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Abstract. Given a finite group G, a ring Λ, and a function f : G → Λ, a
G-circulant matrix of f is a |G| × |G| matrix M with rows and columns indexed
by the elements of G for which Mxy = f(xy) for all x, y ∈ G. We study the
fundamental properties of G-circulants when Λ is an algebraically closed field
with characteristic coprime to |G|.

We begin by proving new results about the matrix rigidity of G-circulants
for nonabelian G, which are the first of its kind. We show that for any sequence
of finite groups Gi whose abelian normal subgroups have sufficiently small
index, the family of Gi-circulants is not Valiant-rigid. Furthermore, we show
that this result applies for families of groups {Gi}i whose representations are
bounded above in degree.

Next, we exhibit a formula for the rank of any G-circulant in terms of
the decomposition of its corresponding function f : G → Λ into the matrix
coefficients of the irreducible representations of G. While this was known to
Diaconis, we present a more elementary proof that avoids the full strength of
Schur Orthogonality.

We then apply this formula to the case of G-circulants for cyclic G. Through
this, we generalize a theorem of Chen, providing a necessary and sufficient
criterion for when zero-one circulants are always nonsingular. Additionally, we
answer an open problem about singular circulant digraphs posed by Lal–Reddy
and give a probabilistic estimate for the regularity of zero-one singular circulant
matrices.

Lastly, we investigate orthogonal representations of graphs. Given a finite,
simple graph G, we provide a novel lower bound for the minimal dimension in
which a faithful orthogonal representation for G exists. Furthermore, we use
our bound to determine the aforementioned minimal dimension for an infinite
family of Kneser graphs up to a constant factor.

1. Introduction

For an arbitrary finite group G and ring Λ, fix a function f : G → Λ. The
G-circulant matrix of f is the |G| × |G| matrix M with rows and columns indexed
by the elements of G such that the entry in the row corresponding to x and the
column corresponding to y is equal to f(xy) for all x, y ∈ G.

The rank of G-circulant matrices has long been of interest. In 2017, Croot, Lev,
and Pach [CLP17] resolved a longstanding problem by providing an upper bound on
the ranks of circulant matrices for functions f : Fn

q → Fq, using this as the key fact
to prove that arithmetic-progression-avoiding subsets of Zn

4 are exponentially small.
This approach was subsequently generalized to all abelian groups by Ellenberg and
Gijswijt [EG17].
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Circulant ranks have also been used in the context of matrix rigidity. Matrix
rigidity, introduced by Valiant in 1977 in his seminal paper [Val77], is a quantitative
metric of how far a matrix is from being low rank (see Section 2 for a precise
definition). It has long been an open question to find an explicit family of sufficiently
rigid matrices; doing so would have significant ramifications in coding and complexity
theory, proving unconditional super-linear circuit lower bounds for circuits with
logarithmic depth [Val77]. In 2017, Dvir–Edelman [DE17] adapted the core result
from Croot–Lev–Pach [CLP17] to establish an asymptotic bound on the matrix
rigidity of Fn

q -circulants. Recent other work on matrix rigidity has mainly focused
on proving that certain families of matrices are not sufficiently rigid, most notably
culminating in the work of Dvir–Liu [DL19], which showed that all families of
abelian circulants are not rigid.

Up until now, both circulant ranks and matrix rigidity have primarily been studied
in the context of abelian groups. We provide generalizations in the nonabelian
setting and categorize our results into four main sections.

First, we demonstrate the non-rigidity of all families of G-circulants for nonabelian
groups G which have a sufficiently large abelian normal subgroup. This is the first
rigidity result that applies to G-circulants for nonabelian G. Specifically, we prove
the following:

Theorem 1.1. Consider an infinite family of groups {Gi}i and functions {fi : Gi →
Λ}i. If every sufficiently large Gi has an abelian normal subgroup with index bounded
by some fixed polynomial in log(|Gi|), then the family of G-circulant matrices of the
functions {fi}i is not rigid over C. In particular, this holds for any family {Gi}i

of groups where the degrees of the irreducible representations of the Gi are bounded
above by some constant.

Group-circulants of this form admit a special structure, where we can rearrange the
rows and columns to induce more regularity among the entries; we can subsequently
apply the results of Dvir–Liu [DL19] to conclude that the matrices cannot be rigid.
A more precise formulation and proof can be found in Theorem 2.8.

Next, we give a new proof of a result found in Diaconis 1990 [Dia90] to compute
explicitly the rank of all G-circulant matrices for nonabelian G in terms of the linear
representation theory of G. Our proof is more elementary in the sense that it does
not rely on the full strength of the Schur Orthogonality relations. To state it, we
need a definition from representation theory: given an irreducible representation ρ

of a finite group G over a ring Λ, define the (i, j)th matrix coefficient ρij(x) to be
the function ρij : G → Λ such that ρij(g) for any g ∈ G returns the (i, j)th entry of
the matrix ρ(g).

If Λ is an algebraically closed field whose characteristic does not divide |G|, then
it is known that the matrix coefficients of the irreducible representations of G are
a basis for the space of functions from G to Λ [Eti+11, Prop. 4.7.1][Ter99, Thm.
2(1)].

The idea of our proof is that when a function viewed as a linear combination of
the matrix coefficients of the irreducible representations of G, we can take advantage
of the multiplicativity of the representations to prove that an expanded version of
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the linear combination is in a sense “optimal” in that the only way to reduce the
number of summands is through obvious factorizations, allowing us to calculate the
rank explicitly. In particular, we prove the following theorem:

Theorem 1.2. For any group G, field Λ with characteristic coprime to |G|, and
function f : G → Λ, express f in the form

f(x) =
∑
ρ∈I

 ∑
1≤i,j≤deg ρ

cρ,i,jρij(x)


where I is the set of isomorphism classes of irreducible representations of G and
where cρ,i,j ∈ Λ. Then, the rank of the |G| × |G| circulant matrix defined by f(xy)ij

is equal to

∑
ρ∈I

(deg ρ) rank




cρ,1,1 cρ,1,2 · · · cρ,1,N

cρ,2,1 cρ,2,2 · · · cρ,2,N

...
...

. . .
...

cρ,N,1 cρ,N,2 · · · cρ,N,N



 .

Lastly, in the fourth section, we use this result to provide several applications to,
and generalizations from, existing results regarding classical circulant matrices. By
viewing these as G-circulant matrices in the specific context of G = Z/nZ, Theorem
3.11 provides an explicit criterion for which classical circulants are invertible. We
will use this to prove the following statement, which generalizes a 2021 result of
Chen [Che21]:

Theorem 1.3. An n × n zero-one circulant with k ones in the first row is always
invertible if and only if at least one of k and n − k cannot be expressed as a linear
combination of the prime divisors of n.

A more precise statement and proof of this theorem is found in Theorem 4.6.
In the same section, we also resolve an open problem by Lal–Reddy regarding

when certain classes of directed circulant graphs are singular. To answer this
question, it suffices to determine the invertibility of a certain family of circulant
matrices: we do so in Theorem 4.7. We end this section with a brief result on the
probability of an n × n zero-one circulant matrix to be singular.

Our last section covers orthogonal representations of graphs. Loosely speaking,
an n-dimensional orthogonal representation of a graph is an assignment of a vector
to each of the graph’s vertices where orthogonal vectors correspond to adjacent
vertices. Orthogonal representations of graphs have many applications: they were
first introduced by Lovász to determine the Shannon Capacity of a graph, are used
to detect hidden quantum variables, and appear naturally in the setting of partition
logics [Svo20].

In Section 5, we provide a novel lower bound of the minimal dimension for which
an orthogonal representation (satisfying certain nondegeneracy properties) exists
for any graph. Notating this minimal dimension as ξF (G), we prove the following:

Theorem 1.4. For any finite, simple, undirected graph G,

n2

4(n2 − 2|E(G)|) ≤ ξF (G).
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We then show this bound is tight up to a constant factor for certain families of
Kneser graphs, building on a line of work initiated by Golovnev–Haviv [GH20]. A
precise statement is given in Section 5 and Theorem 5.7.

