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Abstract
Distributed systems are comprised of many components that
communicate together to form an application. Distributed
tracing gives us visibility into these complex interactions,
but it can be difficult to reason about the system’s behavior,
even with traces. Systems collect large amounts of tracing
data even with low sampling rates. Even when there are pat-
terns in the system, it is often difficult to detect similarities
in traces since current tools mainly allow developers to visu-
alize individual traces. Debugging and system optimization
is difficult for developers without an understanding of the
whole trace dataset. In order to help present these similari-
ties, this paper proposes a method to aggregate traces in a
way that groups together and visualizes similar traces. We do
so by assigning a few traces that are representative of each
set. We suggest that traces can be grouped based on how
many services they share, how many levels the graph has,
how structurally similar they are, or how close their laten-
cies are. We also develop an aggregate trace data structure
as a way to comprehensively visualize these groups and a
method for filtering out incomplete traces if a more complete
version of the trace exists. The unique traces of each group
are especially useful to developers for troubleshooting [5].
Overall, our approach allows for a more efficient method of
analyzing system behavior.

1 INTRODUCTION
Distributed systems are characterized by the utilization

of and communication between multiple independent com-
ponents on different machines to complete actions. Their
monolithic counterparts are built as a single unit that con-
tains all components and services as a single executable.
As programmers realize the scalability and performance ad-
vantages over monoliths, distributed systems have become
increasingly prevalent in today’s era of networking.
Distributed tracing, a technique used in modern-day ap-

plications, is a critical part of logging and debugging these
applications. Tracing is a method of monitoring and analyz-
ing the behavior of large and complex systems like microser-
vices by "tracing" individual calls and requests as they travel
across the different services. Tracing provides insights into
the interactions of different parts of a distributed system and
measures the performance of requests. It helps developers
identify latency issues and problems in the system. However,
software companies can generate up to millions of traces

daily (or more!), and combing through all of them can be
inefficient for investigating performance issues. Thus, it can
be difficult to analyze which parts of the system are caus-
ing issues. Going through many common traces is a huge
waste of time and effort [5], so one of our goals is to cre-
ate an algorithm to find and group similar traces together
to make debugging easier. This would enable programmers
to more easily analyze and debug large quantities of traces.
Additionally, we desire to create a method for visualizing
the entire group of similar traces without just looking at one
trace that represents the group. It is also important for devel-
opers to see the entire workflow to understand how each of
the services is connected. However, traces can sometimes be
incomplete due to issues like memory overflow. We want to
be able to filter out incomplete traces from the trace dataset
if a more complete version of the trace exists in the set.

2 BACKGROUND
Companies collect millions of traces for developers to

examine, comprised of operations performed throughout the
execution of a request. If they gather millions of traces
as well as requests, it would be impossible to know which
traces to look at first to find the behaviors that cause errors.
Thus, tools are necessary to help developers identify paths
that show unexpected behaviors.
We introduce some examples of the most common meth-

ods of distributed tracing that are used to analyze systems,
and we explain the flaws of these current techniques. We
also give context to the sources that inspired our approach,
including the ideas of Jaccardian Similarity and Disjoint Set
Union.

Our research uses these concepts to create a tool to group
together similar traces based on a trace similarity definition.
We then select one trace per group to represent the group.
Additionally, we present an aggregate trace graph that cap-
tures additional information that cannot be expressed in a
single representative trace in each group. We also present a
method for filtering out incomplete traces so that we have a
smaller and more valuable trace set to analyze.

2.1 Models for Traces
Distributed tracing can be implemented in multiple ap-

proaches. One of the most common types is span-based trac-
ing.
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Span-based tracing consists of a tree of spans, where each
span represents a single operation from its time of initia-
tion to its end. Each parent span can create multiple child
spans. For example, a child span could be the authentica-
tion of a user that is called from a client request, and the
request would represent the parent span. All of the spans are
then combined to form a trace diagram, which represents
the interactions between all of the services utilized. These
dependencies between spans are represented by edges and
operate based on caller-callee relationships. These are useful
for capturing timing information and the duration of specific
operations. Programmers can use this information to detect
services that have high latency or performance errors.

