
A Systematic Study on the Difference and Conversion

Between Synchronous and Asynchronous Protocols

Tanisha Saxena

Lexington High School

Lexington, MA, USA

Jun Wan (Mentor)

Massachusetts Institute of Technology

Cambridge, MA, USA

Abstract

In this paper, we provide a fundamental analysis of the similarities and differences

between synchronous and asynchronous distributed systems. Specifically, we define a

special and normal adversary such that any protocol for a synchronous system that is

resilient to the special adversary can be replicated by a protocol for an asynchronous

system that is resilient to the normal adversary. Protocols for the synchronous model

are less complex, as the guarantee that messages will be delivered within a bounded

time makes it easy to determine the sequence of events in the system. But, this is

unrealistic in the real world, as systems tend to be asynchronous where messages are

not guaranteed to be delivered in a timely manner. Protocols for the asynchronous

model, on the other hand, are more complex as there are many edge cases to account

for. Our adversaries help to create intermediary models that allow us to replicate

protocol outputs across both synchronous and asynchronous systems, allowing for

simpler creation of protocols that remain functional under the asynchronous model.

1 Introduction

In this paper, we aim to analyze the relationship between synchronous and asynchronous
systems. The synchronous model is useful for theoretical analysis because its strong
assumptions of global synchronous clocks and time-bounded message delivery allow for
efficient protocols [CD+15], [Cri91]. However, these assumptions are impractical for mod-
elling real-world distributed systems where imposing a consistent time-bound may lead to
unrealistic protocols. For example, a time bound that is long enough to accommodate all
messages sent across a system distributed across the Internet may significantly degrade
the performance of the protocol due to timeouts. Similarly, a time bound that is too
short may result in the distributed system violating the model constraints, thus poorly
representing the system. The asynchronous model ([MMR14]) makes no assumptions
about synchronicity and results in protocols that are too complex to be realistic.

Our goal is to create in-between models that can convert synchronous protocol to
function over the asynchronous model such that writing protocols for distributed systems
can be simpler.

1



2 Background and Definitions

A distributed system is a network of n users that communicate by sending messages
to each other. Although there are many other uses, we will mainly be talking about
distributed systems in the context of reaching a consensus, one common decision between
all users, after each user has received an initial message.

Distributed systems use clocks to track time and send messages. A global clock is a
single global counter that tracks time for all users in a distributed system. The value of
the global clock may or may not be accessible to users of a distributed system. A local
clock is a counter used by a user to locally simulate time. A user can always access the
value of its local clock. Local clocks of users are independent of each other, and may
move at different speeds.

The existence of clocks in our models allows us to define events [CL85]. Events can
be actions such as the tick of a clock, sending of a message, or delivery of a message.
Each user in a distributed system goes through a sequence of events that is ordered based
on the clock time (local or global) that that user has access to.

Users of distributed systems send messages to other users through communication
channels at certain delivery speeds. We define delivery speed as follows.

Definition 2.1. Delivery speed of a distributed system with n users is an n× n array

called s where s[i, j] is the inverse of the time it takes to send a message from user i to

user j.

Delivery speed can be asymmetric; the speed at which messages are delivered from
user i to user j may be different than the speed of delivery from j to i (s[i, j] 6= s[j, i]). To
guarantee delivery within a certain time frame, systems can bound their delivery time.

Definition 2.2. A distributed system is said to be delivery time bounded if there exists

a Tr ∈ Z such that all messages sent at global time t are guaranteed to be delivered before

global time t + Tr.

A protocol is an algorithm that determines how each user in a distributed system
acts in order to achieve consensus. There are many ways of mathematically describing a
protocol. For our purposes. we specify protocols using a function between the input and
output messages of users.

Definition 2.3. A protocol can be specified as a function P (i, s) where i is an input

vector containing the input messages for each user and s is the delivery speed array for

this system. The protocol creates an output vector o that specifies the output generated by

each user after they receive their input messages.

P (i, s) can be successively applied to determine the sequence of outputs a distributed
system generates for a given input.

We are now ready to define synchronous and asynchronous distributed systems.