2. Matrix Rigidity of Group-Circulants

In this section, we prove a statement about the matrix rigidity of G-circulants
for special G.

2.1. Background. The intuitive idea behind matrix rigidity is that a matrix is
rigid if it differs from any low-rank matrix by a large number of entries.

More technically, fix a matrix M of dimension n × n, and let 0 ≤ r ≤ n be an
integer. Now, we define the quantity RM (r) as the minimum number of entries we
need to change in M in order to produce a matrix with rank at most r.

Now, consider an infinite family of square matrices M. We say that this family
is Valiant-rigid if for all sufficiently large M ∈ M, there exists a constant ε > 0
such that

N1+ε

RM

(
N

log log N

)
is bounded uniformly in N, where N = dim M.

If a family of matrices is Valiant-rigid, then it satisfies the following property:

Theorem 2.1 (Valiant 1977, Corollary 6.3). Suppose Λ is a field. If M is a Valiant-
rigid N × N matrix, then the linear map corresponding to M cannot be computed
by circuits of size O(N) and depth O(log N).

This is valuable in complexity theory, as it establishes unconditional superlinear
lower bounds on circuits with logarithmic depth. Thus, it is of interest to determine
whether or not families of matrices are Valiant-rigid.

In the notation of Dvir–Liu [DL19], we now define a weaker notion of rigidity.
Define the regular rigidity rM (r) of a matrix M as the minimum number s such that
it possible to change at most s entries in each row and column of M to produce a
matrix of rank at most r.

Definition 2.2. We say a family M of matrices is quasipolynomially non-rigid
(QNR) over a field F if there are constants c1, c2 > 0 such that for any ε > 0, all
sufficiently large matrices M ∈ M satisfy

rFM
(

N

exp(εc1(log N)c2)

)
≤ Nε,

where M is an N × N matrix.

Definition 2.3. We say an N × N matrix A (or, more precisely, a family M of
matrices in N) has QNR rank over a field F if there exist constants c1, c2 > 0 such
that for all sufficiently large M ∈ M,

rank(M) ∼ O

(
N

exp(εc1(log N)c2)

)
.
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Definition 2.4. Given a group G, define the Fourier matrix F of G to be the
|G| × |G| matrix, with columns indexed by the elements of G and rows indexed by
the matrix coefficients of the irreducible representations of G, such that the matrix
entry in the row corresponding to ρij and the column corresponding to g ∈ G is
equal to ρij(g).

Dvir–Liu [DL19] established that for all abelian G, any family of G-circulant
matrices is quasipolynomially non-rigid.

Theorem 2.5 (Dvir–Liu 2019, Theorem 1.5). Let G be an abelian group. The family
of G-circulant matrices is QNR over C. For a finite field Fq, if gcd(|G|, q) = 1, then
the family of G-circulant matrices is QNR over Fq.

Notice that if a family of matrices is quasipolynomially non-rigid, it is also not
Valiant-rigid.

In addition, we need two other results for our proof in this section. We first
consider a result from Isaacs–Passman [IP64]:

Theorem 2.6 (Isaacs–Passman 1964, Corollary 3.6). There exists a function
k : Z+ → Z+ with the following property. If G is any group all of whose irreducible
representations have degree ≤ n, then G has an abelian normal subgroup N of index
less than or equal to k(n).

Secondly, we have the following result due to Meyer [Mey73].

Theorem 2.7 (Meyer 1973, Theorem 4.1). Consider an m × n matrix M over
any field partitioned into four blocks, which we call A, C, R, D. Then, there exist
matrices EA, FA, A−, EW , and FY for which

rank(M) = rank(A) + rank(EAC) + rank(EW (D − RA−C)FY ) + rank(RFA).

In particular,

rank(M) ≤ 2(rank(A) + rank(C) + rank(R) + rank(D)).

2.2. Quasipolynomial Nonrigidity of Group-Circulants. In this section, we
will prove the following theorem.

Theorem 2.8. Consider an infinite family {Gi}i of groups and functions {fi : Gi →
Λ}i. If every sufficiently large Gi has an abelian normal subgroup with index bounded
by some fixed polynomial in log(|Gi|), then the family of G-circulant matrices of the
functions {fi}i is quasipolynomially non-rigid over C.

In fact, Theorem 2.8, which is stated in terms of group theory, has the following
corollary in the language of representation theory.

Corollary 2.9. Consider again an infinite family {Gi}i of groups, and for each
i, let Fi be the Fourier matrix of Gi: that is, the |Gi| × |Gi| matrix whose entries
are the matrix coefficients of its irreducible representations. Suppose that for some
constant c, we have deg(ρ) < c for all i and ρ ∈ Irr(Gi), the set of isomorphism
classes of the irreducible representations of Gi. Then, the family of matrices {Fi}i

is quasipolynomially non-rigid over C. Furthermore, the family of Gi-circulants is
quasipolynomially non-rigid as i gets large.
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First, we will prove Theorem 2.8. The main idea is the following: group-circulant
matrices over groups with large abelian normal subgroups exhibit a lot of structure,
and we can permute the rows and columns of the corresponding G-circulant matrix
to induce more familiar structure which we can work with.

In particular, for all sufficiently large Gi, let Ni denote an abelian normal subgroup
of Gi with index bounded by some fixed polynomial in log(|Gi|). We index the rows
and columns of each Gi-circulant in the following way:

• The first |Ni| rows/columns correspond to the elements in the coset eNi.

• The next |Ni| rows/columns correspond to another, distinct coset hNi for
h ∈ G, and so on.

In short, we index the rows and columns of each Gi-circulant by the cosets of Ni.

This indexing has several interesting properties. Specifically, consider the entry in
a Gi-circulant matrix corresponding to a row element which is in the coset aNi and
a column element in the coset bNi for elements a, b ∈ Gi. Then, that corresponding
entry in the matrix is going to be of the form f(g), where f : Gi → Λ is an arbitrary
function and g ∈ Gi is a group element in the coset abNi (since Ni is normal in Gi).

For the sake of making this explicit, we will first establish how we are notating
G-circulants. Index the group elements of G as e, g1, g2, . . . , g|G|−1, and index the
rows (from top to bottom) and columns (from left to right) in that order. Each
G-circulant then takes on the following form, where f : G → Λ is allowed to be any
function: 

f(e) f(g1) f(g2) · · · f(g|G|−1)
f(g1) f(g2

1) f(g1g2) · · · f(g1g|G|−1)
f(g2) f(g2g1) f(g2

2) · · · f(g2g|G|−1)
...

...
...

. . .
...

f(g|G|−1) f(g|G|−1g1) f(g|G|−1g2) · · · f(g2
|G|−1)


For the sake of convenience, we will drop all the fs in the matrix, leaving just
the product of elements; it is clear how to reconstruct a G-circulant from this
pared-down matrix.

Now, when we index the rows and columns by normal subgroups, we are changing
the orders of the rows and columns of the original G-circulant. In what follows, let
[Gi : Ni] = C, and let a1, a2, . . . , aC be group elements in Gi such that the cosets
a1Ni, a2Ni, . . . , aCNi are all distinct. Then, we partition the matrix into a C × C

block matrix in the following way:



a1Ni a2Ni a3Ni ··· aC Ni

a1Ni a2
1Ni a1a2Ni a1a3Ni · · · a1aCNi

a2Ni a2a1Ni a2
2Ni a2a3Ni · · · a2aCNi

a3Ni a3a1Ni a3a2Ni a2
3Ni · · · a3aCNi

...
...

...
...

. . .
...

aC Ni aCa1Ni aCa2Ni aCa3Ni · · · a2
CNi


.

In this partition, each block has the following structure: for some indexed list of
elements n1, n2, . . . , n|Ni| of Ni, the block corresponding to the row coset aXNi

and the column coset aY Ni has rows indexed aXn1, aXn2, . . . , aXn|Ni| and columns
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indexed aY n1, aY n2, . . . , aY n|Ni|. Adopting notation from our writing of circulant
matrices, each block has the following form:

aXn1aY n1 aXn1aY n2 · · · aXn1aY n|Ni|

aXn2aY n1 aXn2aY n2 · · · aXn2aY n|Ni|
...

...
. . .