One common method to visualize components of all traces
in a system is by using a dependency diagram. Because it
contains information throughout the entire trace dataset, de-
pendency diagrams aren’t necessarily representative of any
individual trace. It uses distinct nodes to represent different
services as well as edges to show communication between
nodes, allowing developers to see common interactions.

2.2 Issues with Current Tracing Methods
When a distributed tracing system is set up for a company,

the developers are faced with analyzing millions of traces
to find the sources of performance issues and bugs in their
applications, such as latency issues. Moreover, it can even
be a challenge to just understand the system from only a
trace dataset. Analyzing every single trace can be very time-
consuming, especially when many traces are nearly identical,
so developers try to only analyze the unique traces to help
with troubleshooting [2]. Since manually going through a
whole dataset to find interesting traces for debugging can
be difficult, we created an algorithm that can group similar
traces together into tracing groups that also allows for a
better understanding of a system. We then use these groups
of similar traces and select one trace to represent the group
which we call representative traces. These representative
traces are like the unique traces that the developer would
find if they were to go through all traces manually.

We also want to be able to create a visualization for a data
structure that can represent an entire group of similar traces
without just looking at a single trace.

Sometimes, individual traces can be missing data (missing
services or requests). This is possible when spans are lost
when they are supposed to be stored or when a service that
is processing chooses to not complete the trace. We want
to filter out incomplete traces so that we analyze complete
tracing data.

Figure 1: Tprof Aggregate trace of 3 traces.

2.3 Prior Work
Previous work has been done with the goal of reducing the

time and effort needed for going through many distributed
traces. One such tool is tprof [3], a performance profiler that
creates an aggregate trace by taking the average of subspan
durations and timings. For example, in Figure 1, if a span
A was recorded with latencies of 4ms, 5ms, and 6ms, the
aggregate trace would depict a duration of 5ms for span A.

However, one downside of this definition is that it doesn’t
give the whole picture of a group of traces. Since it only
shows the average of all spans, developers won’t be able to
see the variation in the group, which is important to gain a
better sense of aggregate traces. Instead, it would be more
beneficial to incorporate a diagram that shows the full spread
of all the different trace groups. tprof is also difficult to scale
significantly since it separates different orderings of spans
into different groups, which becomes impossible when con-
sidering thousands of workflows with thousands of services.
Additionally, the data would be overwhelming for develop-
ers, as tprof would need to create innumerable groups to
accommodate for each ordering of each trace.
It has recently been shown that traces are often missing

data [1]. This missing data is the cause of either a lack of
instrumentation or just missing services in traces due to
errors in the storage of the spans or services not completing
the process of adding information into the trace. Currently,
not muchwork has been done on fixing the incomplete traces
to create the proper system workflow.
One tool that is used to aggregate trace data is Zeno[7].

Zeno uses temporal provenance, the ability to record the
history of changes to data over time, to detect performance
issues in distributed systems and dependencies. It uses this
information to construct an aggregate structure with three
categories of services: a backbone of requests, sources of de-
lays, and services without delay. Some services are depicted
in the groups to give a better understanding of each category.
Edges are formed between services to show common depen-
dencies. This graph presents developers with an easy way
to find sources of delays. However, temporal provenance
does not always determine the root causes for delay from
an unusual factor since it does not know what is unusual.
Another drawback is that small but unrelated factors that
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add up will not show a root cause.
Another graph that clusters traces is presented in Sam-

pleHST [2]. Its two axes are labeled𝑚 and 𝑝 .𝑚 represents
the mass score of a trace–the level of deviation from a stan-
dard behavior. Higher mass scores correlate to higher chance
of anomalies. 𝑝 shows the percentile value of the mass of
a trace in comparison to all other traces. Thus, a smaller 𝑝
indicates that a trace’s mass score is higher than fewer traces,
which makes it less anomalous. Traces are clustered based
on these axes, which gives a good understanding of how
many potentially anomalous traces there are and how much
they deviate. However, its sampling strategy allows for some
anomalous traces to be left out.

