
Generalizing the Inversion Enumerator to G-Parking
Functions

Dylan Hendrickson

under the direction of
Pavel Galashin

Massachusetts Institute of Technology
Department of Mathematics

Research Science Institute
July 28, 2015

Abstract

We consider a generalization of the inversion enumerator for G-parking functions, IG(q). We

find several recurrences for IG(−1), including a recursive formula whenever G is the cone over

a tree. We relate IG(−1) to the number of partial orientations of G. Using the connection

between IG and the Tutte Polynomial, we find another recursive formula for IG(−1). For any

partial cone G over a tree T , we compute IG(−1) by counting partial orientations of T with

a specific set of vertices with even in-degree.

Summary

Classical parking functions are defined in terms of a line of cars trying to park based on which

parking space they prefer. A generalization of this concept can be defined on a collection of

nodes connected by edges, called a graph. The parking functions on a graph have information

about how the graph is connected. We study a polynomial defined by parking functions on

a graph, and relate this polynomial to other important concepts in graph theory.

1 Introduction and Background

Parking functions were first considered by Konheim and Weiss [1], and have been extensively

studied, most notably by Richard Stanley [2]. They are defined informally in terms of cars

trying to park: suppose n cars, numbered 1, . . . , n, drive down a road with n parking spots,

numbered 0, . . . , n−1. Each car has a preferred parking spot, in which it will try to park. If a

car’s preferred spot is occupied, it parks in the next empty spot. The sequence of preferences

(a1, a2, . . . , an) is a parking function if all cars manage to park.

Stanley [2] observed that a classical parking function of length n is a sequence (a1, a2, . . . , an)

of natural numbers that satisfies the following: for each k ∈ {1, . . . , n}, at least k ai’s are less

than k. In other words, at least k cars want to park in the first k parking spaces. Stanley also

showed that there are (n+1)n−1 parking functions of length n. This is also Cayley’s Formula

for the number of trees on n+1 labeled vertices [3]. Let Pn denote the set of classical parking

functions of length n. The n-th inversion enumerator is defined as the polynomial

In(q) :=
∑

(a1,...,an)∈Pn

q(n+1
2)−a1−a2−···−an .

One generalization of parking functions is thought of in terms of sections of a parking

lot. Each section has a non-negative number of available parking spaces, and each car has

a preferred section in which to park, but has no preference among parking spaces within

a section. More technically, let ~b = (b1, . . . , bn) be a non-decreasing sequence of positive

integers. We say a sequence (a1, . . . , an) is a ~b-parking function if for each k ∈ {1, . . . , n}, at

least k ai’s are less than bk. We think of bi as the cumulative number of parking spaces, so

bi− bi−1 is the number of spaces in the ith section. When ~b = (1, . . . , n), ~b-parking functions

are exactly ordinary parking functions.

Chebikin and Postnikov [3] studied a generalization of the inversion enumerator to ~b-

1

parking functions, defining the sum enumerator as

I~b(q) :=
∑

(a1,...,an)∈P~b

qa1+a2+···+an−n,

where P~b is the set of ~b-parking functions. They found a formula for I~b(−1) in terms of

the number of permutations with a prescribed set of descents that nicely generalized the

~b = (1, . . . , n) case. We study another generalization of the inversion enumerator applied to

G-parking functions.

Let G be an undirected graph on vertices {0, 1, . . . , n}, allowing multiple edges. A se-

quence (a1, a2, . . . , an) of natural numbers is a G-parking function if for each nonempty set

U ⊆ {1, . . . , n}, there is some vertex v ∈ U such that the number of edges between v and

vertices outside U is greater than av. G-parking function is equivalently a function from G\0

to N. Let PG be the set of all G-parking functions. If G is the complete graph Kn+1, then

PG = Pn. To see why this is the case, let U0 = {1, . . . , n}. There must be some v0 ∈ U0

with av0 < 0. Then let U1 = U0\v. There must now be v1 ∈ U1 with av1 < 1, and so on.

Throughout this paper, we use G to represent both a graph and the set of its vertices.

For a graph G, define the sum enumerator as follows:

IG(q) :=
∑

(a1,...,an)∈PG

qa1+a2+···+an−n.