Definition 2.4. A synchronous system is a delivery time bounded distributed system

where each user can access the global clock with zero delay.

This definition is aligned with the Universal Composablity model framework described
in [CD+15] and [Cri91] where users may use this global time as an event, i.e use a tick
of the global clock to trigger an action. However, there can also be distributed systems
without global clocks.

Definition 2.5. An asynchronous system is a distributed system where users only

2



have access to a local clock, do not have access to a global clock, and the speed of messages

is not bounded.

Therefore, in asynchronous systems, users may send messages to other users with only
the assumption that messages will be delivered eventually [MMR14], and asynchronous
protocols cannot assume any time bound on message delivery.

Based on these definitions, synchronous and asynchronous systems differ in a few key
ways. In synchronous systems, it is easier to define and coordinate instructions between
users because there is a guaranteed time when all users will receive all messages, and all
users can trigger events based on the same time. As a result, synchronous protocols are
more efficient. However, synchronous models are less practical since guaranteed time-
bound delivery is hard to achieve in systems distributed across large networks such as
the Internet or in Blockchain.

In asynchronous systems, on the other hand, a user may wait indefinitely before
they can take an action based on a new message. As a result, asynchronous protocols
are more complex since they cannot make any assumptions about when messages are
delivered. The complexities of these protocols may make them impractical.

3 Our Problem Statement and Methodology

We aim to find a synchronous model that relaxes the restriction of time-bounded delivery
while still being more restrictive than a pure asynchronous system. Such models can help
identify less complex synchronous consensus protocols that can be modified to correctly
achieve consensus on a subset of asynchronous systems without time-bounds on message
delivery.

We first explore the properties of the asynchronous model with synchronized clocks,
but without the restriction of time-bound delivery. We prove that the asynchronous
model with synchronous clocks is no different than the asynchronous model with local
asynchronous clocks. Therefore, synchronous clocks are not useful in bringing properties
of synchronous systems to asynchronous systems.

Next, we explore if we can increase the flexibility of synchronous systems by removing
the strong restriction of time-bounded delivery. We accomplish this by using our protocol
specification from Definition 2.3 to prove the equivalence of time-based synchronous sys-
tems and round-based systems from [Del+07] and [BFA21]. That enables us to talk about
synchronous systems in terms of sequence of events rather than clocks. We leverage this
simplification to define a new adversary, resulting in a synchronous model that is more
restrictive than the asynchronous model, yet more flexible than the pure synchronous
model.

4 Adding Synchronicity to Asynchronous Systems

To bring synchronicity to the asynchronous models, we will use internal clocks to strengthen
the protocol.

Asynchronous and synchronous systems have two main differences: clocks and delivery
time. Synchronous systems have synchronous clocks which allow them to coordinate
events. They also have finite delivery times such that for any message m sent at time
t, it will always be received before time t + Tr where Tr ∈ Z. Asynchronous systems,
on the other hand, do not have clocks nor any finite bounds on delivery time. They
simply state that any message m that is sent will eventually be received. In real-world

3



systems, guaranteed delivery in a finite time is not always possible. However, can adding
a synchronous clock to an asynchronous system enable us to model systems that are more
restrictive than pure asynchronous systems, even if not as strong as synchronous systems?
The answer turns out to be negative. Here we prove that that clocks do not make any
difference, and it is in fact the delivery time that most differentiates the synchronous and
asynchronous systems.

A standard asynchronous system has asynchronous clocks. Each user gets an individ-
ual local clock that is independent of, and may move at speeds different from, the clocks
of other users. This is defined as a clock-driven execution of the asynchronous system,
and is equivalent to the standard asynchronous model in 2.4.

We now construct an asynchronous system with synchronous clocks, and eval-
uate how it is different from a standard asynchronous system, if at all.

Definition 4.1. An asynchronous system with synchronous clocks is one where:

• Each user has a local clock that is synchronized with clocks of other users, i.e., they

tick at exactly the same time.

• Users can access the time on their local clock with no time delay.

Since the clocks of all users are synchronized and can be accessed by users without
delay, this system is equivalent to a system with a global clock that all users can read
without delay. Both asynchronous models have clocks connected to each user, but the
asynchronous clock model can have different speeds for each clock while the synchronous
clock model has the same time on all clocks.