2.4 Jaccardian Similarity
The Jaccardian Similarity [4] between two objects is used

to measure their similarity. To find the Jaccard Index between
sets, it is calculated by dividing the intersection between the
sets by the union of them. In other words:

It is commonly used in data science applications such as
data mining and E-commerce. We use Jaccardian Similarity
to measure the similarity between two sets that each describe
a trace. We use this similarity to decide whether the traces
are similar or not.

2.5 Disjoint Set Union
The Disjoint Set Union algorithm [? ] is used to efficiently

track collections of disjoint sets. It allows sets to be grouped
together through the usage of representatives. The process
begins with many groups of individual sets. Within each
group, a representative set stands for the other sets in the
group. Whenever two groups are merged, one of the two
representative sets is chosen as the new representative, and
it is applied to all of the newly joined sets. Repeating this
process allows for the creation of a few large groups that are
organized by their representative set. If two sets have the
same representative, they are in the same group. However,
if they have different representatives, they are in different
groups.

3 RESEARCH QUESTIONS
One of our biggest concerns is how we can group traces
together by similarity. With traces organized into similar
groups, we can then:

• Filter out the set of traces so that we only keep track
of and analyze the "most complete" version of every
incomplete trace.We use this processed and smaller set
of traces for the rest of our analysis and visualization.

• Group similar traces together and select a trace that is
themost similar to the other traces in its corresponding
group (a trace that "represents" the group). We call this
selected trace a "representative trace".

• Create an aggregate trace data structure to visualize
the groups of representative traces in a comprehensive
manner.

3.1 Preprocessing Traces
We filter out incomplete traces from our data set so that

developers only analyze the most complete traces. Develop-
ers often analyze a set of millions of traces, so we assume
that every incomplete trace must have a “completed version”
of itself. So, if a trace has a "more complete" version of itself
in the set, we remove the incomplete version. We keep re-
moving the incomplete version of traces so that at the end
we have a smaller set of traces that still provides the same
information as the original set of traces.

3.2 Identifying Groups of Similar Traces
To group similar traces together, we first determine pos-

sible definitions for trace similarity and define a threshold
value to be able to group the traces into a reasonable number
of trace groups. We also want to choose one representative
trace for each group.

3.3 Aggregate Trace Data Structure
We also aim to depict the groups of similar traces in a

way that is comprehensive for developers. We designed an
aggregate trace data structure to organize trace data from
distributed systems.
In order to properly depict traces and groups, we would

want to use a graph data structure. We need to find the
best way to visualize the data from our definitions of trace
similarity.

4 PREPROCESSING TRACES/GROUPING
SIMILAR TRACES

We group similar traces as shown in Figure 2. First, we prepro-
cess traces to address our first research goal (as discussed in
§ 4.1). § 4.2.1 discusses how we encode traces for comparison
based on various definitions of similarity. § 4.2.2 discusses
how we build a similarity graph which connects traces with
similar workflows from which we can identify similar traces.
Once we have groups of similar traces, we can select a repre-
sentative trace from each group, which addresses our second
research goal. We discuss visualization methods in § 5.

4.1 Preprocessing Traces
We aim to filter out incomplete versions of traces to have a
smaller and more valuable set of traces to analyze. In this
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Figure 2: Design Diagram. Flowchart displaying the
major steps of our method.

section, we discuss our approach to identifying incomplete
traces and their corresponding completed version.

Identifying Incomplete-Complete Trace Pairs
We defined an incomplete trace to be a subgraph of a more
complete version of the trace. For example, in Figure 3 we
have that trace 1, an incomplete trace, has a more completed
version of itself in the trace set, which would be trace 2
because trace 1 is a subgraph of trace 2.
In order to filter out all incomplete traces from the set, we
follow these steps:
(1) Extract the traces from the JSON files.
(2) Store each trace as the set of their edges.
(3) For each pair of traces, check if one trace is the sub-

graph of another (the set of edges of one trace would
be a subset of the set of edges of the other trace). If the
trace is a subgraph of the other trace, that means we
have found an incomplete-complete trace pair. So, we
remove the incomplete trace from the tracing set.

