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Abstract

For positive integers q, Dirichlet’s theorem states that there are infinitely many
primes in each reduced residue class modulo q. Extending a proof of Dirichlet’s
theorem shows that the primes are equidistributed among the ϕ(q) reduced residue
classes modulo q. This project considers patterns of sequences of consecutive
primes (pn, pn+1, . . . , pn+k) modulo q. Numerical evidence suggests a preference
for certain prime patterns. For example, computed frequencies of the pattern
(a, a) modulo q up to x are much less than the expected frequency π(x)/ϕ(q)2.
We begin to rigorously connect the Hardy-Littlewood prime k-tuple conjecture to
a conjectured asymptotic formula for the frequencies of prime patterns modulo
q. We extend a data gathering procedure to estimate prime patterns up to 1018,
an improvement of 8 orders of magnitude over previous methods. Using the
extended range of data, a possible lower order term in the conjectured formula is
identified via curve fitting. We begin to extend a numerical model to reduce the
uncertainty in the predictions of these biases in prime patterns. The improved
numerical could guide future progress towards understanding implications of the
Hardy-Littlewood prime k-tuple conjecture.



1 Introduction

Analytic number theory uses real and complex analysis techniques to prove properties about
the integers. The link between analysis and prime numbers is perhaps surprising; after all,
analysis deals with continuous variables, while prime numbers are discrete. However, many
properties of prime numbers are encoded in the properties of special functions. For example,
the behavior of the zeroes of the Riemann zeta function strengthens a famous asymptotic
formula known as the Prime Number Theorem [1]. The Riemann Hypothesis, one of the
most well-known open problems in number theory, conjectures that all nontrivial zeroes of
the Riemann zeta function have real part 1

2 ; the Riemann Hypothesis would imply a stronger
form of the Prime Number Theorem.

However, the Riemann zeta function is only one of a more general class of functions,
the Dirichlet L-functions. Peter Dirichlet [2] used these L-functions to prove that arithmetic
progressions with coprime first term and common difference contain an infinite number of
primes: this is Dirichlet’s theorem. Dirichlet’s use of L-functions invoked the realm of analysis
to prove statements about integers, thus beginning the study of analytic number theory.

The ϕ(d) classes of residues modulo d coprime to d are referred to as the reduced residue
classes, where ϕ(n) is Euler’s totient function. For example, the set of residues congruent
to 1 modulo 4 is a reduced residue class. Applying Dirichlet’s theorem to the arithmetic
progression with first term 1 and common difference 4 shows that there are infinitely many
primes in the reduced residue class 1 modulo 4. A natural followup question asks how prime
sequences are distributed among the reduced residue classes modulo d.

Before we discuss the distribution of primes among reduced residue classes, we introduce
a few key concepts and definitions in analytic number theory. Let π(x) be the prime counting
function, i.e. the number of primes less than or equal to x. Furthermore, let p(x) ∼ q(x)
denote asymptotic equivalence, i.e. lim

x→∞
p(x)
q(x) = 1. We also make extensive use of big O

notation. We say f(x) = O(g(x)) if there exists some absolute constant C such that
|f(x)| ≤ C|g(x)| for sufficiently large x. The similar notation f(x) = On(g(x)) means the
constant C in the definition of O(g(x)) depends on n.

A key concept in analytic number theory is to compare a discrete function such as
π(x) to a continuous function such as the logarithmic integral li(x) =

´ x
2

dt
log t . The famous

Prime Number Theorem (PNT) states that π(x) ∼ li(x), and Schoenfeld [3] showed that the
Riemann Hypothesis (RH) implies that |π(x)− li(x)| <

√
x log x
8π , for x ≥ 2657.

We introduce notation analogous to π(x) for the purposes of this discussion following
Lemke Oliver and Soundararajan’s notation [4]. Let pn refer to the nth prime when the
primes are listed in increasing order, the pattern a = (a1, a2, . . . , ak) be a vector of length k,
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and q ≥ 3 be a positive integer. Define

π(x; q, a) = #{pn ≤ x : pn+i−1 ≡ ai (mod q) for 1 ≤ i ≤ k}.

This notation counts the number of consecutive prime sequences that follow the pattern a
modulo q. Using this notation, the PNT for arithmetic progressions applied to the simple
case where a = (a) yields

π(x; q, a) ∼ li(x)
ϕ(q) . (1.1)

Although (1.1) shows that primes are roughly equidistributed among the reduced residue
classes modulo q, Chebyshev [5] observed that there are almost always more primes of the
form 4k + 3 than of the form 4k + 1; this bias was explained by Rubinstein and Sarnak [6] to
arise from the error term of O(x1/2+ε) in the PNT when assuming the RH. Chebyshev’s bias
is one of the first mentions of nonuniform behavior of the primes when reduced modulo q.

Larger biases manifest when the length of a is greater than or equal to 2 that cannot be
solely attributed to error terms of size O(x1/2+ε). In [4] the frequencies of consecutive prime
pairs modulo 10 are tabulated, and it was observed that π(108; 10, (1, 1)) ≈ 4.62× 106 and
π(108; 10, (9, 1)) ≈ 7.99× 106, both of which are very different than the expected frequency of
108/ϕ(10)2 = 6.25× 106 predicted by naively generalizing (1.1) by replacing ϕ(q) with ϕ(q)2.