Before we compare the models, we want formally define what it means for two systems
to be equivalent.

Definition 4.2. Two systems are said to be equivalent if, for any protocol P for one

model, there exists a protocol P ′ for the other model that maintains the same order of

events.

We now prove that an asynchronous system with synchronous clocks is equivalent to
an asynchronous system with asynchronous clocks. By transitivity, an asynchronous sys-
tem with synchronous clocks is equivalent to the standard asynchronous model. In other
words, we will prove that the added benefit of having local clocks that are synchronized
across users and accessible without delay does not add any functionality to, or improve,
an asynchronous system.

Theorem 4.1. An asynchronous system with synchronous clocks is equivalent to an asyn-

chronous system with asynchronous clocks.

Proof. For the purposes of this proof, we require that a message sent by a user contains

two pieces of data: the message itself, and the time TA of user A that is sending the

message. This assumption does not change the properties of the protocol because it only

increases the communication complexity of a protocol by a constant factor.

Messages in the asynchronous system with synchronous clocks are sent as P (A,m)

where A is the user sending the message m, and are stored in the event order as P (A,m, Ts, Tr)

where a message m is sent by user A at time Ts and is received at time Tr. Every mes-

sage in the asynchronous system with asynchronous clocks model is sent as P ′(A,m, Ta)

where A is sending message m at local clock time Ta, and is stored in the event order as

4



P (A,m, Ta, Tb) where message m is sent by user A at local clock time Ta and received at

another user’s local clock time Tb.

Given a protocol P in the asynchronous model with synchronous clocks, with inputs of

the starter messages i and delivery speed s, a separate protocol P ′ can be designed under

the asynchronous with asynchronous clocks model such that P (i, s) = P ′(i′, s′). This is

because the addition of synchronous clocks is rendered useless by the indefinite delivery

time of messages within the asynchronous model, and can be accurately described using

the asynchronous model with asynchronous clocks as follows.

We create a global synchronous time for the asynchronous system that can be ac-

cessed with no time delay by every user. This is same as the asynchronous system with

synchronous clock described earlier because:

1. Sending a message P (A,m, Ts) can be converted to sending a message P ′(A,m, Ta)

where Ta = Ts.

2. When user B receives the message in P ′, its local clock is changed such that Tb =

Ta + r where r is a random number and r > 0 and r ∈ Z.

3. Hence the message that is stored as P (A,m, Ts, Tr) can be converted to P ′(A,m, Ta, Tb)

after Tb has been adjusted such that Tb > Ta as described earlier,

4. The adjustment of clocks in P ′ ensures that all saved events of the protocol match

directly with the events in P , as a message sent at time Ta is always received after

time Ta and is therefore stored in the correct order.

5. Since all events in both protocol occur in the same order, they are proven to be

equivalent.

We have proven that adding a synchronous clock to an asynchronous model does
not change its asynchronicity. So we conclude that adding a synchronous clock to an
asynchronous model does not provide us with a model that is more restrictive than a
pure asynchronous system. In the next section, we look towards altering the functionality
of the rigid synchronous system to reach a middle ground between the synchronous and
asynchronous systems by establishing equivalence between round-based and time-based
synchronous systems and by using adversaries.

5 Adding Flexibility to Synchronous Systems

We will attempt to make synchronous systems more flexible with two steps. First, we
will simplify synchronous systems using the concept of rounds, and then we will add
adversaries to remove the requirement for time-bounded delivery of messages.

5.1 Round-Based Synchronous Systems

The concept of rounds was used in [Del+07] to develop an alternative definition of syn-
chronous distributed systems. In the round model, all users operate in lockstep. During
each round, all users receive messages from other users, perform their local computation,
and send new messages to other users. Therefore, any message sent in round r will be

5



received before round r + 1 begins. A protocol may define a constant time interval T
where round r is defined as the time interval [i ∗ T, (i + 1) ∗ T ]. We will prove that
round-based and time-based synchronous systems are equivalent by proving that they
have the same set of properties.