Figure 4 is a flowchart to show the major steps of our
preprocessing method in a more understandable manner.

4.2 Identifying Groups of Similar Traces
We aim to take a set of traces and group similar traces to-
gether. In this section, we explore multiple potential defi-
nitions for trace similarity. We then apply the concepts of
Jaccardian Similarity and Disjoint Set Union to form our dis-
tinct groups of traces. We also define thresholds for checking
if two traces are similar enough to be in the same trace group.

4.2.1 Encoding Traces. We first looked at different ways of
representing/encoding traces:

Definition 1 (services in the trace)

Figure 3: Preprocessing traces. Example of two traces,
trace 1 is the incomplete version of trace 2. The edges
marked in red are the edges that are in both traces 1
and 2. Note: all edges in trace 1 are marked in red.

Figure 4: Preprocessing design diagram. Flowchart
displaying major steps of our preprocessing method
which is discussed in § 4.1.

Details: In this definition, we want to keep track of the
names of the services in the trace (which are the nodes in the
trace for our model of trace representation). A representative
trace, using this definition, will represent all traces with the
same list of services in its trace.

Uses:With the representative traces and their correspond-
ing groups, we can help developers fix bugs in the application.
For example, we may have a trace composed of the services
"Authentication" and "User Credential Cache". This request
could be logging a user in or verifying it has the correct
credentials to perform a requested action. We group together
traces that share the same services since they are likely to
be doing similar types of actions.

Definition 2 (number of levels in the trace)
Details: In this definition, we want to keep track of the

depth of the graph. The depth of the graph is the maximum
number of nodes it takes to go from a root node to a leaf node.
A representative trace, using this definition, will represent
all traces with the same depth in their trace graph.
Uses: We realized that there are many cases where two

traces have the same number of levels in the graph but are
actually completely different and not really comparable. We
also notice that this definition won’t be very useful because
knowing the depth of a trace graph doesn’t help developers.
The depth of a trace is a structural definition that won’t help
developers fix bugs in their application or optimize it.
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Definition 3 (exact structure of the trace graph)
Details: In this definition, we want to keep track of the

exact structure of the trace graph by using its edge list. A
representative trace represents all traces with similar graph
structure.

Uses:With the representative traces and their correspond-
ing groups, developers can try to use knowledge of bugs in
traces to help fix bugs in traces with similar structure. This is
because bugs might be similar in both traces since the graphs
have the same structure. Let’s look at an example where a
developer gets two traces that were put into the same trace
group by using this definition. Suppose that in one of the
traces, there is a timeout error in a front-end application that
makes requests to multiple databases, and in the other trace,
there is also a timeout error from another type of applica-
tion that also makes requests to databases. Since both traces
have a timeout when an application makes multiple requests
to databases, the developer might be able to use the same
solution to the request problem in the systems.

Definition 4 (similar latencies)
Details: In this definition, we want to keep track of the

latency when a service makes all of its calls. A represen-
tative trace will represent all traces with similar latency
values. We categorize the latency values into ranges for fast,
medium, and slow based on how fast the calls were made
(fast, medium, and slow will be a range of latencies).

Uses: Initially we thought that grouping together traces
with similar latencies is helpful in finding common issues but
we realized that measuring the latency to find representative
traces is not effective. Many services can be in the same
latency category even if they don’t have any of the same
properties which means that the groups found with this
definition won’t help developers.

4.2.2 Applying Chosen Definition to Find Similar Groups.
We used Definitions 1 and 3 as our methods of encoding
the traces. To apply these definitions we followed a set of
steps:

(1) Extract the traces from the JSON files.
(2) Apply the encoding method on each trace.
(3) Check how similar the traces are by comparing the

encodings of each trace. Note that the encoding for
each trace will be an array for both definitions so we
measure the similarity between them using Jaccardian
Similarity.