While it is known that primes are roughly equidistributed among reduced residue classes
according to (1.1), it is not known whether for arbitrary a with the length of a at least 2,
the modified prime counting function π(x; q, a) tends to infinity as x tends to infinity. Shiu
[7] proved that π(x; q, (a, a, . . . , a)) tends to infinity as x tends to infinity, and Maynard [8]
strengthened this to π(x; q, (a, a, . . . , a)) > Cπ(x) for some constant C and sufficiently large
x.

We explain the preferences for certain prime patterns by appealing to conjectural
statements similar in nature to the PNT. For example, the Hardy-Littlewood prime k-tuple
conjecture states the density of specific tuples such as twin primes (p, p+ 2) and twin sexy
primes (p, p+ 2, p+ 6) in a form analogous to that of the PNT. By appropriately combining
specific cases of the Hardy-Littlewood prime k-tuple conjecture, we obtain conjectures about
the density of the patterns modulo q.

As an example of how specific prime tuples relate to prime patterns, consider q = 3
and the pattern a = (1, 1). Then we are restricting our consideration to consecutive primes
(p1, p2) where p1 ≡ p2 ≡ 1 (mod 3). For m ≡ 1 (mod 3), these patterns include specific
tuples of the form (m,m+ 6), (m,m+ 12), (m,m+ 18), and so on. The densities of these
specific tuples can be analyzed with the Hardy-Littlewood prime k-tuple conjectures. In this
manner, we obtain conjectures that partially account for the observed preferences for certain
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patterns modulo q.
Lemke Oliver and Soundararajan [4] provide a conjectural explanation for the biases for

certain prime patterns. However, their heuristic argument omits lower order terms that cause
their conjectured form to not be in agreement with the data at smaller values of x. We expand
the conjecture to include further terms and begin rigorously connecting the Hardy-Littlewood
prime k-tuple conjecture and the main conjecture in [4].

In Section 2, we lay out the definitions and notation important to our discussion. In
Section 3, we determine the lower order terms by tightening the asymptotics in the heuristic in
[4]. In Section 4, we account for discarded terms in the asymptotic formula for the conjectured
behavior to extend the form of an integral to more closely fit the actual behavior of prime
patterns and extend our data gathering capabilities by 8 orders of magnitude. We identify a
plausible lower order term for the conjectured formula. In Section 5, we conclude and pose
questions for future investigation.

2 Preliminaries

We begin with the statement of the Hardy-Littlewood prime k-tuple conjecture. Heuristically,
the conjecture generalizes the PNT by assuming the probability of an integer n being prime
as roughly 1

logn . While the integrand is derived by assuming primality is independent, the
constant in front of the integral corrects for this assumption.

Conjecture 2.1 (Hardy-Littlewood prime k-tuple conjecture). Let H be a finite set of
nonnegative integers and π(x,H) denote the number of integers n ≤ x such that n+ h is a
prime for all h in H. Furthermore, let νp(H) denote the number of residue classes occupied
by the members of H modulo p. Then we have that

π(x,H) = S(H)
ˆ x

2

dt

(log t)|H| +O(x1/2+ε),

where the singular series is defined as

S(H) =
∏

p prime

1− νp(H)
p

(1− 1
p
)|H| .

The singular series is modified in [9] to an inclusion-exclusion form

S0(H) =
∑
T ⊂H

(−1)|H\T |S(T ).
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In [4], Lemke Oliver and Soundararajan modify the singular series to range over primes p not
dividing q to account for the prime patterns modulo q as follows.

Definition 2.1. The modified singular series Sq(H) is defined to be

Sq(H) =
∏
p-q

1− νp(H)
p

(1− 1
p
)|H| .

Lemke Oliver and Soundararajan [4] introduce the same inclusion-exclusion form Sq,0

involving alternating sums of Sq is defined to introduce cancellations that lead to Conjecture
2.2.

Let q ≥ 3 be a positive integer and a and b be reduced residue classes modulo q. Set
h ≡ b− a (mod q). Also, let pn be the nth prime. We are specifically interested in the case
where pn ≡ a (mod q) and pn+1 = pn + h; this guarantees pn+1 ≡ b (mod q). Let 1P(x) be
the prime indicator function, defined to be 1 if x is prime and 0 otherwise; Lemke Oliver and
Soundararajan [4] start with the statement that

π(x; q, a, b) =
∑
n≤x

n≡a (mod q)

1P(n)1P(n+ h)
∏

0<t<h
(t+a,q)=1

(1− 1P(n+ t)). (2.1)

Following a series of manipulations and using a conjecture similar to the Hardy-Littlewood
prime k-tuple conjecture, they conjecture the following asymptotic for π(x; q, (a, b)) (see [4,
E4449–E4450] for more details).

Conjecture 2.2 (Lemke Oliver & Soundararajan [4]). Let

α(y) = 1− q

ϕ(q) log y and εq(a, b) = #{0 < t < h : (t+ a, q) = 1} − ϕ(q)
q
h.