Clearly IG(1) = |PG|, the number of G-parking functions. Chebikin and Pylyavskyy [4]

found a family of bijections between PG and TG, the set of spanning trees of G, reducing the

problem of finding IG(1) to counting spanning trees. Because complete graphs yield ordinary

parking functions, IKn+1(−1) = En, the number of alternating permutations of {1, . . . , n}

[3].

In Sections 2 and 3, we are concerned with graphs in which every vertex has an edge to

2

0

1

2

3

4

Figure 1: An example graph G with 5 vertices.

0. This is equivalent to the following definition of G-parking functions for a graph G on the

vertices {1, . . . , n}: (a1, . . . , an) is a G-parking function if for each nonempty set U of vertices

of G, there is some vertex v ∈ U such that the number of edges between v and vertices outside

U is at least av. A fact about G-parking functions using this definition translates into a fact

about parking functions on the cone over G under the earlier definition. The cone over a

graph G, denoted Ĝ is the graph obtained by adding a vertex to G and adding an edge

from the new vertex to each vertex in G. Because we consider graphs other than cones in

Section 4, we use the earlier definition of G-parking function throughout the paper.

To illustrate these definitions, let G be the graph in Figure 1. It is easy to check that

(0, 4, 1, 1), (1, 0, 3, 2), and (2, 0, 0, 3) are G-parking functions. (0, 4, 2, 1) is not a G-parking

function because the set U = {1, 2, 3} does not contain any vertices with enough edges to

vertices outside of U . Upon counting the G-parking functions, we find that there are a total

of 96, of which 49 have even sum and 47 have odd sum, so IG(−1) = 2.

In Section 2, we prove recurrences allowing us to find IĜ(−1) for a graph by knowing

its value for certain subgraphs. These recurrences give us a recursive method to find IĜ(−1)

whenever G is a tree. In Section 3, we study partial orientations of graphs, and find that

3

the number of partial orientations of G with even in-degrees is ±IĜ(−1). In Section 4, we

look at graphs where not all vertices have an edge to 0. We connect IG(−1) to the Tutte

Polynomial, giving us another recurrence for IG(−1). For any partial cone G over a tree T ,

we find that |IG(−1)| is the number of partial orientations of T such that U is exactly the

vertices with even in-degree.

2 Recursive Formulae for IG(−1)

If we know the values of IĜ and IĤ for two graphs G and H, it is natural to ask what I
Ĝ∪H

is, where G ∪H is the disjoint union of G and H. Lemma 2.1 answers this question.

Lemma 2.1. Let G and H be graphs on the vertices {g1, . . . , gn} and {h1, . . . , hm}, respec-

tively. Then I
Ĝ∪H(q) = IĜ(q)IĤ(q).

Proof. Define F : PĜ×PĤ → PĜ∪H by F((a1, . . . , an), (b1 . . . , bm)) = (a1, . . . , an, b1, . . . , bm).

F is a bijection that preserves sums of parking functions, so

I
Ĝ∪H(q) =

∑
(a1,...,an,b1,...,bm)∈P

Ĝ∪H

(q)a1+···+an+b1+···+bm−(n+m)

Because F((a1, . . . , an), (b1, . . . , bm)) = (a1, . . . , an, b1, . . . , bm),

=
∑

(a1,...,an)∈PĜ
,(b1,...,bm)∈P

Ĥ

(q)a1+···+an−n(q)b1+···+bm−m

=
∑

(a1,...,an)∈PĜ

(q)a1+···+an−n
∑

(b1,...,bm)∈P
Ĥ

(q)b1+···+bm−m

= IĜ(q)× IĤ(q).

Applying Lemma 2.1 inductively shows that it also holds for graphs with more than

two connected components. Because the sum enumerator of the cone over a graph can be

4

understood by examining its connected components separately, we are most interested in

finding IĜ(−1) for connected G.

The next graph decomposition for which we prove a recurrence is that of graphs centered

around a star. Whenever a connected graph G has a vertex l such that removing l and its

edges from the graph leaves a number of connected components equal to the degree of l in

G, Theorem 2.3 can be used to reduce it to its components.

Definition 2.2. Suppose G1, . . . , GN are graphs, and that each Gi has a leaf li. Let vi be the

vertex connected to li. Let∗i∈{1,...,N}Gi be the graph formed by merging all li in
⋃

i∈{1,...,N}Gi

into a new vertex l. Let G′i be the graph formed by removing li and its edge from Gi. See

Figure 2 for an example.