(4) If the traces are similar enough (i.e. the similarity mea-
sure passes some given threshold), we add an edge
between their traces in a trace similarity graph to rep-
resent that the traces are similar. We set the threshold
to be 0.8 for our initial tests but we discuss our method
for finding an optimal threshold in § 4.2.3.

Figure 5: Example traces 1 and 2 with service names.
(5) Apply Disjoint Set Union (DSU) to find the connected

components (in this case, groups of similar traces) in
the trace similar graph.

(6) Look at the trace that has the highest degree in each
group (meaning that it is the most similar to the other
traces in the group). This trace of the highest degree
will be the representative trace for each of the groups.

4.2.3 Similarity Threshold. Something else to consider is
how high or low the threshold for similarity should be. For
example, consider a set of two traces called Trace 1 and Trace
2 as shown in figure 5. Trace 1 contains nodes Front End,
Friends Database, Post, Friends, Feed, while Trace 2 contains
nodes Front End, Friends, Friends Database.

We calculate the similarity to be 3
5 since the traces share 3

nodes out of the 5 total nodes between them. If our similarity
threshold is less than or equal to 3

5 , we would draw an edge
between them to represent a pair of similar traces and put
both in the same group as shown in Figure 6.

Figure 6: Group using similarity threshold under 3
5 .On the other hand, if the threshold is larger than 3

5 , then
the traces would not be connected by an edge and would not
be considered similar. Trace 1 and 2 would each have their
own separate group as shown in figure 7.
Depending on how many groups we want to create, we

should apply a different similarity threshold. For example,
if we use a set of traces that share many services, a low
threshold would aggregate all of them in the same group.
A higher threshold would expose the differences between
the traces by separating them into more groups. However,
too high of a threshold would result in too many groups to
analyze. Thus, we need to be able to vary the number of
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Figure 7: Group using similarity threshold above 3
5 .

trace groups, so that developers can adapt to different trace
datasets. It would allow multiple perspectives on a system
and aid in understanding the most common types of traces
and their performance issues.

Choosing an Optimal Threshold
For our initial tests, we used a threshold value of 0.8 which

seemed to work for most cases. To find a threshold that is
"optimal" for the given set of traces, we first set the parameter
to represent the number of trace groups that is the goal (the
"optimal" threshold should create the number of trace groups
that is closest to this goal). We also implemented the methods
discussed in § 4.2.2 a single function called 𝑔𝑒𝑡𝐺𝑟𝑜𝑢𝑝𝑠 which
has an input of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
Then we defined procedures for each step:
• Step 1: Compare two thresholds to check which one is
more "optimal"

• Step 2: Keep looking for two thresholds to compare
based on previous information (i.e. the two thresholds
compared should be more optimal than the thresholds
that were compared previously).

Method for Step 1: We define the following variables:
𝑡ℎ𝑟𝑒𝑠ℎ𝐴 - threshold to compare
𝑡ℎ𝑟𝑒𝑠ℎ𝐵 - another threshold to compare
𝑔𝑜𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝑠 - goal for the number of trace groups
We apply the methods defined in sections 4.2 and 4.3

to find similar groups for each of the thresholds (we run
𝑔𝑒𝑡𝐺𝑟𝑜𝑢𝑝𝑠 (𝑡ℎ𝑟𝑒𝑠ℎ𝐴) and 𝑔𝑒𝑡𝐺𝑟𝑜𝑢𝑝𝑠 (𝑡ℎ𝑟𝑒𝑠ℎ𝐵)). As output
of each run, we get the trace groups and we keep track of the
number of groups for each threshold. Then, we compare the
difference between the number of groups from each run to
the goal number of groups (𝑔𝑜𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝑠). Whichever thresh-
old gives a trace partition with the number of traces closest
to the goal will "move to the next level", meaning it will be
considered more optimal than the previous thresholds.
Method for Step 2: We use a Binary Search approach

to find the thresholds to compare. Note that we still use
the 𝑛𝑢𝑚𝐺𝑟𝑜𝑢𝑝𝑠 variable from Step 1. The threshold must