Then
π(x; q, (a, b)) ∼ 1

q

ˆ x

2
α(y)εq(a,b)

Ç
q

ϕ(q)α(y) log y

å2
D(a, b; y)dy,

where D(a, b; y) is defined to be

∑
h>0

h≡b−a (mod q)

∑
A⊂{0,h}

∑
T ⊂[1,h−1]

(t+a,q)=1 ∀t∈T

(−1)|T |Sq,0(A ∪ T )
Ç

q

ϕ(q)α(y) log y

å|T |
α(y)hϕ(q)/q.

We analyze the growth of D(a, b; y). For readability purposes, define logk x to be
log log . . . log︸ ︷︷ ︸

k logs

x, where log x is the natural logarithm.
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3 A Closer Analysis of the Conjecture

We provide more precise asymptotics for π(x; q, (a, b)) as in Conjecture 2.2. Because q = 2
is trivial, we only consider the case where q is an odd prime. However, the results readily
generalize to composite q. In particular, we are interested in D(a, b; y), which is equal to

∑
h>0

h≡b−a (mod q)

∑
A⊂{0,h}

∑
T ⊂[1,h−1]

(t+a,q)=1 ∀t∈T

(−1)|T |Sq,0(A ∪ T )
Ç

q

ϕ(q)α(y) log y

å|T |
α(y)hϕ(q)/q, (3.1)

in accordance with [4]. Lemke Oliver and Soundararajan heuristically argue that the relevant
terms in (3.1) are those where A = T = ∅ and |A|+ |T | = 2.

We convert (3.1) into a form more friendly to partitioning by the size of T . Define for
convenience

z = z(q, y) = q

ϕ(q)α(y) log y
and

g = g(q, y) = α(y)ϕ(q)/q.

We rewrite the innermost sum of (3.1) as a sum over ` element subsets of [1, h− 1] where `
ranges from 0 to h− 1 to obtain

D(a, b; y) =
∑
h>0

h≡b−a (mod q)

gh
∑

A⊂{0,h}

h−1∑
`=0

(−z)`
∑

T ⊂[1,h−1]
(t+a,q)=1 ∀t∈T

|T |=`

Sq,0(A ∪ T ). (3.2)

Evaluating (3.2) is difficult because the terms are unwieldy when h is large. However,
recalling the role of h in (2.1), we see that large h correspond to large prime gaps. Lemma
A.3 constrains the behavior of large prime gaps and hence of (3.2) when h is large.

Let c be a sufficiently large positive integer depending on n and define M = c log2 y. We
split the outermost sum over h in (3.2) into two regions: One with 0 < h ≤ M log y and
one with h > M log y. The sum where h > M log y counts contributions where gn > M log y.
However, this portion of the sum can only contribute if its terms exist at all, therefore, the
sum where h > M log y is bounded above by the probability that gn > M log y. Hence, by
Lemma A.3, the sum where h > M log y is bounded above by 1

logc y
. Thus, by controlling c,

we can discard the portion of the sum where h > M log y. For the remainder of this paper,
we consider h ≤M log y.

For n = 0, 1, 2, Lemke Oliver and Soundararajan define Dn(a, b; y) to be the terms
obtained from (3.1) where |T | = n and A = T = ∅ or |A| + |T | = 2. However, note that
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Dn(a, b; y) is precisely the term obtained by isolating the ` = n term in (3.2). Starting the
sum over ` in (3.2) at ` = n rather than ` = 0 is the first step towards investigating Dn(a, b; y).
Define D≥n(a, b; y) =

M log y∑
i≥n
Di(a, b; y). Written explicitly, the terms of (3.2) we are interested

in are

D≥n(a, b; y) =
∑

0<h≤M log y
h≡b−a (mod q)

gh
∑

A⊂{0,h}

h−1∑
`=n

(−z)`
∑

T ⊂[1,h−1]
(t+a,q)=1 ∀t∈T

|T |=`

Sq,0(A ∪ T ). (3.3)

Furthermore, define

Ah,` =
∑

T ⊂[1,h−1]
(t+a,q)=1
|T |=`

Sq,0(T ), Bh,` =
∑

T ⊂[1,h−1]
(t+a,q)=1
|T |=`

Sq,0({0} ∪ T ),

Ch,` =
∑

T ⊂[1,h−1]
(t+a,q)=1
|T |=`

Sq,0({h} ∪ T ), Dh,` =
∑

T ⊂[1,h−1]
(t+a,q)=1
|T |=`

Sq,0({0, h} ∪ T ).

We partition the summation in (3.3) into four terms S∅, S{0}, S{h}, and S{0,h}, based on
A. For example,

S∅ =
∑

0<h<M log y
h≡b−a (mod q)

gh
h−1∑
`=n

(−z)`Ah,`, (3.4)

with S{0}, S{h}, and S{0,h} defined analogously with sums over Bh,`, Ch,`, and Dh,`, respectively.
In order to handle Ah,`, Bh,`, Ch,`, andDh,`, we modify the following result of Montgomery

and Soundararajan [9], which states the average order of S0. They show that

∑
T ⊂[1,h]
|T |=`

S0(T ) = µ`
`! (−h log h+ Ah)`/2 +O(h`/2−1/7`+ε), (3.5)

where µ` is the ` th moment of the standard normal distribution and A is an absolute constant
between −1 and 0. We expect that ∑Sq,0(T ) has a similar growth rate, up to minor
corrections such as the exact value of A and leading factors depending on q. Moreover, these
arguments used to justify Theorem 3.1 are expected to be robust against these modifications.