Theorem 2.3. Let H =∗i∈{1,...,N}Gi. Then

IĤ(−1) = (−1)N−1
∑

U⊆{1,...,N}
|U | even

∏
i/∈U

IĜi
(−1)

∏
i∈U

IĜ′i
(−1).

Proof. We assume that l is the first vertex of H, followed by v1 through vN , and that li and

vi are the first and second vertices of Gi, respectively. We also assume that H has n vertices

and Gi has ni vertices. To proceed, we need to define partial Ĝ-parking function and related

terms. We use ⊕ to indicate sequence concatenation.

Definition 2.4. For any graph Ĝ, a partial Ĝ-parking function is the restriction of a Ĝ-

parking function to the vertices of G except for the first vertex. Let P∗
Ĝ

be the set of partial

Ĝ-parking functions. We say a partial Ĝ-parking function ~ai
∗ is maximal at v if the function

formed by increasing the value of ~ai
∗ at v by 1 is not a partial Ĝ-parking function. We

say a partial Ĝ-parking function ~ai
∗ is maximal if it is maximal at the second vertex in G,

i.e. the first vertex to which it assigns a value. A partial Ĝi-parking function is maximal

if it is maximal at vi. Let contG(~a∗) be the total contribution of ~a∗ to IĜ(−1), specifically

5

∑
~a ending in ~a∗(−1)

∑
~a−|G|. For a partial Ĥ-parking function ~a∗, let notmax(~a∗) be the set

of natural numbers i such that ~a∗ is not maximal at vi. If U ⊆ {1, . . . , N}, let cont(U)=∑
notmax(~a∗)=U contH(~a∗).

We construct the bijection F from P∗
Ĝ1
× · · · × P∗

ĜN
to P∗

Ĥ
by concatenation.

Lemma 2.5. Let U be a subset of {1, . . . , N}. Then

cont(U) =


0 |U | odd

(−1)N−1
∏

i/∈U IĜi
(−1)

∏
i∈U IĜ′i

(−1) |U | even.

Proof. We examine |U | odd and |U | even separately.

1. Suppose first that |U | = 2k − 1 is odd. Consider a partial Ĥ-parking function ~a∗ with

notmax(~a∗) = U . Then (i)⊕~a∗ is an Ĥ-parking function for any 0 ≤ i ≤ 2k−1. Of these

2k possible completions of ~a∗, k have even sum and k have odd sum, so contH(~a∗) = 0.

Summing over all such ~a∗, we find that cont(U) = 0.

2. Now suppose |U | = 2k is even. Consider a partial Ĥ-parking function ~a∗ with notmax(~a∗) =

U . Let F(~a1
∗, . . . , ~aN

∗) = ~a∗. Then (i)⊕~a∗ is an Ĥ-parking function for any 0 ≤ i ≤ 2k.

As in the odd case, most of these contributions cancel, but this time we find that

contH(~a∗) = (−1)
∑

~a∗−n.

Because n = n1 + · · ·+ nN −N + 1,

contH(~a∗) = (−1)
∑

~a1
∗−n1 . . . (−1)

∑
~aN
∗−nN (−1)N−1

= (−1)N−1 contG1(~a1
∗) . . . contGN

(~aN
∗).

6

But ~ai
∗ is maximal if and only if i ∈ U . Hence

cont(U) = (−1)n−1
∑

notmax(~a∗)=U

contH(~a∗)

= (−1)N−1
∏
i∈U

∑
~ai
∗ non-maximal

contGi
(~ai
∗)
∏
i/∈U

∑
~ai
∗ maximal

contGi
(~ai
∗).

The non-maximal partial Ĝi-parking functions are exactly the Ĝ′i-parking functions, so

the summation in the first product is equal to −IĜ′i(−1). Since |U | is even, the extra

minus signs cancel. The contribution of each non-maximal partial Ĝi-parking function

is 0 since vertex li can take on the values 0 and 1, so the summation in the second

product is equal to IĜi
(−1). Therefore

cont(U) = (−1)N−1
∏
i∈U

IĜ′i
(−1)

∏
i/∈U

IĜi
(−1),

proving Lemma 2.5.

To finish the proof of Theorem 2.3, we notice that by Lemma 2.5,

IĤ(−1) =
∑

U⊆{1,...,N}
|U | even

contU

= (−1)N−1
∑

U⊆{1,...,N}
|U | even

∏
i/∈U

IĜi
(−1)

∏
i∈U

IĜ′i
(−1).