...
aXn|Ni|aY n1 aXn|Ni

|aY n2 · · · aXn|Ni|aY n|Ni|

 .

Notice that each of the elements above is in the coset aXaY Ni. Actually, we claim
that the above matrix is isomorphic to an Ni-circulant. By this, we mean that if we
multiply every element above by (aXaY )−1 on the left, then the resulting structure
will be exactly equal to the structure in an Ni-circulant.

Doing this, we see that the matrix becomes
a−1

Y n1aY n1 a−1
Y n1aY n2 · · · a−1

Y n1aY n|Ni|

a−1
Y n2aY n1 a−1

Y n2aY n2 · · · a−1
Y n2aY n|Ni|

...
...

. . .
...

a−1
Y n|Ni|aY n1 a−1

Y n|Ni
|aY n2 · · · a−1

Y n|Ni|aY n|Ni|

 .

But this is just an Ni-circulant with rows indexed a−1
Y nkaY for 1 ≤ k ≤ |Ni| and

columns indexed by n1, n2, . . . , n|Ni| in that order.
This suggests the following revisualization of an arbitrary Gi-circulant with rows

indexed in the above way: view it as a C × C block matrix, where each block is a
matrix defined by a function on the elements of some coset of Ni.

We will now show that these Gi-circulants are quasipolynomially non-rigid. By
Theorem 2.5, we can alter at most |Ni|ε entries in each row and column in each of
the individual circulants to create a matrix with QNR rank. Doing so for each of
the blocks in the Gi-circulant, we get an upper bound of

|Gi|2|Ni|−1+ε ∼ O(|Gi|1+ε′
)

entries changed. In fact, we have changed O(|Gi|ε
′) entries in every row and column.

We will now show that the rank of the entire modified Gi-circulant is QNR by
using a generalization of Theorem 2.7 to partitions of greater size.

Lemma 2.10. Let m ≥ 2 be a positive integer, and consider an arbitrary m × m

block matrix M over any field with blocks B1, B2, . . . , Bm2 . Then,

rank(M) ≤ 2m

m2∑
j=1

rank(Bj)

 .

Proof. Consider the sequence (kn)n≥1 defined by the following recursion:

• k1 = 1,

• k2n = 2kn for all positive integers n, and
• k2n−1 = 2kn for all positive integers n ≥ 2.

The first few terms of the sequence are 1, 2, 4, 4, 8, . . . . More specifically, we can
verify that kn is the largest power of two strictly less than 2n.
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To prove our lemma, we will prove the stronger statement that

rank(M) ≤ km

m2∑
j=1

rank(Bj)

 .

Since km ≤ 2m for all m, this will prove the original claim.
To prove the stronger statement, we will use strong induction on m, with the

base case m = 2 being Theorem 2.7.
For the strong inductive step, we will use casework on the parity of m. When

m is even, partition the m × m block matrix into four quadrants, or m/2 × m/2
“super-blocks,” S1, S2, S3, and S4. Theorem 2.7 implies that

rank(M) ≤ 2(rank(S1) + rank(S2) + rank(S3) + rank(S4)).

Applying the strong inductive hypothesis to each of the super-blocks, we get

rank(Sℓ) ≤ 2
(
km/2

)(∑
B∈Sℓ

rank(B)
)

= km

(∑
B∈Sℓ

rank(B)
)

for all super-blocks Sℓ and blocks B ∈ Sℓ. Substituting the above equation into the
inequality for rank(M) gives the result.

Next, we consider the case where m is odd; the base case in this scenario is the
vacuous m = 1. In the general case, we again partition the m × m matrix into
four roughly even quadrants; more precisely, we partition the matrix into super-
blocks S1, S2, S3, and S4 with dimensions m+1

2 × m+1
2 , m+1

2 × m−1
2 , m+1

2 × m−1
2 ,

and m−1
2 × m−1

2 , respectively. Again, we have

rank(M) ≤ 2(rank(S1) + rank(S2) + rank(S3) + rank(S4)).

Notice that while S2 and S3 are not square, their ranks are going to be at most the
rank of any contiguous m−1

2 × m−1
2 submatrix contained in the respective super-

blocks. Hence, applying the strong inductive hypothesis, we have the following
inequalities:

rank(S1) ≤ k m+1
2

(∑
B∈S1

rank(B)
)

,

rank(S2) ≤ k m−1
2

(∑
B∈S2

rank(B)
)

,

rank(S3) ≤ k m−1
2

(∑
B∈S3

rank(B)
)

,

rank(S4) ≤ k m−1
2

(∑
B∈S4

rank(B)
)

.

Plugging this into the rank inequality for the original matrix and using the fact that
k m−1

2
≤ k m+1

2
, we get

rank(M) ≤ 2k m+1
2

(∑
B∈M

rank(B)
)

= km

(∑
B∈M

rank(B)
)

,
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proving the result. □

Recall that we would like to show that the modified Gi-circulant is of QNR
rank. To this end, consider the function s : Z → Z given by s(|Gi|) = [Gi : Ni] for
all indices i. We know that the function s is asymptotically bounded by a fixed
polynomial in log(|Gi|).

The modified Gi-circulant, call it Mi, is a block matrix with dimensions s(|Gi|) ×
s(|Gi|), where each block B ∈ Mi is isomorphic to an Ni-circulant. Moreover, we
know that each of these B has QNR rank. Applying Lemma 2.10, we know that

rank(Mi) ≤ 2s(|Gi|)
∑

B∈Mi

rank(B).

We would like to show that this has QNR rank with respect to Mi.

Plugging in the ranks of the individual blocks B and using the fact that there
are s(|Gi|)2 such blocks, we have

rank(Mi) ≤ 2s(|Gi|)3O

(
|Gi|/s(|Gi|)

elog(|Gi|/s(|Gi|))δ

)
for some constant 0 < δ < 1. To finish the proof of the theorem, we claim that this
term is of the order

O

(
|Gi|

elog(|Gi|)δ′

)
for a constant 0 < δ′ < 1, which would prove that Mi has QNR rank.

To see why this is, it suffices to check that

s(|Gi|)3 ·
(

|Gi|/s(|Gi|)
elog(|Gi|/s(|Gi|))δ

)
= |Gi| · s(|Gi|)2

elog(|Gi|/s(|Gi|))δ

is asymptotically at most
|Gi|

elog(|Gi|)δ′ .

In fact, we will prove the stronger statement that for any constant 0 < δ < 1, it is
possible to choose a constant 0 < δ′ < 1 such that

|Gi| · s(|Gi|)2

elog(|Gi|)δ <
|Gi|

elog(|Gi|)δ′ .

Indeed, this comes down to choosing a δ′ such that

s(|Gi|)2 < elog(|Gi|)δ−log(|Gi|)δ′

.

This is equivalent to showing that for any δ, the function elog(|Gi|)δ grows faster
than any polynomial in log(|Gi|). In fact, we only need to show that the former
function grows faster than log(|Gi|)α for all positive integers α, which is apparent
by taking the logarithm of both sides. This proves Theorem 2.8.

Next, we will prove Corollary 2.9.
Firstly, in the notation of Corollary 2.9, Theorem 2.6 implies that in the family

{Gi}i, as i gets sufficiently large, there is a constant C0 such that there is an
abelian normal subgroup Ni of Gi with order at least Gi/C0. The quasipolynomial
nonrigidity of these Gi-circulants then follows from Theorem 2.8.
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We have thus proved that Gi-circulant matrices are all QNR for sufficiently large
indices i. Now, we will show that the family {Fi}i of matrices is also QNR. To
do this, we will use the following claim, which closely resembles Lemma 2.21 in
Dvir–Liu’s paper [DL19, Lem. 2.2.1].

Claim 2.11 (Approximating Rigidity-Measuring Functions). Consider square ma-
trices A, B, C with A unitary, C block-diagonal, and B = A∗CA. Let k be the
dimension of the largest block in C. If rA(r) ≤ s for some s, then rB(2r) ≤ ks2.

