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Abstract

It is well-known that representations of a group G over a field K are in bijection with
modules over the group algebra K[G]—this is the basis for the field of modular representation
theory. We study the modular representation theory of cyclic groups with prime power order
Cpk over finite fields Fp. There is a broad background in the literature on the representation
theory of Cpk over a finite field Fn when n - pk, but little is known when n | pk, which is
the case we study. We find a basis for the representation ring of Fp[Cpk ], which allows us to
find a much simpler structure to describe the representation ring. Our results help us better
understand the representation theory of cyclic groups, which have applications in Number
Theory and the Langlands Program.

Summary

Abstract algebra is a field of math that deals with studying abstract objects and their
properties. However, solving problems and studying the properties of these abstract objects
can be very difficult, and it is much easier to study concrete, linear objects. This is the
motivation for the field of representation theory, which represents abstract objects as matri-
ces, which are very easy to deal with. We study the representation theory of one object in
particular, called a cyclic group, and we describe the underlying structure of how its repre-
sentations interact with each other. Our results have applications in several fields of math,
including the Langlands Program, which seeks to connect two fields of study: number theory
and geometry.



1 Introduction

Representation theory is a method of transforming problems in abstract algebra into

problems in linear algebra by representing elements of more complicated algebraic struc-

tures as matrices. This allows us to use the many powerful tools of linear algebra that are

traditionally applied to matrices to tell us about the properties of groups, rings, fields, and

other algebraic objects. Additionally, representation theory has applications in a vast range

of mathematical fields, as well as theoretical physics, making it an extremely useful field of

study.

One of the fundamental results in representation theory is the following theorem, given

by Maschke in 1898.

Theorem 1.1. Let V be a representation of the finite group G over a field F in which |G|

is invertible. Let W be an invariant subspace of V . Then there exists an invariant subspace

W1 of V such that V = W ⊕W1 as representations [1].

Maschke’s Theorem implies that if the characteristic of the field F does not divide the

order of the group G, all subrepresentations split. This implies that indecomposable repre-

sentations are always irreducible. An object satisfying this property that all indecomposable

representations are irreducible is called semisimple. Mashke’s theorem says that the repre-

sentation theory of a group over a field with characteristic not dividing the order of the

group is semisimple. Many techniques exist to study semisimple representation theory and

the majority of the work in the field focuses on this case. Character theory provides strong

restrictions on the possible dimensions of irreducible representations. Once the irreducible

representations are determined, character theory provides an efficient algorithm for decom-

posing representations.

When the characteristic of the field divides the order of the group, this is known as mod-

ular representation theory. Modular representation theory is not semisimple and far less is
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known. The most fundamental theorem in nonsemisimple representation theory is the Jordan

form, which says that the indecomposible representations of Z over an algebraically closed

field k correspond to pairs λ ∈ k an eigenvalue and d a dimension. If a group has represen-

tation theory at most as complicated as the representation theory of Z, the representation

theory is said to be tame, otherwise it is said to be wild. An immediate consequence of the

Jordan form is that every cyclic group has tame modular representation theory. The only

noncyclic p-group with tame modular representation theory is Z/2× Z/2.

In the tame case, the collection of indecomposable representations is well understood

but the behavior of any of the standard functors on representations are poorly understood.

However, when the characteristic of the field divides the group, much less is known. Because

finite fields must have prime power order, we study groups of prime power order, specifically,

cyclic groups of prime power order. We study these groups from the approach of modular

representation theory, which studies modules instead of representations. We find a concise

description of the representation ring of Cpk over the field Fp as the quotient of a polynomial

ring with some relations.

2 Background

2.1 Representations

Definition 2.1. A representation of a group G over a field K is a pair (V, ρ) of a K-

vector space V and a homomorphism ρ : G → GL(V ) where GL(V ) is the group of linear

automorphisms of V [2].

For a simple example, consider Cn = 〈x | xn = 1〉 the cyclic group of order n. If G

is some other group, a homomorphism f : Cn → G is determined by f(x) because f is a

homomorphism so f(xk) = f(x)k. Because f(g)n = f(gn) = f(1) = 1, the image of f must
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be an element of G of order n. Thus homomorphisms Cn → G are in bijection with elements

of G of order n. In particular, a representation of Cn on a K vector space of dimension d

is specified by a d × d matrix M such that Mn = Id. For instance, the one-dimensional

representations of Cn over a field K are given by nth roots of unity in K.