We prove the following theorem concerning the growth rates of S∅, S{0}, S{h}, and S{0,h},
which proves a weaker version of the claim in [4] that Dn(a, b; y) is On

(
(log2 y)n/2

(log y)n/2−1

)
.

Theorem 3.1. Assuming that (3.5) holds in a similar form for Sq,0, we have that S∅,
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S{0} log y, S{h} log y, and S{0,h}(log y)2 are all

On
Ç (log2 y)n

(log y)n/2−1

å
.

In particular, Dn(a, b; y) and D≥n(a, b; y) are both On
(

(log2 y)n

(log y)n/2−1

)
, allowing us to truncate

D(a, b; y) at specific values of n and control the error terms in Conjecture 2.2.

We defer the proofs of Lemmas A.1-A.4 used in the proof of Theorem 3.1 to Appendix
A.

Proof. We begin by evaluating S∅ according to (3.4). We are interested in the case where q
is prime, and thus ϕ(q) = q− 1 and α(y) = 1− q

(q−1) log y . Because q is an odd prime, ϕ(q)
q
≥ 2

3 .
Thus,

1− 3
2 log y ≤ α(y) < 1− 1

log y .

For sufficiently large y, the definition of z gives

z = q

ϕ(q)α(y) log y <
3

2(1− 3
2 log y ) log y <

3
3
2 log y = 2

log y .

Appealing to our conjectured form for ∑Sq,0 according to (3.5), we replace Ah,` in (3.4)
with µ`

`! (−h log h+ Ah)`/2 +O(h`/2−1/7`+ε). Note that µ` = 0 when ` is odd, so we analyze
the sum based on the parity of `.
Case 1: ` is even. For convenience, define m = `/2. We split the single sum over h into a
sum over j, k and h and swap the order of summation so that (3.4) is less than

M log y−1∑
m= n

2

M
log3 y∑
j=0

(j+1) log3 y−1∑
k=j log3 y

(k+1) log y∑
h=k log y+1

h≡b−a (mod q)

gh
Ç 2

log y

å2mÇ µ2m

(2m)!(−h log h+ Ah)m
å
. (3.6)

We bound (3.6) above by a series of substitutions. Define B = −A > 0 and take the
absolute value of the terms of (3.6). Lemma A.1 implies (h log h+Bh)m has an upper bound
of 2m[(h log h)m + (Bh)m], where we include the extra factor of 2 for convenience. Because
g =

(
1− q

ϕ(q) log y

)ϕ(q)/q
and ϕ(q)

q
≥ 2

3 , We have

g <

Ç
1− 3

2 log y

å2/3
< e−2/(3 log y).

Thus, gh has an upper bound of e−2j log3 y log y/(3 log y) = (log2 y)−2j/3. We then maximize
all instances of h by replacing h with hmax = (k + 1) log y and remove the sum over h by
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multiplying the summand by log y. Finally, note that µ2m = (2m − 1)!!, so µ2m

(2m)! = 1
2mm! .

These substitutions yield

M log y−1∑
m= n

2

M
log3 y∑
j=0

(j+1) log3 y−1∑
k=j log3 y

(log y)1−2m

(log2 y)2j/3

Ç 22m

2mm! (2
m[(hmax log hmax)m + (Bhmax)m])

å
. (3.7)

Applying Lemma A.1 to (log hmax)m = (log(k + 1) + log2 y)m implies

(hmax log hmax)m ≤ (2(k + 1) log y)m[(log(k + 1))m + (log2 y)m]. (3.8)

Substituting (3.8) into (3.7), distributing the factor of (2/ log y)2m, and cancelling the factor
of 2m yields

M log y−1∑
m= n

2

M
log3 y∑
j=0

(j+1) log3 y−1∑
k=j log3 y

log y
(log2 y)2j/3

Ñ
1
m!

ñÇ8(k + 1) log(k + 1)
log y

åm
+
Ç8(k + 1) log2 y

log y

åmôé
.

Again, we maximize k and remove the sum over k by multiplying by log3 y, leaving

M log y−1∑
m= n

2

M
log3 y∑
j=0

log y log3 y

(log2 y)2j/3

Ñ
1
m!

ñÇ8((j + 1) log3 y)(log(j + 1) + log4 y))
log y

åm
+
Ç8(j + 1) log2 y log3 y

log y

åmôé
. (3.9)

We split the sum in (3.9) up into four cases based on the value of j.
Case 1A: j = 0. When j = 0, the sum in (3.9) becomes

log y log3 y
M log y−1∑
m= n

2

1
m!

ñÇ8 log3 y log4 y

log y

åm
+
Ç8 log2 y log3 y

log y

åmô
. (3.10)

Note that (3.10) is a truncated Taylor polynomial of ex. We show that (3.10) is O(f(n)),
where f(n) is the first term of the truncated Taylor polynomial. With this in mind, because
the summation in (3.10) is a truncated series of positive terms, it is less than the value of the
complete Taylor series e8 log3 y log4 y/ log y + e8 log2 y log3 y/ log y.