Figure 2 illustrates Theorem 2.3 for N = 5. Let H be the first graph. We can decompose

IĤ(−1) into a sum of products, one of which is represented by the graphs below the line.

Because G′1 and G′3 are used instead of G1 and G3, this product corresponds to U = {1, 3}.

Summing all such products for any U with |U | even yields IĤ(−1).

Because any vertex in a tree can be used to decompose the tree by Theorem 2.3, IT̂ where

7

G1

G2

G3

G4 G5

G2

G4 G5

G′1G′3

Figure 2: Example application of Theorem 2.3. If H is the top graph, then IĤ(−1) is a sum
of products, one of which is shown below the line.

8

T is a tree can be expressed in terms of the same expression for smaller trees. We notice

that IÂ(−1) = IB̂(−1) = −1, where A is the graph with a single vertex and B is the graph

with two vertices and an edge between them. Using only Theorem 2.3, we can recursively

find IT̂ (−1) for any tree T from these two base graphs. Note that IT̂ (−1) is always negative.

We consider a third graph decomposition of a different class of graphs. Theorem 2.7

can reduce any graph with a leaf l, such that removing l and its neighboring vertex leaves

multiple connected components.

Definition 2.6. Suppose G1, . . . , GN are graphs, and that li is a leaf of Gi connected to vi

for each i. Let ↑i∈{1,...,N}Gi be the graph formed by merging all li and all vi in
⋃

i∈{1,...,N}Gi

into vertices l and v, respectively. See Figure 3 for an example.

At first glance, this may seem like a special case of Theorem 2.3. However, we are now

allowing multiple edges from v to the same subgraph, whereas Theorem 2.3 only allowed a

single edge from the center vertex to each subgraph. Like Lemma 2.1, this theorem can be

proved for N = 2 and generalized by induction. However, we instead present a direct proof

of the general version.

Theorem 2.7. Let H =↑i∈{1,...,N}Gi. Then

IĤ(−1) = (−1)N−1
∏

i∈{1,...,N}

IĜi
(−1).

Proof. We assume that l and v are the first and second vertices of H, and li and vi are the

first and second vertices of Gi, respectively. We also assume that H has n vertices and Gi

has ni vertices. As in the proof of Theorem 2.3, we need to define partial Ĝ-parking function.

Note that these definitions are slightly different from those in the proof of Theorem 2.3; we

now assign values to all but two vertices.

Definition 2.8. A partial Ĝ-parking function is a restriction of a Ĝ-parking function to the

9

vertics of G except for the first two. Let P∗
Ĝ

be the set of partial Ĝ-parking functions. Let

maxG(~a∗) be the maximum natural number k such that (0, k)⊕ ~a∗ is a Ĝ-parking function.

Let contG(~a∗) be the total contribution of Ĝ-parking functions ending in ~a∗ to IĜ(−1).

For any i < maxH(~a∗), both (0, i) ⊕ ~a∗ and (1, i) ⊕ ~a∗ are Ĥ-parking functions. Since

the sums of these sequences differ by 1, their contributions to IĤ(−1) cancel. However,

(1,maxH(~a∗)) ⊕ ~a∗ is not an Ĥ-parking function, so contH(~a∗) = (−1)
∑

~a∗+maxH(~a∗)−n. Sim-

ilarly, contGi
(~ai
∗) = (−1)

∑
~ai
∗+maxGi

(~ai
∗)−ni . Each partial Ĥ-parking function ~a∗ is a con-

catenation of partial Ĝi-parking functions. In particular, this provides a bijection F from

P∗
Ĝ1
×· · ·×P∗

ĜN
to P∗

Ĥ
. Also, maxH(F(~ai

∗, . . . , ~aN
∗)) = maxGi

(~ai
∗)+· · ·+maxGN

(~aN
∗)−N+1.

Hence

contH(F(~a1
∗, . . . , ~aN

∗)) = (−1)N−1
∏

i∈{1,...,N}

contGi
(~ai
∗).

Summing over all partial Ĥ-parking functions,

IĤ(−1) =
∑

~a∗∈P∗
Ĥ

contH(~a∗)

= (−1)N−1
∏

i∈{1,...,N}

∑
~ai
∗∈P∗

Ĝi

contGi
(~ai
∗)

= (−1)N−1
∏

i∈{1,...,N}

IĜi
(−1).