The proof of this claim is analogous to the proof of Lemma 2.21 in Dvir–Liu
[DL19, Lem. 2.2.1]. In particular, it will rely on the following lemma, which is easy
to see via expansion:

Lemma 2.12. Consider square matrices M and N of the same dimension. If M

has no more than u nonzero entries in each row and column and if N has no more
than v nonzero entries in each row and column, then the matrix product MN has
no more than uv nonzero entries in each row and column.

Now, we will prove the claim.

Proof. Let E be the matrix with at most s nonzero entries in each row and column
such that rank(A − E) ≤ r. Then,

B − E∗CE = A∗C (A − E)︸ ︷︷ ︸
rank ≤r

+ (A∗ − E∗)︸ ︷︷ ︸
rank ≤r

CE.

Hence, the rank of B − E∗CE is at most 2r. But notice that E∗ and E both have at
most s nonzero entries in each row and column, while C has at most k such entries.
Thus, by Lemma 2.12, the matrix product has at most ks2 nonzero entries in each
row and column, and the claim follows. □

Now, notice that the matrix Fi block-diagonalizes every Gi-circulant, with each
block being capped at dimensions c × c (where, in the notation of Corollary 2.9, c is
the upper bound on the degrees of the irreducible representations of the Gi). In
particular, since Gi-circulants are QNR, we have that

rM

(
O

(
|Gi|

elog(|Gi|)c

))
≤ |Gi|ε

for any ε > 0 and where M is any Gi-circulant. By the claim above, this directly
implies that for the corresponding matrix M ′ = Fi, we have

rM ′

(
O

(
|Gi|

elog(|Gi|)c

))
≤ |Gi|2ε.

This shows that {Fi}i is also QNR, as desired.

3. The Ranks of Circulant Matrices

We first remark upon an equivalent reformulation for the rank of circulant matrices
over Λ, which we call the circulant rank.
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Definition 3.1. The rank of a function F : G × G → Λ is the smallest integer
r = r(F ) such that it is possible to write

F (x, y) =
∑

1≤i≤r

fi(x)gi(y)

where fi, gi are functions from G to Λ. The circulant rank of a function f : G → Λ
is the rank of the function F (x, y) = f(xy).

We can verify that the circulant rank of a function f is equal to the rank of its
G-circulant matrix over Λ (by using Lemma 3.10).

In this section, we give an explicit formula for the rank of all G-circulant matrices
for any finite group G and function f : G → Λ, where Λ is a sufficiently nice
field. This result was known to Diaconis [Dia90], but we give a different and more
elementary proof.

3.1. Rank Reduction. In this section, we first give an explicit decomposition of
any function f : G → Λ of the form

∑
fi(x)gi(y) for functions fi and gi. It is clear

that we only need to obtain explicit decompositions of matrix coefficients.

Claim 3.2. The circulant rank of the function ρij(x) for any valid choice of indices
i and j is less than or equal to deg ρ.

Proof. Since ρ is a homomorphism, ρ(xy) = ρ(x)ρ(y). This implies

ρij(xy) =
∑

k

ρik(x)ρkj(y)

upon carrying out the matrix multiplication. The result follows from Definition
3.1. □

Once we have an explicit decomposition of any function f : G → Λ, we would
like to show that it is “optimal.” In other words, if we take an arbitrary function
and expand it into summands of the form ρik(x)ρkj(y) as above, the resulting
decomposition should have the least number of summands possible after obvious
factorizations. The following work makes this idea explicit.

Theorem 3.3 (Rank Reduction). Let A be a finite set of elements, and let m be a
positive integer. Say we are given functions fi, gi : A → Λ for 1 ≤ i ≤ m such that

m−1∑
k=1

fk(x)gk(y) = fm(x)gm(y)

for all x, y ∈ A. Assume further that gm is not the zero function. Then, fm is
identically equal to a linear combination of f1, f2, . . . , fm−1.

Proof. Let |A| = N, and index the members of A as a1, a2, . . . , aN . By the condition,
there exists some index j with 1 ≤ j ≤ N such that gm(aj) ̸= 0. Plugging in y = aj

yields the result. □

Theorem 3.4 (General Rank Reduction). In the same terminology as Theorem
3.3, say we are given the equation

m−1∑
k=1

fk(x)gk(y) =
m+n∑
j=m

fj(x)gj(y)
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for some nonnegative integer n. If we assume that the set {gℓ | m ≤ ℓ ≤ m + n}
is a linearly independent set of functions, then fm, fm+1, . . . , fm+n are all linear
combinations of f1, f2, . . . , fm−1.

Proof. We induct on n, with the base case n = 0 being Theorem 3.3. Henceforth,
assume n ≥ 1 and that the statement holds for n = v for v a positive integer. To
prove the statement for n = v + 1, we first rearrange the given equation as

m−1∑
k=1

fk(x)gk(y) −
m+v∑
j=m

fj(x)gj(y) = fm+v+1(x)gm+v+1(y) (⋆).

By the linear independence assumption, we know that gm+v+1 is not the zero
function; hence, by Theorem 3.3, we know that fm+v+1 is a linear combination of
the fi for 1 ≤ i ≤ m + v. To this end, write

fm+v+1(x) =
m+v∑
i=1

cifi(x).

Plugging this back into equation (⋆) and rearranging gives the equation

m−1∑
k=1

fk(x)(gk(y) − ckgm+v+1(y)) =
m+v∑
j=m

fj(x)(gj(y) + cjgj+v+1(y)).

Now, since the functions {gℓ | m ≤ ℓ ≤ m + v + 1} are linearly independent by
assumption, it is easy to see that the functions {gj(y)+cjgj+v+1(y) | m ≤ j ≤ m+v}
is linearly independent as well. We can now apply the inductive hypothesis for
n = v to obtain the result. □

3.2. Generalizations: Technical Setup. In this section, we show that Theorem
3.4 applies when the fi and gi are taken to be matrix coefficients.

Claim 3.5. Consider a function F : G × G → Λ. Let r = r(F ), and write

F (x, y) =
r∑

i=1
fi(x)gi(y),

where fi, gi : G → Λ. Then, the sets {fi | 1 ≤ i ≤ r} and {gi | 1 ≤ i ≤ r} are linearly
independent as functions over G.

Proof. Assume without loss of generality that f1(x) is a linear combination of the
other fi. Then, write

f1(x) =
r∑

i=2
cifi(x).

We can then write F (x, y) as

F (x, y) =
r∑

i=2
fi(x)(gi(y) + cig1(y)),

so F actually has rank r − 1. This contradicts the minimality of r. □

Recall that over any field Λ, the matrix coefficients of the irreducible representa-
tions of G over Λ are linearly independent.
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Claim 3.6. For any finite group G, the |G|4 functions ρij(x)πrs(y) : G × G → Λ,
where ρ and π are (not necessarily distinct) irreducible representations of G and
1 ≤ i, j, r, s ≤ N, are linearly independent as functions on G × G.

Proof. Index the irreducible representations of G as ρ1, ρ2, . . . , ρm for some positive
integer m.

For a fixed representation ρk such that deg ρk = N, label each ordered pair
(i, j) where 1 ≤ i, j ≤ N with a unique number from 1 to N2. Now, any linear
combination of the matrix coefficients of ρk can be expressed as

ck,1,1ρk,1(x)ρk,1(y) + ck,1,2ρk,1(x)ρk,2(y) + · · · + ck,N2,N2ρk,N2(x)ρk,N2(y)

for constants ck,1,1, ck,1,2, . . . , ck,N2,N2 ∈ Λ.

Now, assume that some linear combination of the matrix coefficients of G equals
the zero function. In particular, assume that

m∑
k=1

(deg ρk∑
u=1

deg ρk∑
v=1

[ck,u,vρk,u(x)ρk,v(y)]
)

= 0

as a function from G × G → Λ for some choice of indices ck,u,v. Grouping the terms
by their matrix coefficient in y, we get an expression of the form

∑
v

(∑
k

[∑
u

ck,u,vρk,u(x)
]

ρk,v(y)
)

= 0,

where the bounds of the summations are the same as above. Since the ρi(y) are
linearly independent as functions over G, the

∑
u

ck,u,vρk,u(x) must equal zero for

each u, v, and k. But since the ρk,u(x) are also linearly independent functions over
G, it follows that each of the ck,u,v must be zero, establishing the independence. □

3.3. Circulant Ranks of Functions. In this section, we synthesize our work and
arrive at a new proof for the general formula for the ranks of circulant matrices.
The approach we take is fundamentally different from, and uses less technology
than, the one in Diaconis [Dia90]: more specifically, we only rely on the result that
matrix coefficients of the irreducible representations of G over Λ form a basis for
all functions f : G → Λ and do not need to appeal to the full results of Schur
Orthogonality. Henceforth, assume that Λ is a field with characteristic coprime to
|G|.