Figure 8: Representative output for traces 1 and 2.

always be in the range of 0 to 1 so we initialize 𝑙𝑜𝑤 = 0 and
ℎ𝑖𝑔ℎ = 1. Now, we look at the midpoint (call it𝑚𝑖𝑑) between
𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ, which is initially 0.5. We run 𝑔𝑒𝑡𝐺𝑟𝑜𝑢𝑝𝑠 (𝑚𝑖𝑑)
and compare the number of trace groups from this function
run (which we can call 𝑐𝑢𝑟𝐺𝑟𝑜𝑢𝑝𝑠) to 𝑔𝑜𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝑠 .
If 𝑐𝑢𝑟𝐺𝑟𝑜𝑢𝑝𝑠 is greater than 𝑔𝑜𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝑠 , then we have

too many groups which means that we don’t have enough
edges in the trace similarity graph. If this is the case, we set
ℎ𝑖𝑔ℎ =𝑚𝑖𝑑 because the threshold must be smaller than𝑚𝑖𝑑 .

If 𝑐𝑢𝑟𝐺𝑟𝑜𝑢𝑝𝑠 is smaller than 𝑔𝑜𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝑠 , then we don’t
have enough groups which means that we have too many
edges in the trace similarity graph. If this is the case, we set
𝑙𝑜𝑤 =𝑚𝑖𝑑 because the threshold must be larger than𝑚𝑖𝑑 .

We repeat this process until our range is so small that we
keep looking at the same values. Then we just output the
current best threshold that we have seen.
To get the final result, we run 𝑔𝑒𝑡𝐺𝑟𝑜𝑢𝑝𝑠 on this optimal

threshold that we have found.

5 VISUALIZING GROUPS OF TRACES
Visualizing similar groups of traces is another way to gain
a better understanding of a trace dataset. To do so, we use
graph-tool[6] to visualize a group of traces in a way that
highlights common services and allows for users to look into
certain nodes. Additionally, we provide a view of a chosen
service within a group and present its most common calls,
giving a better idea of service interactions within a group.

5.1 Converting Representative Output to
Visualization Format

We took the output from our representative traces, com-
prised of groups of traces and services of each trace, and
reorganized them to fit the inputs we used for the graph-tool
visualizations. By creating a library of trace spans, we can
find how many service calls were made and what services
were used. This is useful for applications to our Definition
1 of service sets.

First, we installed graph-tool in colab with this code.
Using Group 1 from Figure 6 gives the following output

in Figure 8 and following library in Figure 9.

https://colab.research.google.com/github/count0/colab-gt/blob/master/colab-gt.ipynb#scrollTo=6km1lWMF2kAm
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Figure 9: Span library for trace services.

We go through each trace’s services to create a set of all
the different services, which in this case are [’Front End’,
’Feed’, ’Friends Database’, ’Post’, ’Friends’]. Then, we find
which services are present in each trace and add them up to
get a set of the total number of traces that each node is in.
The corresponding set to the group of these 2 example traces
would be [2, 1, 2, 1, 2]. To compare these values, we also store
the total number of traces in the group, which is 2. Finally,
we also look for service interactions, and we create a set for
each node that corresponds with the number of services it
calls across the group. For example, the Friends service and
set [0,0,2,1,0] means that Friends calls Friends Database 2
times and Post 1 time throughout the 2 traces.

Putting it all together, running the 2 traces from Figure 5
gives the output of:

Figure 10: Visualization output of node names, node
occurrences, total traces, and calls per node.

5.2 Visualizing a Single Group
We view individual groups by using a set of numbers that
corresponds to how many times each node shows up in a dif-
ferent trace. A node that is present in all traces is highlighted
in yellow, while a node that only shows up in some traces is
colored gray. Additionally, we scale the size of the nodes to
clearly show the more common services in the group. For ex-
ample, if by using a group consisting of Traces 1 and 2 from
Figure 5 , we have 2 traces with a total of 5 services: Front
End, Feed, Friends Database, Post, Friends. Its corresponding
set of nodes is then [2, 1, 2, 1, 2]. Because the services Front
End, Friends Database, and Friends each show up in every
trace, their nodes are yellow in Figure 11.