Simplifying and noting that (loga y)b is O(log y) for any a ≥ 2 and b ≥ 0, Lemma A.2,
whose statement and proof can be found in Appendix A, implies that the expression is O(1).
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Because the Taylor series is O(1), the growth rate of (3.10) for varying n is determined by
the first term. Hence, (3.10) is

On
(

(log2 y)n/2(log3 y)n/2+1

(log y)n/2−1

)
. (3.11)

Case 1B: j = 1. Analyzing the j = 1 term follows similar logic; the asymptotic we obtain is
also

On
(

(log2 y)n/2(log3 y)n/2+1

(log y)n/2−1

)
. (3.12)

Case 1C: 2 ≤ j < 3 log2 y
2 log3 y

. Because j ≥ 2, we know

(log2 y)−2j/3 < (log2 y)−4/3 <
1

log2 y
.

We also know that j+1 ≤ 3 log2 y
2 log3 y

. Maximizing (log2 y)−2j/3 and j+1, removing the summation
by multiplying by 3 log2 y

2 log3 y
, and cancelling log

(
log2 y
log3 y

)
with log4 y yields

3 log y
2

M log y−1∑
m= n

2

1
m!

ñÇ12 log2 y log3 y

log y

åm
+
Ç12(log2 y)2

log y

åmô
. (3.13)

As before, the sum in (3.13) is a truncated Taylor series that is O(1). Hence, (3.13) is

On
Ç (log2 y)n

(log y)n/2−1

å
. (3.14)

Case 1D: 3 log2 y
2 log3 y

≤ j ≤ M
log3 y

. When j > 3 log2 y
2 log3 y

, the factor (log2 y)−2j/3 is no greater than
(log2 y)− log2 y/ log3 y = 1

log y . Substituting for (log2 y)−j with 1
log y and j + 1 with M

log3 y
, which is

allowed because M
log3 y

+ 1 is the same size as M
log3 y

, the summation in (3.9) becomes, after
simplification,

M log y−1∑
m= n

2

M
log3 y∑

j= log2 y

log3 y

log3 y

Ñ
1
m!

ñÇ8M logM
log y

åm
+
Ç8M log2 y

log y

åmôé
. (3.15)

We remove the summation in (3.15) by multiplying the summand by M
log3 y

, truncate the
resulting Taylor series, and apply Lemma A.2 to obtain the final contribution from this case
as

(8c)n/2

(n/2)!

[
(c log2 y)n/2+1(log3 y)n/2

(log y)n/2 + (log2 y)n+1

(log y)n/2

]
= On

Ç(log2 y)n+1

(log y)n/2

å
. (3.16)
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Case 2: ` is odd. We proceed analogously to the even ` case, noting that if an arbitrary
function f is O(h`/2−1/7`+ε), then f is also O(h`/2). Therefore, for odd `, (3.4) is less than

M−1∑
k=0

(k+1) log y∑
h=k log y+1

h≡b−a (mod q)

gh
h−1∑
`=n
` odd

(−z)`O(h`/2). (3.17)

For ` ∈ [0,M − 1], let C` be the implied constant in the O(h`/2) term. Defining Cmax =
max{C`} allows us to pull −Cmax out of the sum and remove the big O notation. We also
switch the order of sums in (3.17) to obtain

− Cmax

M log y∑
`=n
` odd

M log y∑
h>max{`,log y}

ghz`h`/2. (3.18)

Since h ≥ log y, we know gh ≤ e−2h/3 log y. It thus follows that z < 2
log y and h ≤M log y.

Thus, maximizing gh, z`, and h`/2 implies that (3.18) has an upper bound of

−Cmax

M log y∑
`=n
` odd

Ç 2
log y

å`
(M log y)`/2

M log y∑
h>max{`,log y}

e−2h/3 log y.

The sum over h is a geometric series that is less than e−2/3

1−e−2/3 log y , which is less than log y for
log y > 1. Next, we distribute the

(
2

log y

)`
into (M log y)`/2 and sum the resulting geometric

series; this yields

− Cmax log y (4M/ log y)n/2(1− (4M/ log y)M log y+1)
1−M/ log y . (3.19)

For large y, both 1− (M/ log y)M log y+1 and 1−M/ log y are O(1). Thus, (3.19) becomes

− Cmax
Mn/2

(log y)n/2−1 = On
(

(log2 y)n/2

(log y)n/2−1

)
. (3.20)

Note that for sufficiently large y, each of the cases based on j are smaller than (3.14).
Thus, the contributions from Cases 1A, 1B, 1D, and 2 as stated in (3.11), (3.12), (3.16), and
(3.20), respectively, are all smaller than the contribution from Case 1C as stated in (3.14).
Therefore, S∅ = On

(
(log2 y)n

(log y)n/2−1

)
, as desired.

Lemma A.4 implies that summations of Bh,`, Ch,`, or Dh,` are closely related to sum-
mations of Ah,`. In order to take advantage of the cancellation suggested by the form
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Bh−1,`−1 = Ah,` − Ah−1,`, we consider the sign of A′′h,` = ∂2

∂h2Ah,`. Namely, if A′′h,` > 0, then

A′h−1,` < Ah,` − Ah−1,` < A′h,`.