First, given a function f : G → Λ, define the parent function F : G × G → Λ of
f as F (x, y) = f(xy) for all x, y ∈ G. We define the standard decomposition of its
parent function as follows:

Proposition 3.7 (Standard Decomposition). Given a function f : G → Λ, the
standard decomposition of its parent function F is the unique decomposition of
F (x, y) into the zero-one linear combination of the |G|4 functions ρij(x)πrs(y),
where ρ and π are two (not necessarily distinct) irreducible representations of G.

The standard decomposition of the parent function of a function f : G → Λ is
given by “expanding” the matrix coefficients of f as per Claim 3.2 and combining
like terms.
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We now introduce the concept of the standard decomposition (SD) matrix of a
parent function F of f . First, say there are m irreducible representations of G, and
order the irreducible representations ρ of G as ρ1, ρ2, . . . , ρm such that

deg ρ1 ≤ deg ρ2 ≤ · · · ≤ deg ρm.

We define the SD matrix to be a |G|2 × |G|2 matrix with each row and column
indexed by a unique irreducible representation of G in the following way:

• Assign the topmost 1 = (deg ρ1)2 row and the leftmost (deg ρ1)2 column to
ρ1.

• Assign the next topmost (deg ρ2)2 rows and the leftmost (deg ρ2)2 columns
to ρ2, and so on.

Now, we will complete the indexing of the rows and columns by assigning them
each a matrix coefficient. For a particular irreducible representation ρ of G with
deg ρ = N, we assign matrix coefficients to the rows and columns corresponding to
that representation in the following way:

• The rows will be indexed by ρij(x), with the first N rows corresponding to
ρ11(x), ρ12(x), . . . , ρ1N (x). The second N rows correspond to
ρ21(x), ρ22(x), . . . , ρ2N (x), and so on.

• The columns will be indexed by ρrs(y). The leftmost N columns corre-
spond to ρ11(y), ρ21(y), . . . , ρN1(y). The second N columns correspond to
ρ12(y), ρ22(y), . . . , ρN2(y), and so on.

With this setup, we can define the standard decomposition matrix.

Definition 3.8 (Standard Decomposition Matrix). The entry of the standard
decomposition matrix in the column corresponding to πrs(y) and the row corre-
sponding to ρij(x) is the coefficient of ρij(x)πrs(y) in the standard decomposition
of F.

Theorem 3.9 (Rank of SD Matrix Equals Circulant Rank of Function). Fix a
finite group G, and assume that Λ is a field with characteristic coprime to |G|. For
a function f : G → Λ which factors through a representation ρ, its circulant rank is
equal to the rank of the standard decomposition matrix of the parent function of f.

To prove Theorem 3.9, we need the following lemma.

Lemma 3.10 (Rank and Matrix Products). For any positive integers n and r ≤ n,

an n × n matrix has rank r if and only if it can be written as the product of an n × r

and an r × n matrix, both of rank r.

Proof of Lemma. First, if a matrix can be written as the product of an n × r and
an r × n matrix, it clearly has rank at most r since every column of the resulting
n × n matrix is a linear combination of the r column vectors in the n × r matrix.
(Alternatively, we can use the fact that the rank of the product of two matrices is
at most the minimum rank of the individual matrices.) The fact that the matrix
has rank exactly r follows from the r × n matrix having rank r, implying that it
has r independent columns.
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Now, if an n × n matrix has rank r, taken the r pivot columns of the matrix and
use that as the n × r matrix. Then, fill in the corresponding linear combinations of
the other columns in terms of the pivot columns for the r × n matrix. For the same
reasons as in the previous case, these matrices both have rank r. □

Now, we will prove Theorem 3.9.

Proof. Say the rank of the standard decomposition matrix of the parent function of
f equals R. By Lemma 3.10, it is then possible to write this matrix as the product
of an |G|2 × R and an R × |G|2 matrix. Now, we claim that it is possible to express
F as the sum of R products fi(x)gi(y).

This can be done in the following way: the rows of the |G|2 × R matrix are
indexed by the matrix coefficients of the irreducible representations of G. Now, for
all 1 ≤ i ≤ R, take fi(x) as the function defined by taking the linear combination
of these matrix coefficients, with each coefficient scaled by its corresponding entry
of the ith column in that matrix. Similarly, gi(y) for all 1 ≤ i ≤ R is the function
formed by taking the analogous linear combination of the ith row with respect to
the basis indexed by the columns in the R × |G|2 matrix. By the minimality of
matrix rank, we can ensure that R is the minimal number of summands required.

Conversely, say the rank of the parent function of some f : G → Λ was exactly R.

Decompose f into R products fi(x)gi(y), and apply the inverse of the corresponding
process above to construct an |G|2 × R and an R × |G|2 matrix based on the
coefficients of the functions. It is straightforward to show that these multiply to
form the standard decomposition matrix, which has rank R by Lemma 3.10. □

The reason we stipulated the indexing scheme for the standard decomposition
matrix is because of the following structure: when given a function

f(x) =
∑
ρ∈I

 ∑
1≤i,j≤deg ρ

cρ,i,jρij(x)


where I is the set of irreducible representations of G and where cρ,i,j ∈ Λ, the
standard decomposition matrix of the parent function F of f is a block diagonal
matrix with |I| blocks, each indexed by an irreducible representation of the group.
Now, we claim that each block is of the form

cρ,1,1IN cρ,1,2IN · · · cρ,1,N IN

cρ,2,1IN cρ,2,2IN · · · cρ,2,N IN

...
...

. . .
...

cρ,N,1IN cρ,N,2IN · · · cρ,N,N IN


for some fixed ρ ∈ I, where N = deg ρ and IN denotes the N × N identity matrix.

To see why this is, note that we can expand ρij(xy) as∑
k

cρ,i,jρi,k(x)ρk,j(y).

The key is that the column index of the first term is equal to the row index of the
second; because of our indexing scheme of the standard decomposition matrix, we
know that with respect to the diagonal block in the matrix corresponding to ρ,
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ρi,k(x) corresponds with row iN + k and ρk,j(y) corresponds with column jN + k.

The entry with respect to this row and column – where we index our row and column
numbers with respect to the subblock corresponding to ρ in the SD matrix – equals
cρ,i,j .

Since
iN + k ≡ jN + k (mod N),

the N2 × N2 subblock corresponding to ρ is an N × N block matrix. Then, each
appearance of a different cρ,i,j in the expansion of ρ(xy) appears as a copy of cρ,i,jIn

in the (i, j)th position of this block matrix, as desired.
In particular, we have the following result.

Theorem 3.11 (Ranks of Circulant Matrices). For any group G, field Λ with
characteristic coprime to |G|, and function f : G → Λ, express f in the form

f(x) =
∑
ρ∈I

 ∑
1≤i,j≤deg ρ

cρ,i,jρij(x)


where I is the set of isomorphism classes of irreducible representations of G and
where cρ,i,j ∈ Λ. Then, the rank of the G-circulant matrix defined by f(xy)ij is equal
to

∑
ρ∈I

(deg ρ) rank




cρ,1,1 cρ,1,2 · · · cρ,1,N

cρ,2,1 cρ,2,2 · · · cρ,2,N

...
...

. . .
...

cρ,N,1 cρ,N,2 · · · cρ,N,N



 .

Corollary 3.12. Every matrix coefficient has circulant rank exactly N , the degree
of its corresponding representation, over all fields Λ with characteristic coprime to
|G|.

Corollary 3.13. Over any group G, almost all circulant matrices are invertible if Λ
is a sufficiently large finite field with characteristic coprime to |G| or if char Λ = 0.