Definition 2.2. A group action of a group G over a set X is a map G×X → X : (g, x) 7→ gx

satisfying

1. (gh)x = g(hx)

2. 1Gx = x

for all g, h ∈ G and x ∈ X.

A group action is linear if X is a vector space and the elements of G act linearly on

X. Because a representation maps from G to GL(V ), each element in G is represented by

a linear automorphism on V . Thus, we can completely define a representation by how its

elements act on V , which implies that a representation is completely equivalent to a linear

group action on a vector space.

2.2 Modules

Definition 2.3. A left R-module M over the ring R consists of an abelian group (M,+)

and an operation R ×M → M (called scalar multiplication) such that for all r, s ∈ R and

for all x, y ∈M , we have

1. r(x+ y) = rx+ ry

2. (r + s)x = rx+ sx

3. (rs)x = r(sx)
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4. 1Rx = x where 1R is the multiplicative identity in R.

A right R-module is defined analogously.

Definition 2.3 is the standard definition of a module, but Definition 2.4 is an equivalent,

more useful definition in the context of representation theory.

Definition 2.4. A module over a K-algebra R is a pair (V, ρ) of a K-vector space V and a

map ρ : R→ End(V ) from R to the ring of linear endomorphisms of V .

If R is a field, then an R-module is a vector space over R, thus modules over a ring are a

generalization of vector spaces over a field. For any ring R, an example of an R-module is the

Cartesian product Rn, where scalar multiplication defined by multiplying component-wise.

The ring End(Rn) is given by n × n matrices of elements of R, and the map ρ : R → Rn

embeds R as the diagonal matrices. Any ring homomorphism R → S makes S into an R-

module. Modules are useful in representation theory because they provide another way of

looking at group representations.

Definition 2.5. Given a group G and a field K, the group algebra K[G] is defined as a vector

space with basis G, so that a typical element r ∈ K[G] is given by
∑

g∈G ag[g], along with

a bilinear operation K[G] ×K[G] → K[G]. This operation is given by setting [g][h] = [gh]

and linearly extending.

We study the representation theory of Fp[Cpk ], which is an example of a group algebra.

There is an isomorphism from

Fp[Cpk ] to Fp[x]/(xp
k − 1),

given by g 7→ x, where g is a generator. A typical element in Fp[Cpk ] looks like a polynomial

in one variable over a finite field, and takes the form
p∑

i=1

aig
i−1.
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Lemma 2.1. Modules over K[G] are in bijection with representations of G over K.

Lemma 2.1 follows almost directly from Definition 2.1 and Definition 2.4, with a few rig-

orous steps involved, because modules and representations are almost definitionally equiv-

alent. The bijection between modules over K[G] and representations of G over K can be

used to study the representation theory of cyclic groups Cn. Representations of Cn over Fp

are equivalent to modules over Fp[Cn], and it is simpler to study these modules instead of

representations, because modules encompass all of the structure of representations in one

object, rather than the ordered pair (V, ρ) from Definition 2.1.

2.3 Jordan Normal Form

Representation theory is motivated by a desire to apply the tools of linear algebra to

abstract algebra, and in our case, we use the Jordan normal form of a matrix, which is a

powerful result from linear algebra. The Jordan normal form of a matrix A is a matrix J

composed of Jordan blocks that satisfies J = P−1AP , so J is similar to A. The Jordan blocks

which compose the Jordan normal form have the form

Jn =



λ 1 0 · · · 0

0 λ 1 · · · 0

...
...

...
. . .

...

0 0 0 λ 1

0 0 0 0 λ


.