Figure 11: Single group visualization of Trace 1 and
Trace 2.

Figure 12: Chosen service visualization for Friends.

5.3 Visualizing a Chosen Service
Additionally, it would be useful to see into the interactions
of a specific node in a group. We enable this by allowing
developers to choose any service 𝐴 and highlighting it in
green, as well as a trace group to visualize the nodes that 𝐴
calls. Furthermore, we scale the sizes of the edges from 𝐴

based on how many times 𝐴 calls a specific node in a group.
For example, selecting the Friends service in the group reveals
its connections to Post and Friends Database Figure 12. We
can see that Friends calls Friends Database more frequently
than it calls Post by the thickness of the edges.
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6 RESULTS
This is a brief overview of the results for our method of
grouping similar traces. We investigate the outputs and per-
formances of Definition 1, the first encoding method that
we’ve looked at so far, and we find the complexity of our
code. The Jaccardian Similarity calculated between traces
was dependent on how many services they shared.

6.1 Experimental Setup
6.1.1 Software Environment. We are using Python 3.9.12 for
all of our programs. No configuration was required other
than downloading Python.

6.1.2 Data for Experiment. JSON files are a common way of
accessing data. JSON files are the text format of Javascript
data structures. Most platforms like Jaeger and TrainTicket
return their traces in the form of a JSON file so we used
JSON files as input to our program to make our program
more applicable to a majority of trace datasets.

We wanted to test our method and program on a sample of
24 traces that wemanually created. A pictorial representation
of the sample traces is shown here (note that the traces are
numbered 0 to 23 to keep it consistent with the program’s
indexing): Sample Traces. To apply this definition, which is
based on the set of services in the trace, we listed the services
in a JSON file excluding any repeats in the service names. For
example, the JSON format for trace 4 is shown in Figure 13.
We also created a set of 32 traces by adding 8 other traces to
our initial sample to add more variation to the list of service
names (we added new service names to our trace system).

Figure 13: Example JSON format.
JSON format of both traces can be found here:
trace1.json - 24 traces sample dataset
trace2.json - 32 traces sample dataset

6.1.3 Running Experiments. Our code is a single Python
program sowe run the programwith the following command
(Main.py is the file name): python3 Main.py. We ran two sets
of experiments:

• Setting the threshold to our default value, 0.8 (don’t
apply the Binary Search method). We ran this set of
experiments on trace1.json.

• Applying the optimal threshold finding method with
the goal for the number of tracing groups as 6. We ran
this set of experiments on trace2.json.

6.2 Default Threshold Experiment
6.2.1 Results of Effectiveness. As shown in slide 5 on the
sample traces page above, we manually applied trace defini-
tion 1 (categorization based on the names of the services). We
listed the different possible arrays of service names as well
as the traces that would be in that category, shown below:

• A,B,C,D: 0, 1, 3, 7, 8, 9, 11, 12, 21, 22
• A,B,C: 2, 5, 19
• A,B,D: 4, 13
• A,C,D: 6, 20, 23
• A,D: 10, 18
• B,D: 14, 15
• C,D: 16, 17

As a result of our program, we got groups of similar traces
with the definition and one representative trace from each
group that represents the entire group. The output for this
set of sample traces is below:

So, our grouping of traces exactly matched the grouping
that we manually made.

6.2.2 Results of Performance. We used the time library in
Python to measure the performance of our program. The
runtime on average (over 4 runs of our program on the 24
sample trace data set) was 0.077 seconds. Our algorithm’s
time complexity is 𝑂 (𝑛2) but the time complexity for DSU
can get much larger if the graph created using Jaccardian
similarity has many edges.