4. Applications of Circulant Rank

In this section, we apply Theorem 3.11 in the context of classical circulant matrices.
More specifically, we offer a novel way to study the invertibility of circulants through
vanishing sums of roots of unity, which allows us to more quickly deduce existing
results, further generalize them, and resolve an open problem in graph theory.

4.1. Background. Notice in the case where G = Z/nZ, all G-circulant matrices
take the form 

a1 a2 a3 · · · an

an a1 a2 · · · an−1

an−1 an a1 · · · an−2
...

...
...

. . .
...

a2 a3 a4 · · · a1


,

where each row is the cyclically permuted version of the one above. In what follows,
we will call these circulant matrices.
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Circulant matrices have many applications in signal processing and appear
prominently in algorithms such the Discrete Fourier Transform; as such, they have
been extensively studied [Che21] [Ter99]. Moreover, the question of the invertibility
of circulant matrices has previously been of interest.

In 2021, Chen proved the following theorem:

Theorem 4.1 (Chen 2021, Theorem 1.7–1.9). For any odd positive integer n, Z/nZ-
circulant matrices with n−1

2 ones and n+1
2 zeros in each row are always nonsingular

over C if and only if n = pk or pq for distinct primes p, q and positive integers k.

We will exhibit a new proof of this theorem in this section. To do so, we will
need the following results, due respectively to Lam–Leung [LL00] and Sivek [Siv10]:

Theorem 4.2 (Lam–Leung 2000, Corollary 3.4). Let m = paqb, where p and q are
primes. Then, up to rotation, the only minimal vanishing sums of mth roots of
unity are 1 + ζp + · · · + ζp−1

p = 0 and 1 + ζq + · · · + ζq−1
q = 0.

Theorem 4.3 (Sivek 2010, Theorem 2). For any positive integer n and integer
0 ≤ k ≤ n, there exist k distinct nth roots of unity with sum zero if and only if
both k and n − k are expressible as linear combinations of prime factors of n with
nonnegative coefficients.

4.2. Invertibility of Circulant Matrices. Consider Theorem 3.11 in the case
where G is abelian. In this case, all the degrees of the irreducible representations of
G are equal to 1. In particular, we have the following corollary:

Corollary 4.4. Let Λ be a field with characteristic coprime to |G|. If G is abelian,
the circulant rank of any function f : G → Λ is equal to the number of distinct
matrix coefficients that appear in the expansion of f.

Since the group Z/nZ is abelian, Corollary 4.4 applies in the context of classical
circulant matrices. Moreover, we know the precise matrix coefficients of the cyclic
groups, allowing us to explicitly compute the rank and determine the invertibility
of circulant matrices. Specifically, notice first that the matrix coefficients of Z/nZ
are the homomorphisms sending a fixed generator of Z/nZ to a nth root of unity.
Denote these n matrix coefficients as ρ1, ρ2, . . . , ρn in some order.

Consider a function f : Z/nZ → C and the circulant matrix with respect to f.

Let the C-linear combination of f in terms of the ρi be written as

f(x) :=
n∑

i=1
aiρi(x)

for all x ∈ Z/nZ, where ai ∈ C. Corollary 4.4 implies that the circulant matrix of f

is not invertible if and only if at least one of the ai is equal to zero.
Notice that the equation above must hold for all x ∈ Z/nZ. Since we know the

values of f(x) and ρi(x) for all such x, letting x vary gives a system of n equations
we can use to solve for the ai. Combining the resulting system in matrix form, we
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get the equation 
1 1 1 · · · 1
1 ω ω2 · · · ωn−1

...
...

...
. . .

...
1 ωn−1 ω2n−2 · · · ω(n−1)2




a1

a2
...

an

 = v⃗,

where ω = e2πi/n and v⃗ is the n-dimensional vector such that the ith coordinate
of v⃗ is f(i) (when we zero-index the coordinates). Alternatively, v⃗ is the transpose
of the topmost row in the circulant matrix. To isolate the ai, we can invert the
discrete Fourier transform matrix on the left; doing so gives

a1

a2
...

an

 = 1
n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

...
...

...
. . .

...
1 ω−(n−1) ω−(2n−2) · · · ω−(n−1)2

 v⃗.

Thus, we have the following result:

Lemma 4.5. An n × n circulant matrix with first row ⟨c1, c2, . . . , cn⟩ is invertible
if and only if the vector

a1

a2
...

an

 = 1
n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

...
...

...
. . .

...
1 ω−(n−1) ω−(2n−2) · · · ω−(n−1)2




c1

c2
...

cn


has all coordinates nonzero.

Lemma 4.5 provides a tractable criterion from which to determine whether or
not a circulant matrix is invertible. In particular, we will use it to provide a new
proof of Theorem 4.1.

Proof. For a circulant matrix to be nonsingular, it must have full rank. By Corollary
4.4, this means for all n = pk and pq, any function f : Z/nZ → C which outputs
the value one n−1

2 times and zero the other n+1
2 times must have all coefficients

nonzero in its C-linear combination of matrix coefficients.
In the notation of Lemma 4.5, our goal is to show that for n = pk or pq, none of

a1, a2, . . . , an are zero. In fact, we need to show that for every row, it is impossible
to pick n−1

2 entries that sum to zero.
We will now break the problem up into two cases. The first case is where n = pk,

where each row is either a complete collection of the pkth roots of unity or a multiset
of pℓth roots of unity for some ℓ < k. Theorem 4.2 implies that the only minimal
vanishing sums of roots of unity in any of these cases is the sum of the pth roots
of unity, which means that any vanishing sums of pith roots of unity must have
a number of summands which is a multiple of p. However, n−1

2 = pk−1
2 is not a

multiple of p, so any sum of n−1
2 pith roots of unity does not vanish and hence the

corresponding circulant matrix is nonsingular.
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The other case is when n = pq, in which case we know that the only minimal
vanishing sums of nth roots of unity are that of the pth and qth roots of unity. Like
before, we can characterize each row of the matrix: it is either a multiset of pth or
qth roots of unity, or a complete set of pqth roots of unity. Similarly as before, any
sum of n−1

2 pth or qth roots of unity will not vanish since n−1
2 is not a multiple of p

or of q.

For the rows which contain pqth roots of unity, it follows from a similar argument
as before that if some set of n−1

2 = pq−1
2 roots of unity has sum zero, then n−1

2 must
be a linear combination of p and q. In particular, since n−1

2 is neither a multiple
of p or of q, it must be expressible as rp + sq for some r, s ≥ 1. In other words,
we want to partition the set of pqth roots of unity into r sets of p evenly-spaced
roots and s sets of q evenly-spaced roots, all of which are disjoint. However, this is
impossible: by the Chinese Remainder Theorem, any set of p evenly-spaced roots
will have at least one root that overlaps with any set of q evenly-spaced roots. Thus,
it is impossible to have a vanishing sum of n−1

2 pqth roots of unity, and hence all
the corresponding circulant matrices are nonsingular.

Now, it remains to show that all other odd numbers n do produce singular
matrices. It is possible to write any n in this form as n = pqr, where p and q are
the two smallest distinct primes dividing n and where r is an odd integer. We will
show that there exist pqr−1

2 pqrth roots of unity which have vanishing sum.
By Theorem 4.3, it suffices to show that both pqr−1

2 and pqr+1
2 can be written as

a linear combination of p, q, and the prime divisors of r. In fact, notice that since

pqr + 1
2 ,

pqr − 1
2 > pq > pq − p − q,

we can write pqr−1
2 as a linear combination of p and q alone, showing that there

exist singular matrices in this case. □

Moreover, the technique we used in our reproof of Theorem 4.1 allows us to
substantially generalize the result and to provide an arithmetic criterion on when
an arbitrary n × n zero-one circulant is invertible, regardless of the number of ones
in the first row.

Theorem 4.6. For any positive integer n and integer 0 ≤ k ≤ n, an n × n circulant
matrix with k ones and n − k zeros in each row is always nonsingular if and only if
at least one of k and n − k cannot be expressed as a Z≥0-linear combination of the
distinct prime divisors of n.