Figure 3 illustrates Theorem 2.7 when N = 2. Let the graph above the line be H. Then

IĤ(−1) = IG1(−1)IĜ2
(−1). Figures 2 and 3 illustrate graphically why we use the symbols ∗

and ↑ for the graphs in question; The symbols look like the graphs they represent.

10

G1 G2

G1 × G2

Figure 3: Example application of Theorem 2.7. The first graph can be split into the product
of the two graphs underneath.

3 Partial Orientations

We now explore the connection between partial orientations of G and IĜ(−1). First, we

define partial orientation.

Definition 3.1. Let G be an undirected graph. A partial orientation of G is an assignment

of directions to some subset of the edges of G. Given a partial orientation of G, the in-degree

of a vertex v is the number of edges oriented to point towards v.

Backman and Hopkins [5] studied the Ĝ-parking functions and their relation to partial

orientations, proving for example that the number of Ĝ-parking functions of a graph is the

number of acyclic partial orientations of G.

For reasons that will become apparent in Section 4, we are interested in counting partial

orientations for which a specific set of vertices has even in-degree, and all others have odd

in-degree.

Definition 3.2. Let U be a subset of the vertices of G. A partial orientation of G is U-even

if the vertices in U have even in-degree and the vertices in G\U have odd in-degree. Let

evenG(U) denote the number of U -even partial orientations of G.

In this section, we are interested in G-even partial orientations, which give every vertex

11

even in-degree. We use the shorthand even(G) for evenG(G) In Section 4, we generalize some

of these results using U -even partial orientations.

We show that even(T) = −IT̂ (−1) for any tree T . It suffices to show that the even(G)

obeys the same recurrences and base cases as IĜ(−1). In fact, an analogue of Theorem 2.3

alone is sufficient, but we will also prove an analogue of Theorem 2.7.

Lemma 3.3. Let H =∗i∈{1,...,N}Gi. Then

even(H) =
∑

U⊆{1,...,N}
|U | even

∏
i/∈U

even(Gi)
∏
i∈U

even(G′i).

Proof. We count even(H). Because l, the center vertex, must have even in-degree, let U be

the set of v ∈ {v1, . . . , vN} such that the edge from l to v is oriented to point to l. We sum

over all such U with |U | even.

Consider the following cases:

1. vi ∈ U . The number of ways to partially orient the rest of Gi is even(G′i).

2. vi /∈ U . The number of ways to partially orient Gi is even(Gi).

For a fixed U , the number of ways to finish our partial orientation is the product of the

number of ways to partially orient each Gi, i.e.

∏
i/∈U

even(Gi)
∏
i∈U

even(G′i).

Summing over all U with |U | even, we find

even(H) =
∑

U⊆{1,...,N}
|U | even

∏
i/∈U

even(Gi)
∏
i∈U

even(G′i).

12

Lemma 3.3 is the equivalent of Theorem 2.3 for partial orientations. Using Lemma 3.3

and Theorem 2.3, we prove Theorem 3.4, describing IT̂ (−1) for any tree T .

Theorem 3.4. Let T be a tree. Then even(T) = −IT̂ (−1).

Proof. Let A and B be the graph with a single vertex and the graph with two vertices

connected by an edge, respectively. Then even(A) = even(B) = −IÂ(−1) = −IB̂(−1) = 1.

It is straightforward to check that combining graphs with ∗ preserves the equality between

even(G) and −IĜ(−1). Since any tree can be built out of A and B using the ∗ operation,

by induction even(T) = −IT̂ (−1).

Note that Theorem 3.4 does not hold in general for non-trees. We also prove an equivalent

of Theorem 2.7 for partial orientations.

Lemma 3.5. Let H =↑i∈{1,...,N}Gi. Then

even(H) =
∏

i∈{1,...,N}

even(Gi).

Proof. Consider a partial orientation of each Gi. We can combine these partial orientations

into one of H by straightforward union, except we leave the edge between v and l unoriented

for now. If each vertex in each Gi had even in-degree before, they still do, except for vertex v.