Otherwise, if A′′h,` < 0, then

A′h−1,` > Ah,` − Ah−1,` > A′h,`.

Regardless of the sign of A′′h,`, we insert the appropriate upper bound given by either A′h,` or
A′h−1,` into S{0} and S{h}. In evaluating S{0,h}, we take A′′′h,` and use appropriate bounds for
Ah,` − 2Ah−1,` + Ah−2,`.

We proceed to evaluate S{0}, S{h}, and S{0,h} in an analogous manner to the method of
evaluating S∅. In loose terms, taking k derivatives of Ah,` corresponds to adding a factor
of (log y)k to the denominator of the asymptotic in Theorem 3.1, thus leading to S{0} log y,
S{h} log y, and S{0,h}(log y)2.

Recall that from the definition of S∅, S{0}, S{h}, and S{0,h}, the relevant contribution to
D≥n(a, b; y), after discarding terms where h > M log y, is S∅ +S{0}+S{h}+S{0,h}. Therefore,
D≥n(a, b; y) is On

(
(log2 y)n

(log y)n/2−1

)
as well. Since

Dn(a, b; y) = D≥n+1(a, b; y)−D≥n(a, b; y),

it is also On
(

(log2 y)n

(log y)n/2−1

)
. Thus, the theorem is proved.

4 Numerical Results

The following simplified asymptotic for the case π(x; 3, (a, b)) is provided in [4]:

π(x; 3, (a, b)) = li(x)
4

Ç
1± 1

2 log x log
Ç2π log x

q

åå
+O

Ç
x

(log x)11/4

å
, (4.1)

with the plus or minus sign being plus if a 6= b and minus if a = b.
We compare (4.1) to the actual behavior of the primes, and find that because the

approximations that were necessary to arrive at (4.1), the data deviate from the conjectured
form. Using SageMath’s find_fit function suggested a possible lower order term of size
O
(

(log2 x)2

(log x)2

)
. We modified the data gathering process to approximate values of π(x; q, (a, b))

for x ≤ 1018. Finally, we include more terms in the approximation of D(a, b; y) to improve its
accuracy in future work. Graphs may be found in Appendix B.

Lemke Oliver and Soundararajan [4] gathered values of π(x; q, (a, b)) up to x = 1012.
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We gathered data up to x = 1018. We gathered complete raw data using SageMath for
1 ≤ x ≤ 1010. For 1010 < x ≤ 1018, a sampling technique was used to approximate the ratio
π(x; q, (a, b))/π(x). Lemke Oliver’s C++ code counts prime patterns in fixed intervals [X, Y );
the program was modified to only consider the first 108 primes larger than X. We used
X = 10b1 and Y = 10b1+1 for 10 ≤ b1 ≤ 18. The program estimated pattern frequencies at
X + i · 10b1 for 1 ≤ i ≤ 9.

Theorem 3.1 shows that the contributions S∅, S{0}, S{h}, and S{0,h} to D(a, b; y) decline
quickly with n. After dividing by li(x), the main terms in the main conjecture in [4] are of size
O(1), O( log log x

log x ), and O( 1
log x). When |T | = 6, Theorem 3.1 implies that S∅ ∈ O

(
(log2 y)6

(log y)2

)
.

Thus, for n ≥ 6, S∅, S{0}, S{h}, and S{0,h} make negligible contributions to D. This implies
that long range correlations between prime patterns are negligible, which in turn implies that
even though we only take the first 108 primes after X, the sample can be reasonably assumed
to be unbiased.

Following Cramér’s model, we model primality as a binomial event with x being prime
with probability 1

log x and assume that primality of x and y are independent events. Then
the standard deviation of our sampling distribution is proportional to 1√

C
, where C is the

number of primes sampled in order to estimate the frequency of π(x; q, (a, b)) at x.
For each point estimate at X + i · 10b1 , we sampled with C = 108, giving a precision of

roughly 10−4. The sample gives a sampling frequency

fa,b = π(x+ x0; q, (a, b))− π(x; q, (a, b))
π(x+ x0)− π(x) ,

where π(x+ x0)− π(x) = 107. In a crude sense, the sampling frequency fa,b is the derivative
of π(x; q, (a, b)), so we used a Riemann sum with 10 equally spaced subintervals to estimate
π(X + i · 10b1 ; q, (a, b)) from fa,b. We thus computed

∑b1
β=1

∑9
α=1 fa,b[li((α + 1) · 10β)− li(α · 10β)]

li(9 · 10b1) . (4.2)

Note that (4.2) approximates the the ratio π(10b1+1;q,(a,b))
π(x) and hence allows us to extend our

data to x = 1018.
We restate the conjectured form for π(x; q, (a, b)) as in Conjecture 2.2 for convenience as

π(x; q, (a, b)) ∼ 1
q

ˆ x

2
α(y)εq(a,b)

Ç
q

ϕ(q)α(y) log y

å2
D(a, b; y)dy. (4.3)