Proof. First, notice that by our proof of Theorem 4.1, the result is equivalent to
proving that if k and n − k cannot be expressed as a Z≥0-linear combination of the
distinct prime divisors of n, then it is impossible to pick k roots of unity out of any
fixed row of the n × n Fourier matrix with sum zero.

We will begin by showing that if both k and n − k are such linear combinations,
then it is possible to construct a singular matrix. This follows from Theorem 4.3.

Next, assume that we have a singular zero-one circulant matrix with k ones in
each row; we will prove that both k and n − k can be expressible in the above
form. From the matrix singularity, we know that there exists a multiset of k (not
necessarily distinct) roots of unity with sum equal to zero. In fact, this set of roots
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of unity is going to be a multiset of ℓth roots of unity for some ℓ | n and ℓ > 1.

In particular, Theorem 4.2 tells us that k must be a Z≥0-linear combination of
the prime factors of ℓ, and thus of n. To show that n − k must also be such a
combination, we note that the sum of the roots of unity in the entire row is also
zero; hence, the matrix by replacing 1s with 0s (and vice versa) will also have that
row sum equal to zero, and n − k is thus a Z≥0 linear combination of the prime
factors of ℓ (and n) by applying the same result.

Thus, if at least one of k and n − k are not linear combinations of the prime
divisors of n, we know that no row can have vanishing sum (because every row of
vanishing sum with k summands will necessarily have both of k and n − k be such
a combination). It follows that the matrix cannot be singular. □

Theorem 4.6 gives another proof for the nonsingularity of the N = pk, pq cases
in Theorem 4.1. For the N = pk case, we need to show that pk−1

2 is not a multiple
of p, which is true. For N = pq, assume that both pq−1

2 and pq+1
2 can be written as

Z≥0-combinations of p and q. Since neither of them are multiples of p or of q, they
must both be written of the form rp + sq for some r, s ≥ 1. Now, if we add them
together, we obtain the equation

pq = r′p + s′q

for some r′, s′ ≥ 2, and subtracting p + q yields

pq − p − q = (r′ − 1) p + (s′ − 1) q,

a Z+-linear combination of p and q. This directly contradicts the Chicken McNugget
Theorem, so all matrices in this case are nonsingular.

Next, we use Lemma 4.5 to answer an open problem posed by Lal–Reddy in
[LR11], who ask for a set of necessary and sufficient conditions for (r, s, t) circulant
digraphs to be singular.

An (r, s, t) circulant digraph, where r, s, t ∈ Z≥0, is a directed graph whose
adjacency matrix an n × n circulant with first row of the following form:

⟨1, 1, . . . , 1︸ ︷︷ ︸
r

, 0, 0, . . . , 0︸ ︷︷ ︸
t

, 1, 1, . . . , 1︸ ︷︷ ︸
s

, 0, 0, . . . , 0︸ ︷︷ ︸
n−(r+t+s)

⟩.

Thus, it suffices to determine when these matrices are singular.

Theorem 4.7. An (r, s, t) circulant digraph is singular if and only if at least one
of the following four conditions hold:

• r = t = 0,
• 1 < gcd(r, s) | n,

• gcd(r − s, n) is even and

r + t = (2k + 1)n
2c

for some nonnegative integer k and positive integer c, or
• 1 < t | gcd(r + s, n).
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Proof. By Lemma 4.5, we know that this is nonsingular if and only if

ω0 + ω1 + · · · + ωr−1 + ωr+t + ωr+t+1 + · · · + ωr+t+s−1 ̸= 0

for all ω ∈ C such that ωn = 1. First, if ω = 1, this implies that r +s > 0. Otherwise,
r ̸= 1 and the above expression can be written in the equivalent form

ωr − 1
ω − 1 +

(
ωr+t

)(ωs − 1
ω − 1

)
̸= 0 ⇐⇒ (ωr − 1) +

(
ωr+t

)
(ωs − 1) ̸= 0.

Now, we will investigate what happens in the case where one of these expressions
equals zero, i.e. the (r, s, t) digraph is singular. In this case, we know that for some
nth root of unity ω, we must have

(ωr − 1) +
(
ωr+t

)
(ωs − 1) = 0 ⇐⇒ ωr+t = −ωr − 1

ωs − 1 .

Now, we will prove that in order for

ωr+t = −ωr − 1
ωs − 1 ,

then ωr and ωs must be equal or conjugate. Notice that since |ωr+t| = 1, then we
must have ∣∣∣∣−ωr − 1

ωs − 1

∣∣∣∣ = 1 =⇒ |ωr − 1| = |ωs − 1| .

Since

|ωr − 1| = (ωr − 1) (ωr − 1) = (ωr − 1)
(

1
ωr

− 1
)

= 2 − ωr − ω−r = 2 − 2Re(ωr),

it becomes clear that

|ωr − 1| = |ωs − 1| ⇐⇒ Re(ωr) = Re(ωs),

implying that ωr and ωs are either equal or conjugates.
Now, we have two more cases to consider. If ωr and ωs are conjugates, then we

claim that in order for

(ωr − 1) +
(
ωr+t

)
(ωs − 1) = 0,

we must have either ωr = ωs = 1 or ωt = 1. To see why, plugging in ωs = 1
ωr gives

(ωr − 1) +
(
ωt
)

(1 − ωr) = 0 ⇐⇒
(
1 − ωt

)
(ωr − 1) = 0,

implying the conclusion.
Otherwise, if ωr = ωs, then

(ωr − 1) +
(
ωr+t

)
(ωs − 1) = 0 ⇐⇒ (ωr − 1)

(
1 + ωr+t

)
,

so we need either ωr = ωs = 1 or ωr+t = −1.

Collating our results, we have the following criteria for when the (r, s, t) digraph
can be singular:

• r = t = 0, in which case the entire matrix is the zero matrix,
• There exists an nth root of unity ω ̸= 1 (not necessarily primitive) such

that ωr = ωs = 1,
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• There exists an nth root of unity ω ≠ 1 such that ωr = ωs and such that
ωr+t = −1, or

• There exists an nth root of unity ω ̸= 1 such that ωr and ωs are complex
conjugates and ωt = 1.

We will now determine the arithmetic properties r, s, and t must satisfy in terms of
n in order for these criteria to hold.

For the second criterion to hold, we would like an nth root of unity ω ̸= 1 such
that ωr = ωs = 1. This occurs if and only if gcd(r, s) > 1 and gcd(r, s) | n (where
we define gcd(m, 0) = m for any positive integer m).

For the third criterion to hold, we need gcd(r − s, n) ̸= 1 in order for ωr = ωs.

Furthermore, we need n even and 2 | gcd(r − s, n), as we are given ωr+t = −1. More
precisely, we need

r + t = (2k + 1)n
2c

for some nonnegative integer k and positive integer 1 ≤ c ≤ n − 1 such that
c | (2k + 1)n. In particular, one special case of this worth mentioning is when
ω = −1, or equivalently c = n

2 ; in this case, it is necessary and sufficient to have
r ≡ s ̸≡ t (mod 2).

For the last criterion, ωr and ωs being complex conjugates tells us that we must
have gcd(r + s, n) > 1. Furthermore, since ωt = 1 for this value of ω, we need
t | gcd(r + s, n).

Aggregating these four yields the criteria in the statement. □

We end this section by noting that Lemma 4.5 also allows us to exhibit a lower
bound on the number of singular circulant matrices of a given dimension. In
particular, this implies a lower bound on the probability that a randomly chosen
n × n zero-one circulant matrix is singular.

Proposition 4.8. For sufficiently large positive integers n, the probability that a
randomly-chosen zero-one Z/nZ-circulant matrix is singular is, asymptotically, at

least 1
√

p

(
2p

πn

) p−1
2

, where p is the smallest prime dividing n.

Proof. Consider the n×n discrete Fourier matrix. If p is the smallest prime dividing
n, notice that the inverse of this matrix has a row consisting of n

p copies of the list

⟨1, ζ−1, ζ−2, . . . , ζ−p+1⟩,

where ζ = e2πi/p is a primitive pth root of unity. Call this row vector u⃗. Now, a
zero-one circulant is singular if the n-dimensional vector v⃗ consisting of the entries
from the first row satisfies v⃗ · u⃗ = 0⃗.