To deal with v, notice that there is exactly one way to orient the edge between v and l so that

both v and l have even in-degree. Orienting the edge this way creates a partial orientation

of H with even in-degrees. This describes a bijection between the partial orientations of H

with even in-degrees and the partial orientations of each Gi with even in-degrees. Therefore

even(H) =
∏

i∈{1,...,N} even(Gi).

13

4 More General Graphs

In this section we consider graphs that do not always have exactly one edge from any vertex

to 0. With identical proofs, the results of Section 2 hold for general graphs as long as vertices

discussed in the proofs have edges to 0. Plautz and Calderer [6] proved that

TG(1, y) =
∑

(a1,...,an)∈PG

y|E|−|V |+1−a1−···−an ,

where TG is the Tutte Polynomial of G and |E| and |V | are the numbers of edges and vertices

in G, respectively, so |V | = n+1. This is already remarkably similar to the sum enumerator.

At y = −1, we find

TG(1,−1) =
∑

(a1,...,an)∈PG

(−1)|E|+a1+···+an−n

= (−1)|E|IG(−1).

Equivalently, IG(−1) = (−1)|E|TG(1,−1)

Notice that (−1)|E| and TG(1,−1) are invariant to relabellings of the vertices of G. In

particular, we can designate a different vertex to be 0, and these expressions remain the

same. Therefore IG(−1) is invariant to our choice of vertex 0.

Another implication of this connection to the Tutte Polynomial is that IG(−1) obeys the

deletion-contraction recurrence. For an edge e of G, let G\e denote G with e deleted, and

let G/e denote G with e contracted, merging the vertices on e into a single vertex. Then

TG = TG/e + TG\e [5]. The (−1)|E| factor in IG(−1) gives

−IG(−1) = IG/e(−1) + IG\e(−1).

Figure 4 is an illustration of this, with relevant vertices labeled by the number of edges to 0.

14

−
x y

=
x y

+
x + y

Figure 4: Example application of the deletion-contraction recurrence for IG(−1). If the first
graph is G, the second and third graphs are G\e and G/e, respectively. Vertex labels indicate
the number of edges to vertex 0.

We show that some features in G can be removed without affecting IG(−1).

Lemma 4.1. 1. Suppose G is a graph with a loop, i.e. an edge from v to v. Let G′ be G

with the loop removed. Then IG(−1) = IG′(−1).

2. Suppose G is a graph with two edges between u and v. Let G′ be G with both of these

edges removed. Then IG(−1) = IG′(−1).

Proof. 1. The presence or absence of a loop does not change the set of parking functions

of G, so it does not change IG(−1). Therefore IG(−1) = IG′(−1).

2. Assign u to be vertex 0 and v to be vertex 1. Let ~a∗ be a partial G-parking function,

as defined in the proof of Theorem 2.3. Then (k) ⊕ ~a∗ is a G′-parking function if and

only if (k+ 2)⊕~a∗ is a G-parking function. Exactly two G-parking functions ending in

~a∗ are not G′-parking functions, and these two sequences have sums of different parity,

so they cancel in IG(−1). Hence IG(−1) = IG′(−1).

If there are multiple edges between two vertices in G, we can remove them in pairs until

only 0 or 1 edges remain. While using deletion-contraction, we often end up with graphs

with double edges and loops, which we can ignore.

15

Definition 4.2. For a graph G, the partial cone over G at U ⊆ G is the graph formed by

adding a vertex (usually 0) to G and connecting the vertices in U to the new vertex. The

partial cone over G at G is the ordinary cone over G.

In the previous sections, we only dealt with ordinary cones, and now we are interested in

partial cones at arbitrary sets of vertices. We prove a generalization of Theorem 3.4, where

only some vertices have edges to 0. We use G0 to denote the set of vertices of G with an

edge to 0.

Theorem 4.3. Let G be a partial cone over a tree T on {1, . . . , n}. Then

evenT (G0) = (−1)|G\U |IG(−1).

It is possible to prove Theorem 4.3 by generalizing Lemma 3.3. It is easier to use the

deletion-contraction recurrence, which is what we do here.

Proof. We show that evenT (G0) obeys the deletion-contraction recurrence. Pick an edge e,

and partition the G0-even partial orientations of T into two sets: those that orient e and

those that do not.

Consider first the G0-even partial orientations that do not orient e. These partial ori-

entations are in bijection with the G0-even partial orientations of T\e, because the edges

other than e have to satisfy G0-evenness. There are evenT/e(G0) of such partial orientations,

accounting for the deletion part.