A property of a protocol can be described as a matching function between input
vectors i and output vectors o. Specifically, given a function F , we can say that a
protocol P satisfies property F if and only if F (i, o) = 1 for all input and output pairs
(i, o) under the protocol P . Notice that, per Definition 2.3, output vector o = P (i, s).

However, this definition doesn’t make sense in the presence of adversaries because
they can affect and control the system delivery speed s (see Definition 2.1). For example,
an adversary can delay or even corrupt a message, in which case the message may not be
delivered at the expected speed, or not delivered at all. To address adversaries, we define
a property as follows:

Definition 5.1. A protocol P satisfies property F if and only if for any possible input

vector i and delivery speed s, F (i, P (i, s)) = 1.

This enables us to define protocol equivalence as follows.

Definition 5.2. Two protocols P and P ′ are said to have protocol equivalence if

for any input vector i and delivery speed s, there exists a delivery speed s′ such that

P (i, s) = P ′(i, s′).

This implies that for any property F that P ′ satisfies, P satisfies that property F as
well. This is because for any i and s,

F (i, P (i, s)) = F (i, P ′(i, s′)) = 1.

This means that given two systems A and B if, for any protocol P under A, there
exists a protocol P ′ under B such that P and P ′ are equivalent, then the system B has
all the properties F of system A. We will use this approach to prove that the long-known
result that a synchronous system with synchronous clocks is equivalent to a round-based
system holds even under our formulation of the property in Definition 5.1 [Del+07],
[BFA21]. To establish this equivalence, we first show that given any synchronous system,
we can model a round-based system that has all properties of the synchronous system,
and then show that given any round-based system, we can create an synchronous model
with the same properties.

Lemma 5.1. For any protocol P in the round-based system, there exists a protocol P ′ in

the synchronous model that is equivalent to P , per Definition 5.2.

Proof. The intuition is that, for any event in the synchronous system’s time model, we

can convert any time into a corresponding round within the round model such that the

sequence of events remains the same and the output is equal.

The synchronous system contains two key event triggers: receiving a message at any

time, and reaching the end of a round. The round model contains two event triggers as

well: receiving a message at the beginning of round r and reaching the end of a round.

Also recall that in the sync model, every message takes a max of Tr time to be delivered

where Tr ∈ Z.

For convenience, we can denote how a protocol P ′ reacts to the event “a message m

from user i at time Ta” by P (m, i, Ta). Similarly, in the round model, we denote how a

6



protocol P reacts to the event “receiving a message m from user i in round r” by P (m, i, r).

We will show how to construct P given P ′ such that they are equivalent. Specifically, we

show that the sequence of events in the synchronous system can be described by a round

model that generates the same sequence of events, proving that both are equivalent.

First we reduce protocol P to P ′ as follows:

1. P (m, i, Ta): reduces to P ′(m, i,
⌊
Ta
Tr

⌋
). In other words, on receiving a message m in

time Ta, P simulates what P ′ would do if it receives m in round
⌊
Ta
Tr

⌋
. This ensures

that any message sent in the synchronous system can be converted to an accurate

counterpart in the round-based model.

2. Users only send message during the period T = 2k · Tr, T = (2k + 1) · Tr.

3. Reaching end of time T event: if T = 2k · Tr for some constant k, then simulate

what P would do at the end of round k. Otherwise, don’t do anything.

Next, we describe the actions of users in the synchronous system. We expand on

how, given the time it is sent and the time the message is received, any series of events

in the synchronous system can be described by the round-based model while fitting the

restrictions in the correct order. This means that for all events A in protocol P , there

will be a corresponding even B in protocol P ′

Now we establish that P ′ will generate events in the same sequence as P .

1. Using an integer k ∈ Z, we can clarify time transformations between the time model

and round model: in round k, any event that is taken within the round must end

before the next round starts, equal to the time interval (2kTr, (2k + 1)Tr) in the

time model.

2. For event R(Ai) in the time model where user A is sending a message at time t, this

can be converted where R(Ai) = (send,A, b t
2Tr
c,m) where 2kTr ≤ t ≤ (2k + 1)Tr,

”send” is the action, and m is the message.