The main focus of this paper is studying the cyclic group of order pk, Cpk , along with vector

spaces over Fp. For all g ∈ Cpk , we have gp
k

= 1G, and because the map ρ is a homomorphism,

we must also have the matrix representation M = ρ(g) satisfy Mpk = id. Therefore, when we

consider Jordan blocks as matrix representations of elements of Cpk , we must have J pk

n = id.
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This implies λp
k

= 1, so λ is a pk-th root of unity. However, because Jn ∈ Fp, we have that

xp
k − 1 = (x− 1)p

k
, and so all roots of unity are 1, hence, λ = 1. So, all Jordan blocks have

the form

Jn =



1 1 0 · · · 0

0 1 1 · · · 0

...
...

...
. . .

...

0 0 0 1 1

0 0 0 0 1


where Jn is n-dimensional. A matrix in Jordan normal form will be composed of Jordan

blocks as shown below

J =



Ji1 0 0 · · · 0

0 Ji2 0 · · · 0

...
...

...
. . .

...

0 0 0 Jin−1 0

0 0 0 0 Jin


.

2.4 Indecomposable Representations

The set of all representations of a group G over a field K forms a ring Rep⊗(K[G]) when

one considers representations as K[G]-modules. It is a common problem in representation

theory to study the indecomposable representations in Rep⊗(K[G]).

Given some representation ρ, we call ρ indecomposable if ρ cannot be written as the direct

sum of two non-zero representations [3]. Understanding the direct sum of representations is
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simplest when considering modules: the direct sum of two modules Vi and Vj is the module

Vi ⊕ Vj with basis given by appending the basis of Vj to the basis of Vi.

If we choose some g ∈ G, g will be represented as a matrix T in GL(V ) through the map

ρ(g) = T . Because we are concerned with cyclic groups Cpk , every other matrix representation

is determined by T if g is a generator. Therefore, we can associate a matrix to ρ: the matrix of

T with respect to some basis of K[G], with g the generator in Cpk . Then, ρ is indecomposable

if the Jordan normal form is only composed of one Jordan block. This is equivalent to ρ not

being the direct sum of two non-zero representations because the direct sum of two matrices

A and B is the block diagonal matrix

A⊕B =

A 0

0 B

 =



a11 · · · a1n 0 · · · 0

...
. . .

...
...

. . .
...

am1 · · · amn 0 · · · 0

0 · · · 0 b11 · · · b1q

...
. . .

...
...

. . .
...

0 · · · 0 bp1 · · · bpq


,

so if the Jordan normal form has more than one Jordan block, it is the direct sum of those

Jordan blocks, and thus decomposable. One can use this connection between decomposing

modules and the Jordan normal form of a matrix to prove the follwoing well-known result

about modular representations of cyclic groups that will be useful later on:

Lemma 2.2. For Cpk over a field K, it is well-known that there are precisely pk classes of

indecomposable K[Cpk ]-modules. The i-th module Mi, where 1 ≤ i ≤ pk, has dimension i.

From now on, we denote the n-dimensional indecomposable module by Vn. The matrix

associated with each Vn is the n × n Jordan block with λ = 1. Multiplication by this

matrix corresponds to the group action by the generator g of G. Now that we know what
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all indecomposable representations of Cpk look like, we can compute direct sums and tensor

products through operations on matrices, and we can start to study the representation ring.

We are interested in determining the decomposition of a general element of Rep⊗(K[G])

into the indecomposable modules Vn. The Jordan normal form proves to be extremely useful

for computing such decompositions. For example, if we have the element V2⊗V3 over F5[C5],

we can compute J2⊗J3, where Jn is the n-dimensional Jordan block, then take the Jordan

normal form of the resulting matrix:

1 1

0 1

⊗


1 1 0

0 1 1

0 0 1

 =



1 1 0 1 1 0

0 1 1 0 1 1

0 0 1 0 0 1

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 0 0 1


∼



1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 1

0 0 0 0 0 1


.

In this case, we find that the Jordan normal form is composed of 2 Jordan blocks of size 4

and 2. Therefore, V2 ⊗ V3 = V4 ⊕ V2.

3 Representation Rings of Cyclic Groups

The structure of the representation ring Rep⊗(G) of a group G completely specifies how

all the representations of G interact with each other, so we are interested in finding a simple

way to describe its structure. Theorem 3.2 is our main result, and it does precisely this. To

prove Theorem 3.2, we need Definition 3.1 and Lemma 3.1.