The numerical model in [4] is evaluated by partitioning D(a, b; y) into ∑nDn(a, b; y) and
discarding Dn(a, b; y) for n ≥ 3. Thus Sq,0 is estimated only for zero and two term sets to

12



approximate D(a, b; y). For example, in [4], only the zero and two term sets for D1(a, b; y)
are considered. Lemke Oliver and Soundararajan then write

D1(a, b; y) ≈ − q

ϕ(q)α(y) log y
∑
h>0

h≡b−a (mod q)

∑
t∈[1,h−1]
(t+a,q)=1

Sq,0({0, t}) + Sq,0({t, h}). (4.4)

However, Theorem 3.1 suggests that only considering zero and two term sets may not
accurate enough. Hence, we add terms to D0, D1, and D2, as well as truncating at D5 instead
of D2 to approximate D in (4.3). For example, recalling that D1(a, b; y) contains all terms of
(3.1) with |T | = 1, we write

D1(a, b; y) = − q

ϕ(q)α(y) log y
∑
h>0

h≡b−a (mod q)

∑
t∈[1,h−1]
(t+a,q)=1

Sq,0({0, t}) + Sq,0({t, h}) + Sq,0({0, t, h}).

This is essentially (4.4) but with three term sets included. The values of singular series
Sq,0(H) were computed up to five term sets with maxH ≤ 150 and prepared for future work
numerically integrating (4.3) by truncating at D5(a, b; y).

5 Conclusion

Assuming an asymptotic formula for Sq,0 similar to (3.5), we proved asymptotic formulas for
terms of D(a, b; y) and justified discarding certain terms to create a numerical model. We
plan to complete the numerical model and generate predictions that are more consistent with
the actual prime frequencies than Lemke Oliver and Soundararajan’s model. We modified
the data gathering algorithm to extend the data by eight orders of magnitude and used the
increased amount of data to identify further terms in Lemke Oliver and Soundararajan’s
main conjecture.

There are several possible avenues of exploration. Lemke Oliver and Soundararajan do
not directly use the Hardy-Littlewood prime k-tuple conjecture; so a rigorous argument is
needed to fully show that the biases can be explained by the Hardy-Littlewood prime k-tuple
conjecture. A finer argument would likely show that the growth rate of Dn(a, b; y) is closer to
the growth rate proposed by Lemke Oliver and Soundararajan. The data gathering method
can be tweaked to gather more data to greater accuracy by increasing the number of primes
sampled, fully randomizing the sampling process, and using arbitrary size integers to bypass
the artificial 264 size limit imposed by C++.

13



6 Acknowledgments

I would like to express my deepest appreciation to my mentor Mr. Robert Burklund for
his extremely helpful guidance. I am very grateful for the extensive advice and feedback
provided by my tutor, Dr. John Rickert, the head mentor, Dr. Tanya Khovanova, and other
RSI staff. Also, thanks to Professors David Jerison, Ankur Moitra, and Slava Gerovitch who
coordinated the MIT math mentorship program. I would like to thank Professor Robert
Lemke Oliver for his helpful comments on my ideas. I would also like to thank Professor
Lawrence Washington for sacrificing his own time to explain the background of the project. I
would like to thank my fellow RSI students who aided me throughout the project, especially
Harshal Sheth and Jordan Lee. I would like to thank my parents for their constant support.
Many thanks to my Senior Research Project teacher, Ms. Angelique Bosse, and my fellow
classmates who helped me improve my paper.

Finally, I would like to express my gratitude to the generosity to my sponsors who made
it possible for me to attend the Research Science Institute, including the Department of
Defense, the Center for Excellence in Education, the Massachusetts Institute of Technology,
Her Excellency Bahia El Hariri, Mr. John Yochelson, Dr. Noreen Hynes, Mr. Dale P. Bennett,
Admiral Michael S. Rogers, Ms. Donna Cooper, Dr. Yan Shi, Dr. Pam Krahl, Mr. and
Mrs. Bhanu Durvasula, Mr. and Mrs. Wayne Kamitaki, Mr. Marli Pasternak and Mrs. Art
Pasternak, Mr. Jerome H. Powell and Ms. Elissa A. Leonard, Mr. Eamon Walsh, Mrs. Susan
S. Lee, Professors Joseph and Nell Sedransk, and Ms. Wendy Kershner.

A Proofs of the Lemmas

We now prove the lemmas that were used to prove the main theorem.

Lemma A.1. Let a and b be nonnegative real numbers and n be a positive integer. Then

(a+ b)n ≤ 2n−1(an + bn).

Proof. Since xn is convex for nonnegative x and positive integers n, Jensen’s inequality yields
(a2 + b

2)n ≤ 1
2a

n + 1
2b
n. Clearing denominators gives (a+ b)n ≤ 2n−1(an + bn), as desired.

Lemma A.2. For any real constants a and c, we have

lim
x→∞

(log x)c(log2 x)a/ log x = 1.
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Proof. Since the limit
L = lim

x→∞
(log x)(log2 x)a/ log x

does not depend on c, we set c = 1; if we prove L = 1 then certainly Lc = 1 and the lemma
follows. Taking logarithms, it suffices to show that

lim
x→∞

(log2 x)a
log x = 0.