3. For event R(Bj) in the time model where user B is receiving a message from user

A at time t′, R(Bj) = (receive,B,A, b t′

2Tr
c,m) where t′ < t + Tr ≤ (2k + 2)Tr.

4. The described restrictions for t′ also mean that b t′

2Tr
c < k + 1, therefore, R(Bj) =

(deliver,B,A, k,m).

This proves that the events causing a message sent at time t and received at t′ all take

place within the same round k, meaning that any message events in the synchronous sys-

tem can be converted to the Round-based model while fitting the respective restrictions.

Therefore, given any protocol P for the round-based model, we have defined a protocol

P ′ for the synchronous system that is equivalent to P , hence proving the lemma.

Now we prove the other direction, that is, for any protocol under the round-based
model, we can create an equivalent protocol in the synchronous system.

Lemma 5.2. Given any protocol P in the synchronous system, there exists a protocol P ′

in the round-based model that is equivalent to P per Definition 5.2.

7



Proof. Given a protocol P for the synchronous system, we construct P ′ for the round-

based model as follows:

1. Sending a message at the start of round r, represented by P (m, i, r) can be reduced

to P ′(m, i, r ∗ Tr) where the round model starts at round 0.

2. Reaching the end of round r is equivalent to starting round r + 1, so the same

method as above can be applied to transform the protocol.

If we send a message at the beginning of the round, it will be delivered by the end of

the round. So after reduction, the message takes at most Tr time to deliver. This implies

that P and P ′ are equivalent.

Theorem 5.3. Given any synchronous system S, there is an equivalent round-based

model R, such that if F (i, o) is a property of S then it is also a property of R, and

vice-versa.

Proof. Lemma 5.2 shows that given any synchronous system, we can create a round-

based such that all protocols in the synchronous system have an equivalent protocol in

the round-based model. That means, given any synchronous system, we can create a

round-based model that has all the properties of the synchronous system, which proves

the theorem in one direction. Lemma 5.1 similarly shows that given any round-based

model, we can create a synchronous system with the same properties.

Since we have already proven that the synchronous and round-based models are equiv-
alent, we can simply use round-based models to describe synchronous systems. In our
proofs, we described round-based models using order of events. This is a useful technique
which we will now generalize, and formally define so we can use it to define all models.

Definition 5.3. An Event-order-based (EOB) Description is a description of a

model using a sequence of the following events:

• Send(i, j, m) where user i sends user j a message m

• Deliver(i, j, m) where user j receives the message m sent by user i

• Round(begin/end, r) where round r either begins or ends in that event

• Block(i, j) where the messages that user i sends to j are blocked in one direction.

Once the two users are no longer blocked, all messages are delivered to the recipient.

Since the output of a computation in a distributed system is determined by the
ordering of events executed by the model, we can define special types of distributed
systems by simply placing restrictions on these events. For example, as used in our proof,
the EOB description to define synchronous systems is as follows:

Definition 5.4. A synchronous system places the following restrictions on the sequence

of events:

1. Send(i, j, m) must occur after Round(begin, r)

2. Deliver(i, j, m) must come after Send(i, j, m)

8



3. Deliver(i, j, m) must come before Round(end, r)

We can also use EOB model to describe asynchronous models as follows:

Definition 5.5. An asynchronous system places the following restriction on the sequence

of events:

1. Send(i, j, m) must come before Deliver(i, j, m)

Now that we have proven that round-based systems are equivalent to synchronous
systems, and used the EOB description, borrowed from round-based systems to describe
synchronous systems, we are ready to introduce adversaries to increase the flexibility of
synchronous systems so we can used them to model real-world distributed systems.

5.2 Using Adversaries to Remove Synchronicity

We know that asynchronous systems are too broad, and synchronous systems are too
restrictive to model real-world systems. We will show how the concept of adversaries
can be used to define a hybrid distributed system that is more flexible than synchronous
systems, but not as broad as an asynchronous system.