Now, we will exhibit a lower bound on the number of such vectors v⃗. To do this,
we can see that one way to create such a vector v⃗ is by letting the sum v⃗ · u⃗ consist
only of complete sets of roots of unity modulo p. Say we have k such complete sets
for some positive integer k; this implies that each power ζℓ of ζ must appear exactly
k times in the dot product expansion of v⃗ · u⃗.

To count this, we see that there are
(

n/p

k

)
ways to choose the k copies of ζℓ

for any power ℓ; since there are p such powers, a lower bound for the number of
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possible vectors v⃗ is
n/p∑
k=0

(
n/p

k

)p

.

It is well known from [PS+72] that this is asymptotically approximated by the
expression

2n

√
p

(
2p

πn

) p−1
2

,

and the result follows upon dividing by the 2n total Z/nZ zero-one circulants. □

5. The Minrank and Faithful Orthogonality Dimension of Graphs

5.1. Background. One avenue in the literature for attempting problems regarding
matrix rigidity has been to recast the rigidity question through the lens of graph
theory.

More concretely, fix a finite simple graph G with n vertices. In the notation of
Golovnev–Haviv [GH20], we that an n × n matrix M over a field F represents G

if its diagonal entries are all nonzero and Mij = 0 for only the i, j ∈ V such that
(i, j) ̸∈ E(G). Define the minrank of G as

minrk(G) = {min(rank(M)) | M represents G}.

Golovnev–Haviv [GH20] exhibited a connection between the minrank and what
first appears to be an unrelated concept: orthogonal representations of graphs. A
t-dimensional orthogonal representation of a graph G with respect to a field F as
an assignment of a nonzero vector v ∈ Ft to each vertex of G, such that any two
vectors corresponding to adjacent vertices in G are orthogonal. If an orthogonal
representation has two vectors orthogonal if and only if their corresponding vertices
are adjacent, we call the orthogonal representation faithful. We call the minimal
dimension t for which such an orthogonal (resp. faithful) representation exists the
orthogonality dimension (resp. faithful orthogonality dimension) of G.

In this section, we provide a novel technique and lower bound for the faithful
orthogonality dimension of a graph through the intermediary use of minrank. To
do so, we will need a result from linear algebra, due to Golovnev–Regev–Weinstein
[GRW18].

Lemma 5.1 (Golovnev–Regev–Weinstein 2018, Lemma 3). For an n × n matrix M ,
define s(M) to be the number of nonzero entries in M. If M has nonzero entries on
the main diagonal,

rank(M) ≥ n2

4s(M) .

In Section 5.3, we will also use the following two results, the first of which is due
to Mackay [Mac03] and the second of which is due to Rödl [LSS89].

Proposition 5.2 (Mackay 2003, Equation 1.17). For integers N and r sufficiently
large,

log
(

N

r

)
≃ (N − r) log N

N − r
+ r log N

r
.
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Theorem 5.3 (Rödl 1987). For a finite, simple, undirected graph G with n vertices,
its faithful orthogonality dimension is at most 2(n−D−1), where D is the maximum
degree among all vertices in G.

5.2. Minrank and Faithful Orthogonality Dimension. We will correct a
typo in Golovnev–Haviv [GH20], who posit that the orthogonality dimension is an
upper bound for the minrank. The authors should have been tracking the faithful
orthogonality dimension (notated by ξF ), which provides the requisite nondegeneracy
parameters. In particular:

Lemma 5.4. For a finite, simple, undirected graph G, minrk(G) ≤ ξF (G).

Proof. We follow the idea and notation of the third footnote of Golovnev–Haviv
[GH20]. Consider a t-dimensional faithful orthogonal representation of an n-vertex
graph G over some field F. Now, consider B, a n × t matrix over F whose rows are
the vectors corresponding to the faithful orthogonal representation of G. We claim
that the n × n matrix M := B · BT represents G.

To see why, consider the entry Muw, the entry corresponding to the row of vertex
u and the column of vertex w. This is the dot product of the vectors in row u of
B and column w of BT . In particular, this is zero if and only if u and w are not
adjacent in G. This implies that they must be adjacent in G, as desired. □

Now, for a graph G with n vertices, notice that the number of nonzero entries
in any matrix which represents G is equal to n + 2|E(G)|. We obtain the following
result:

Corollary 5.5. For a finite, undirected graph G with n vertices, we have

minrk(G) ≥ n2

4(n + 2|E(G)|) .

Combining the results of Lemma 5.4 and Corollary 5.5, we get the following
result:

Theorem 5.6. For any finite, undirected graph G with n vertices, we have

n2

4(n + 2|E(G)|) ≤ minrk(G) ≤ ξF (G).

The bound consisting of the first and third quantities in Theorem 5.6 is novel,
and it allows for easy computation of a lower bound for the faithful orthogonality
dimension. Equivalently, we can rewrite the inequality as

n2

4(n2 − 2|E(G)|) ≤ ξF (G).

5.3. Faithful Orthogonality Dimension of Kneser Graphs. In this section,
we will use Theorem 5.6 to prove the following theorem about the value of the ξF

of Kneser graphs. A Kneser graph K(n, k) is a graph with vertices indexed by the
k-element subsets of {1, 2, . . . , n}, and where two sets are connected if and only if
they are disjoint. The next result shows that for certain families of these graphs, we
can bound the faithful orthogonality dimension up to a constant factor.
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Theorem 5.7. There exist two fixed constants c1 and c2 such that the following
statement holds: for every sufficiently small positive constant ε ≪ 1, there exists a
positive integer n such that

c1n
εn
2 ≤ ξF (K(n, εn)) ≤ c2n

εn
2 .

Proof. First, consider the graph-theoretic properties of K(n, εn). This is a regular

graph with
(

n

εn

)
vertices and where each vertex has degree

(
n − εn

εn

)
. In particular,

Theorem 5.4 implies that(
n
εn

)2

4
((

n
εn

)2 −
(

n
εn

)(
n−εn

εn

)) ≤ ξF (K(n, εn)) ≤ 2
((

n

εn

)
−
(

n − εn

εn

)
− 1
)

.

Simplifying, we obtain(
n
εn

)
4
((

n
εn

)
−
(

n−εn
εn

)) ≤ ξF (K(n, εn)) ≤ 2
((

n

εn

)
−
(

n − εn

εn

)
− 1
)

.

Thus, it suffices to show that for sufficiently small ε, there exists an integer n such
that

(
n
εn

)
−
(

n−εn
εn

)
∼ n

εn
2 .

To do this, we will use Proposition 5.2. Doing so, we obtain(
n

εn

)
≃ en(−((1−ε) ln(1−ε)+ε ln ε))

and (
n − εn

εn

)
≃ e(n−εn)(−((1− ε

1−ε ) ln(1− ε
1−ε )+ ε

1−ε ln( ε
1−ε ))).

The result is equivalent to showing that for sufficiently small ε, the equation

en(−((1−ε) ln(1−ε)+ε ln ε)) − e(n−εn)(−((1− ε
1−ε ) ln(1− ε

1−ε )+ ε
1−ε ln( ε

1−ε ))) = n
εn
2

has arbitrarily large solutions.
To do this, we will first show that when n = 2

ε , the left-hand side is at least the
right. Indeed, we would like to prove the inequality

e
2
ε (−((1−ε) ln(1−ε)+ε ln ε)) − e( 2

ε −2)(−((1− ε
1−ε ) ln(1− ε

1−ε )+ ε
1−ε ln( ε

1−ε ))) ≥ 2
ε

.

This can be checked for sufficently small values of ε.

Next, to show that the original equation has arbitrarily large solutions, notice
that as n → ∞, we have

en(−((1−ε) ln(1−ε)+ε ln ε)) − e(n−εn)(−((1− ε
1−ε ) ln(1− ε

1−ε )+ ε
1−ε ln( ε

1−ε ))) ≪ n
εn
2 .

Since the opposite inequality holds for n = 2
ε , there must be a solution in the interval[ 2

ε , ∞
)

. This implies that there are arbitrarily large solutions to the equation, as
desired; taking n to be the integer closest to one of these solutions will give the
desired value of n. □
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