Definition 3.1. Given a linear endomorphism A : V → V , a Jordan chain of length k in a

vector space V is a sequence of non-zero vectors v1, . . . , vk ∈ V that satisfies

Avk = λvk, Avi−1 = λvi, 2 ≤ i ≤ k.
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Lemma 3.1. Denote wj ⊗ wk by wjk. When starting at w00, the number of Jordan chains

ending at wjk in Wj ⊗ Wk is given by
(
j+k
j

)
mod p, which corresponds to the number of

Jordan blocks of maximal dimension in the decomposition of Wj ⊗Wk.

Proof. It is well-known that the matrix of some linear transformation T : V → V is a Jordan

block of dimension n with respect to a basis {v1, . . . , vn} if and only if {v1, . . . , vn} is a Jordan

chain for T . In representation theory, we consider T as the matrix representation of a group

action g, and we can use this fact to find Jordan blocks in a tensor product of modules.

To simplify computation, we consider the group action g − 1 instead of g. We can do this

because g acts on the basis of Wn as follows: w0 7→ w1 7→ w2 7→ . . . 7→ wn (this is because

λ = 1), so we have that g(wjk) = wj,k+1 + wj+1,k + wjk and (g − 1)(wjk) = wj,k+1 + wj+1,k.

When repeatedly applying a group action to find a Jordan chain, we only care about the

highest degree terms in each step, so we can disregard the wjk term by using g − 1 instead

of g.

The number of Jordan chains ending with each basis element wab, which we will denote

as J(wab), will be J(wa−1,b)+J(wa,b−1). Notice that this relation is equivalent to the relation

in Pascal’s Triangle, and in fact, because we know J(w00) =
(

0
0

)
= 1, the indices match as

well, so we have that J(wab) =
(
a+b
b

)
mod p.

Theorem 3.2. Consider the representation ring Rep⊗(Fp[Cpn ]). This ring has two equivalent

bases given by {Vi | 0 < i ≤ pk} and {
⊗

V ai
pi+1
| 0 ≤ i < k}.

Proof. The basis {Vi | 0 < i ≤ pn} trivially spans Rep⊗(Fp[Cpn ]), and because it has pk

elements, it is a basis. Thus, we must show that M = {
⊗

V ai
pi+1
| 0 ≤ i < n} is a basis.

Notice that M has pn elements, as there are k choices for i and p choices for ai. Therefore, it

remains to prove that M spans Rep⊗(Fp[Cpn ]), which composes the remainder of the proof.

For simplicity, let Wi = Vi+1. We will show that one can find values of i and ai such that
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the equation ⊗
W ai

pi
= Wk +

k−1⊕
i=0

biWi (1)

holds true for each k, because if it is true, then we can substitute an element generated

from M for each Wi where i < k, which expresses Wk in terms of elements in M . We will

proceed by induction. Assume that
⊗

W āi
pi

= Wk−pj +
⊕k−pj−1

i=0 biWi, where āi = ai if i 6= j

and āj = aj − 1. Tensoring both sides of the equation by Wpj , we obtain⊗
W ai

pi
= Wpj ⊗Wk−pj +Wpj ⊗

k−pj−1⊕
i=0

biWi. (2)

We will show that the right side of Equation (2) contains a nonzero Wk term.

The length of a maximal Jordan chain in Wm⊗Wn is m+n, so if we can find a maximal

Jordan chain in Wpi⊗Wk−pi , we will have a Jordan block of dimension k in the decomposition

of the tensor product Wpi ⊗ Wk−pi , and we will be done. Because we are looking for a

maximal Jordan chain, we only have one starting point in the basis of Wpi ⊗Wk−pi , w00.

By Lemma 3.1, there are
(
pi+k−pi

pi

)
≡
(
k
pi

)
mod p Jordan chains that start with w00 and end

with wk,pi−k, which will all be maximal. Therefore, we must show that
(
k
pi

)
6= 0 mod p. By

Lucas’ Theorem, this is true if and only if every digit in the base p representation of k is

greater than or equal to the corresponding digit in the base p representation of pi. However,

the greatest digit in the base p representation of pi is always 1, so for every nonzero value of

k, it is possible to choose an i such that the same digit in the base p representation of k is

at least 1.