However, any power of log2 t grows slower than log t for all sufficiently large t, so the limit
indeed equals 0. The lemma is thus proved.

Lemma A.3. Let N be a real number and P[gn > x] denote the probability that the gap gn
between the nth and (n+ 1)th prime is greater than x for 1 ≤ n ≤ N . Then

lim
N→∞

P[gn > c log2 pN log pn] < 1
(logN)c .

We sketch the details of the proof here. Although not fully rigorous, we expect the key
ingredients of the proof to be present.

Proof. n the following proof, we omit the limits as N goes to infinity for readability. Gallagher
[10] showed that

P[1 ≤ n ≤ N | gn > λ log pn] < e−λ.

Setting λ = c log2 pN implies P[gn > c log2 pN log pn] < 1
(log pN )c . By the PNT, pN ∼ N logN ,

so
1

(log pN)c <
1

(log(N logN))c .

Then, since log(N logN) = logN + log2 N , we have

1
(log(N logN))c <

1
(logN)c .

Thus,
P[gn > c log2 pN log pn] < 1

(logN)c ,

as desired.

Lemma A.4. The sums over subsets of [1, h − 1] of size `, given by Ah,`, Bh,`, Ch,`, and
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Dh,`, satisfy the following relations:

Bh−1,`−1 = Ch−1,`−1 = Ah,` − Ah−1,`,

Dh−1,`−1 = Ah,` − 2Ah−1,` + Ah−2,`.

Proof. Note that Ah,` is a sum that ranges over all subsets T of [1, h− 1]. We can partition
this sum by max{T }. Setting m = max{T }, we can write

Ah,` =
h−1∑
m=`

∑
T ∈[1,m−1]
|T |=`−1

(t+a,q)=1

Sq,0({m} ∪ T ). (A.1)

From Definition 2.1, Sq,0(T ) = Sq,0(s − T ) for any integer s. Using the translational
invariance of Sq,0 and noting that

Cm,`−1 =
∑

T ∈[1,m−1]
|T |=`−1

(t+a,q)=1

Sq,0({m} ∪ T ),

we can rewrite (A.1) as Ah,` =
h−1∑
m=`

Cm,`−1. Now consider Ah,` − Ah−1,`; every term in this
difference cancels except Ch−1,`−1, so Ah,` − Ah−1,` = Ch−1,`−1, as desired.

Similarly, we can partition a sum over subsets T of [1, h− 1] to a sum over sets T whose
minimum value is m. Thus

Ah,` =
h−1∑
m=`

∑
T ∈[m−`+1,h−1]
|T |=`−1

(t+a,q)=1

Sq,0({m− `} ∪ T ).

Translational invariance implies that

Bm,`−1 =
∑

T ∈[m−`+1,h−1]
|T |=`−1

(t+a,q)=1

Sq,0({m− `} ∪ T ),

so Ah,` − Ah−1,` telescopes as before and only Bh−1,`−1 remains. Therefore, Ah,` − Ah−1,` =
Bh−1,`−1 as well.

Finally, in order to relate Ah,` to Dh,`, we write the sum over subsets of [1, h−1] as a sum
over m and over sets T where max{T } −min{T } = m. By translational invariance, because
there are h−m+ 1 possibilities for min{T }, there are h−m+ 1 copies of Sq,0({1,m} ∪ T ).
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Hence, the definition for Ah,` can be rewritten as

Ah,` =
h−1∑
m=`

∑
T ∈[2,m−1]
|T |=`−2

(t+a,q)=1

(h−m+ 1)Sq,0({1,m} ∪ T ). (A.2)

Recall that Dh,` =
∑

T ⊂[1,h−1]
(t+a,q)=1
|T |=`

Sq,0({0, h} ∪ T ), so Ah,` − Ah−1,` =
h−1∑
m=`

Dm,`−1. Therefore, we

express (A.2) as Ah,` =
h−1∑
m=`

(h − m + 1)Dm,`−2. Note that the sum telescopes when two
successive differences are taken. What remains is Dh−1,`−2 = (Ah,` − Ah−1,`) − (Ah−1,` −
Ah−2,`) = Ah,` − 2Ah−1,` + Ah−2,`, as desired.

B Plots of Data and Model

This appendix contains the plots of raw data, extended data, curve fitting.

Figure 1: The proportion π(x;3,(1,1))
π(x) for x0 ≤ x ≤ x1 where π(x0) = 104 and π(x1) = 109.
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Figure 2: The extended data for (1, 1) mod-
ulo 3. The slight bump at 5 · 1010 is due to
combining the raw and sampled data.

Figure 3: The extended data for (1, 2) mod-
ulo 3. The slight bump at 5 · 1010 is due
to stitching the raw data and sampled data
together.

Figure 4: The residuals when (4.1) is sub-
tracted from π(x; 3, (1, 1)) for x0 ≤ x ≤ x1
where π(x0) = 104 and π(x1) = 1018, using
the extended data.

Figure 5: The residuals when curve fitted
terms of size O((log2 y)2/(log y)2) and (4.1)
are subtracted from π(x; 3, (1, 1)) for x0 ≤
x ≤ x1 where π(x0) = 104 and π(x1) = 1018,
using the extended data.
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