Now consider G0-even partial orientations of T that orient e. We show that these are in

bijection with G\e0-even partial orientations of T/e. Here the merged vertex is in G\e0 if it

has exactly one edge to 0. Contracting e in a G0-even partial orientation of T that orients

e creates a G\e0-even partial orientation of T/e. Each G\e0-even partial orientation of T/e

is created from exactly one G0-even partial orientation of T , since there is exactly one way

16

to orient e such that the in-degrees of its endpoints have the correct parity. Therefore there

are evenT/e(G\e0) G0-even partial orientations of T , accounting for the contraction part.

Hence evenT (G0) obeys the same recurrence as IG(−1), at least up to sign. To account for

sign, notice that evenT (G0) is always nonnegative, and the sign of IG(−1) is (−1)|E|. Since

T is a tree, it has n− 1 edges, and there are |U | = n + 1− |G\U | edges to 0. Thus

evenT (G0) = (−1)|E|IG(−1)

= (−1)n−1+n+1−|G\U |IG(−1)

= (−1)|G\U |IG(−1).

Theorem 4.3 does not hold for general graphs, although IG(−1) and evenT (G0) obey

the same recurrence. This is because loops and double edges increase the number of partial

orientations, and thus evenT (G0), but not IG(−1). For example, let G be the graph with two

loops at vertex 1, and an edge between 0 and 1. The only G-parking function is (0), but

there are five partial orientations such that 1 has even in-degree.

5 Conclusion

We found ways to calculate IĜ(−1) from subgraphs of G whenever G is disconnected, cen-

tered around a star with separated components, or has a leaf that yields a disconnected

graph when removed along with the vertex to which it has an edge. The recurrence for

graphs centered around stars provided a method to find IT̂ (−1) when T is a tree by re-

peatedly decomposing T into its subgraphs. We found that, when T is a tree, IT̂ (−1) is

the number of partial orientations of T with all in-degrees even. We generalized this fact to

partial cones over a tree, counting partial orientations such that exactly the vertices con-

nected to 0 have even in-degrees. Because IG(−1) is closely related to TG(1,−1), we found a

17

deletion-contraction recurrence for IG(−1), and also connected this to the number of partial

orientations, especially those of trees with specific vertices having even in-degree.

6 Acknowledgments

I would like to thank Dr. Alex Postnikov for providing this problem, and Mr. Pavel Galashin

for direction throughout my research. I would like to thank Dr. John Rickert, Dr. Tanya

Khovanova, and Noah Golowich for their assistance in writing this paper, and the MIT

Mathematics Department coordinators, Prof. David Jerison and Prof. Ankur Moitra, for

organizing the math section of RSI. Additionally, I would like to thank Jared Tramontano

for a helpful insight into the problem that ultimately led to Theorem 2.7.

I would also like to thank the Center for Excellence in Education and the Massachusetts

Institute of Technology for supporting this research and providing me with the necessary

resources. I would like to thank Dr. Diane Tang, Ms. Elizabeth Williams, Ms. Christie Nelson,

and Dr. and Mrs. William Cordwell for sponsoring my research and RSI.

18

References

[1] A. G. Konheim and B. Weiss. An occupancy discipline and applications. SIAM Journal
on Applied Mathematics, 14(6):1266–1274, 1964.

[2] R. Stanley. Parking functions and noncrossing partitions. Electronic Journal of Combi-
natorics, 4(20), 1997.

[3] D. Chebikin and A. Postnikov. Generalized parking functions, descent numbers, and
chain polytopes of ribbon posets. 2008, arXiv:0806.0440.

[4] D. Chebikin and P. Pylyavskyy. A family of bijections between G-parking functions and
spanning trees. Journal of Combinatorial Theory, 2005.

[5] S. Backman and S. Hopkins. Fourientations and the Tutte polynomial. 2015,
arXiv:1503.05885.

[6] J. Plautz and R. Calderer. G-parking functions and the Tutte polynomial. Available at
www.math.umn.edu/~reiner/REU/PlautzReport.ps.

19

www.math.umn.edu/~reiner/REU/PlautzReport.ps

	Introduction and Background
	Recursive Formulae for IG(-1)
	Partial Orientations
	More General Graphs
	Conclusion
	Acknowledgments

