inverse direction of Jensen's inequality.
First from concentration inequality,

µV ;A

N,
−→
N
N ,β
{exp(

∑
h(λi))} . exp(µV ;A

N,
−→
N
N ,β
{
∑

h(λi)}). (A.9)

Now, combine (A.4), (A.6), (A.7), (A.9), and the estimate for the partition function,
we get :

µV ;A
N,β {exp(

∑
h(λi)))} (A.10)

.
∑

|
−→
N
N −ε?|<δ

exp(−cN2|
−→
N

N
− ε?|2 + CN |

−→
N

N
− ε?|) · exp(Nµeq(h)) .

Thus, we �nally conclude by∑
|
−→
N
N −ε?|<δ

exp(−cN2|
−→
N

N
− ε?|2 + CN |

−→
N

N
− ε?|) . 1. (A.11)
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�

A.3. lemma for GN,1. We remark the following lemma is follows almost exactly
the same argument as the analysis for YN in the appendx A.3 in[BG11].
We include the proof for completeness.

Lemma A.3. Given η > 0 and N large enough, support set A = ∪gh=1Ah,

GN,1 ≥ eN(−η+infξ∈A J (ξ)+ β
2

´
V (η)dµeq(η)),

GN,1 ≤ eN(η+infξ∈A J (ξ)+ β
2

´
V (η)dµeq(η)).

(A.12)

Proof. Let δ > 0. By Theorem 1.1, the probability that LN−1 is of distance greater

or equal to δ from µeq is smaller than e−Γδ(N−1)2 for some Γδ > 0. Therefore, when
N is large enough,

1

GN,1
=

1

ZV ;A
N−1,β

ˆ
A

dλNe
−Nβ2 V (λN )

N−1∏
i=1

|λN − λi|βe−
β
2 V (λi)

×
N−1∏
i=1

dλie
− (N−1)β

2 V (λi)
∏

1≤i<j≤N−1

|λi − λj |β

= µV ;A
N−1,β

(ˆ
A

dλNe
− (N−1)β

2 V (λN )e−
β
2 V (λN )

N−1∏
i=1

|λN − λi|βe−
β
2 V (λi)

)

≤ e−Γδ
N2

2 +

ˆ
A

dξe−
β
2 V (ξ)eβ(N−1) supd(µ,µeq)<δ(−

V (ξ)
2 +

´
[ln |ξ−η|− β2 V (η)]dµ(η)).

As in [[BG11], Appendix 3], note that for all probability measures µ on A:

ˆ
A

ln |ξ − η|dµ(η) ≤
ˆ
A

ln[max(|ξ − η|, ζ)]dµ(η),

while the function on the righthand side is continuous in µ and ξ, and thus

lim
ζ→0

ˆ
A

ln[max(|ξ − η|, ζ)]dµ(η) =

ˆ
A

ln |ξ − η|dµeq(η).

Therefore,

lim sup
δ→0

sup
ξ∈A

sup
d(µ,µeq)<δ

β

(ˆ
ln |ξ − η| − 1

2
V (η)dµ(η)− V (ξ)

2

)
≤ − inf

ξ∈A
J V ;A(ξ)

− β

2

ˆ
V (η)dµeq(η)

.

Thus, for any η′ > 0 and N large enough,

1

GN,1
≤ eN(η′−infξ∈A J (ξ)− β2

´
V (η)dµeq(η)). (A.13)
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As for the upper bound, let ε > 0. For any [a−h − ε, a
+
h − ε], there exists δε > 0

such that the following holds by Jensen's inequality:

1

GN,1
= µV ;A

N−1,β

(ˆ
A

dλNe
−Nβ2 V (λN )

N−1∏
i=1

|λN − λi|βe−
β
2 V (λi)

)
,

≥ µV ;A
N−1,β

(ˆ x+ε

x−ε
dλNe

−Nβ2 V (λN )
N−1∏
i=1

|λN − λi|βe−
β
2 V (λi)

)
,

≥ 2εe−
βN
2 V (x)−NδεµV ;A

N−1,β

(
e
∑N−1
i=1

β
2ε

´ x+ε
x−ε ln |ξ−λi|dξ− β2 V (λi)

)
.

Since λ → 1
2ε

´
C

ln |ξ − λi|dξ is bounded continuous on A, by convergence of
LN−1 → µeq, for any given η > 0, when N large enough,

1

GN,1
≥ 2εe−

βN
2 V (x)−2Nδεe(N−1)

´ β
2ε (
´ x+ε
x−ε ln |ξ−η|dξ− β2 V (η))dµeq(η),

≥ e−N(η+infξ∈A J (ξ)+ β
2

´
V (η)dµeq(η)).

�
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