The exact time taken may vary whether the user is using
a computer with more or less powerful hardware (but the
time complexity won’t change).

https://www.python.org/downloads/release/python-3912/
https://docs.google.com/presentation/d/18BaB7-JUgVcSynagCJTDJ1ZseoMkKPoDYU0umwd-mgM/edit?usp=sharing
https://drive.google.com/file/d/1P8MtXedjJd9YmrR9WdklKNUkhlJakK7N/view?usp=sharing
https://drive.google.com/file/d/1TE1nSYpEcJzrCYBwaU7bMP6nLMuyIoKj/view?usp=sharing
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6.3 Optimal Threshold Experiment
6.3.1 Results of Effectiveness. We ran our method with the
goal number of trace groups as 6 and then 11.

As output for a goal of 6 trace groups we got:

This shows that the optimal threshold is 0.625 and this
threshold gets 5 trace groups. We manually checked our data
and 5 trace groups is the closest we can get to 6 groups.

As output for a goal of 11 trace groups we got:

This shows that the optimal threshold is 0.75 and this
threshold gets 11 trace groups.
So, we are able to find an optimal threshold value for a

given set of traces and a goal number of trace groups.

6.3.2 Results of Performance. We still used the time library
in Python to measure the performance of our program. Our
algorithm’s time complexity is𝑂 (𝑛2 log𝑛) but the time com-
plexity for Binary Search and DSU can get much larger de-
pending on the goal number of trace groups and the number
of edges that the trace similarity graph has. For 6 trace groups,
the program took an average of 8.476 seconds. For 11 trace
groups, the program took an average of 0.506 seconds.

The exact time taken may vary whether the user is using
a computer with more or less powerful hardware (but the
time complexity won’t change).

7 FUTUREWORK
In the time ahead, we aim to investigate different ways

to determine similarity between traces as well as optimal
threshold values. Additionally, we will continue exploring
possible visualizations of aggregate traces and create an al-
gorithm to predict missing parts of traces.

We plan to test with datasets with larger amounts of traces
to evaluate the performance of our definitions. We have

hundreds of traces from DeathStarBench to look through.
Once we see how our algorithm executes over them, we can
make proper adjustments to our code or our definition. It
will also give us a better idea of how to calculate an optimal
similarity threshold.

One limitation of our method is that if one trace is a sub-
graph of another, it doesn’t necessarily mean that the smaller
trace is incomplete. Some workflows in a system terminate
before other workflows in certain scenarios (like a cache
hit vs miss) but it doesn’t mean that the terminated trace
is incomplete. To move forward with our current approach,
we plan to look at the other details in the trace to have a
better understanding as to whether a trace is actually an
incomplete/complete version of another trace given that one
is a subgraph of the other.

To move forward with this research question we want to
look at different similarity measures. Our current method
only implements trace encoding methods based on service
names and trace structure but there are other unexplored
variables in traces that could be used for measuring trace
similarity such as, latency or request type. A disadvantage
of our current approach to identifying and grouping similar
traces is the time complexity, which would make it difficult
to scale up significantly, especially if there are many services
to consider. We also plan to look into ways we can improve
the performance of our method.
In addition to our current visualizations of individual

groups of traces, we also want to eventually implement a vi-
sualization of all groups within a dataset. We could distance
the centers of these groups based on how similar they are
depending on the definition we use so that developers can
determine the most anomalous groups.

8 CONCLUSION
We were able to filter out incomplete traces if we found

that they had a more complete version in the trace set. From
this, we had a smaller and more informative set of traces
that we used to analyze and visualize the traces.

Using our first definition of trace similarity, we were able
to implement a program that successfully groups similar
traces based on the names of the services in the traces. We
also used our third definition to group similar traces based
on the exact structure of the trace graph. We analyzed our
groups of similar traces to choose representative traces that
would represent each of our groups, and we created visu-
alizations for groups that highlights common services and
common calls to services. Additionally, we were able to find
the optimal threshold for a given set of traces and a goal for
the number of trace groups.
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9 DATA AND SOURCE CODE
All of our data and source code are provided here:
https://drive.google.com/drive/folders/1V8nHXXvyF8g2_
EB7gnCfFpUzLnQLolGx?usp=sharing.
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