Finally, we must show that we can actually construct every value of k from 1 to pk with

this induction, because our increment on k is not necessarily by 1. We will prove this by doing

induction on each value for i. Denote the base p representation of n by np. In general, we can

construct the number k = (c + 1)pi, where 0 < c + 1 < pn−i and p - c + 1, by incrementing

cpi by pi, which is possible because ((c+ 1)pi)p has a digit of c+ 1 mod p ≥ 1 and (pi)p has

a digit of 1. The base case for each value of i is c = 0 =⇒ k = pi, which is automatically

true, because pi is already in the monomial basis M . Therefore, we can construct every value
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of k by finding the maximum i such that pi | k, then incrementing k − pi by pi.

Theorem 3.1 is interesting to us not only because it describes an alternative basis of the

representation ring Rep(Fp[Cpk ]), but because it gives us a way to describe the underlying

structure of the representation ring as the quotient of a well-understood ring with some

relations. For each Wpi , W
p
pi

= W0, where W0 is the trivial representation, or the multiplica-

tive identity in the representation ring. Additionally, we can decompose tensor products into

direct sums using the Jordan normal form strategy. Thus, by writing W p
pi

as a direct sum

of lower-dimensional terms, we obtain a relation where W0 =
⊕

Wk. We can repeat this for

each Wpi , until we have k relations. Finally, we can write

Rep(Fp[Cpk ]) ∼= Z[W1,Wp, · · · ,W k
p ]/

 p−1⊕
i=1

Wi = W0,

p2−1⊕
j=1

Wj = W0, · · ·

 ,

where the Wki and Wkj terms represent the direct sum decomposition of each W p
pi

.

4 Future Work

One feature of representations that we used frequently throughout this paper is the

relative ease with which we can decompose tensor products of representations into direct

sums. In fact, besides finding such decompositions algorithmically using Jordan normal form,

many formulas are known for decomposing tensor products of representations into direct

sums, such as the following formulas, given by Hughes and Kemper [4]

V2 ⊗ Vn ∼=


Vn−1 ⊕ Vn+1 if p - n,

Vn ⊕ Vn if p | n.
(3)

and

Vp−1 ⊗ Vi = Vp−i ⊕ (i− 1)Vp. (4)
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However, the decompositions of symmetric and exterior powers of modules are much

less-studied. Himstedt and Symonds recently made progress on this problem by proving the

following equation for computing exterior powers [5]:

Λr(V2n−1+s) ∼=
⊕

2i+j=r

Ωi+j
2n (Λi(Vs)⊗ (Λj(V2n−1−s))⊕ tV2n (5)

Their results hold only in cyclic groups of order 2n over the field F2, so it is interesting

to attempt to generalize their formula to odd primes as well.
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[2] N. Dupré. Representation theory workshop. https://www.dpmms.cam.ac.uk/~nd332/

rep_workshop.pdf, 2015. Accessed 5 July 2018.

[3] A. I. Shtern. Indecomposable representation. http://www.encyclopediaofmath.org/

index.php?title=Indecomposable_representation&oldid=17010. Accessed 24 July
2018.

[4] I. Hughes and G. Kemper. Symmetric powers of modular representations, hilbert series
and degree bounds. Communications in Algebra, 6 2007.

[5] F. Himstedt and P. Symonds. Exterior and symmetric powers of modules for cyclic
2-groups. Journal of Algebra, 7 2014.

13

http://www-users.math.umn.edu/~webb/RepBook/RepBookLatex.pdf
http://www-users.math.umn.edu/~webb/RepBook/RepBookLatex.pdf
https://www.dpmms.cam.ac.uk/~nd332/rep_workshop.pdf
https://www.dpmms.cam.ac.uk/~nd332/rep_workshop.pdf
http://www.encyclopediaofmath.org/index.php?title=Indecomposable_representation&oldid=17010
http://www.encyclopediaofmath.org/index.php?title=Indecomposable_representation&oldid=17010

	Introduction
	Background
	Representations
	Modules
	Jordan Normal Form
	Indecomposable Representations

	Representation Rings of Cyclic Groups
	Future Work
	Acknowledgments