Adversaries are external actors in a system that can effect users such that they
do not follow the restrictions of the model (e.x. the restrictions of 5.4 and 5.5). For
our purposes, all defined adversaries qualify as standard adaptive adversaries as defined
by [Can+96]. Users affected by the adversary are called corrupt or adverse users. To
distinguish corrupt users from other users, we now call users that follow restrictions
imposed by their distributed system as honest users. We further define two types of
adversaries - normal, and special, and will prove that a synchronous model with a special
adversary is equivalent to an asynchronous model with a normal adversary.

Definition 5.6. A normal adversary can corrupt at most f users, and allows them

to send any arbitrary message at any time. That is, up to f users can Send(i, j, m) at

any time with any j and any m.

A normal adversary cannot prevent a system from reaching consensus because it does
not block any messages, it simply adds them.

We want to define a special adversary as one that can corrupt users to send arbi-
trary messages like a normal adversary and, additionally, can also block messages. That
is, for any number of honest users, it can block up to k messages from other users in
each round. Note that, by blocking messages with the special adversary, we break the
time-bounded restriction over the synchronous model and help introduce asynchronous
behaviour. However, such a special adversary is problematic because it can prevent a
distributed system from reaching consensus. In order for a system to reach consensus,
each user must be able to reach a conclusion. Therefore, we allow each honest user to
define their own set of ”safe” users whose messages they need to reach a conclusion.

Definition 5.7. A special adversary can have two effects. First is the same effect as

the normal adversary. Additionally, for any number of honest users, it can block up to f

messages from other users in each round, but not from ”safe” users of that honest user.

That is, affected users can Block(i, j) for any j and i up to k times per round, except

when i is in the ”safe” user list of j.

Before we begin, considering our intuition of how to best verify our proof, we begin
by proving that any asynchronous protocol can be described as a protocol where each

9



user waits for at least h messages before sending their next message. This model is much
closer to the synchronous system in terms of event order, hence why we prove this before
moving on the adding the adversaries.

For the following proof, we create an oracle that can perform a specific action during
the protocol. The abilities of the oracle are defined as follows.

Definition 5.8. An oracle based on a given protocol P is able to predict the output of

every user. If given a set of messages m by a user u, the oracle will return true if u

should send a message and false otherwise.

Lemma 5.4. Given any asynchronous protocol P , there exists an equivalent protocol P ′

where each user waits for at least h messages before sending another message, where h is

defined as the number of honest users.

Proof. We construct an alternative asynchronous protocol P ′ from P as follows:

1. We construct an oracle based on our original protocol P

2. Every user i contains their own counter Ci that keeps track of how many messages

that user has sent, when we say a message is send in round r, it means Ci = r for

that message

3. When the protocol begins, the leader sends the starter messages, while every other

user sends a dummy message, which only stores Ci, and does not contain any other

message information, nor is it noted in the event order.

4. Once a user receives h messages, they submit those messages to the oracle.

5. If the user is meant to send a non-dummy message for that round, then the oracle

will return true, and the user will send a message based on the non-dummy messages

it has received so far, this message will also contain Ci, and will be marked as a

message for that round

6. If the user is not meant to send a non-dummy message for that round, then the

oracle will return false, and the user will send a dummy message for that round

7. Because of our restrictions for when a user can send a set of messages to the oracle

for approval, as well as our definition for the oracle itself, we can guarantee that P ′

is equivalent to P

Since every user sends a message in round 0, we can guarantee that at least h messages
will be received by each user before round 1. After this, we can guarantee that each user
receives at least h messages in round r, because they are guaranteed to send some sort
of message in round r − 1 based on the rules of the oracle.

Now that we have proven that any asynchronous protocol can be described as one
that waits for h messages, we can prove what we set out to do; namely, that introduction
of a special adversary to a synchronous system results in a system that is less restrictive
than a pure synchronous system, but not as open as a pure asynchronous system. In fact,
it is exactly equivalent to an asynchronous system with a normal adversary. To show
this, we prove equivalence in both directions.

10



Lemma 5.5. Given any normal adversary A applied to an asynchronous protocol P ,

there exists a corresponding special adversary A′ that can be applied to a synchronous

protocol P ′ to create the same output.

Proof. We construct a special adversary A′ from a normal adversary A as follows:

1. We create an oracle over P that determines the resulting event order

2. If, in P , there is not Deliver(i, j, m, Ci) within the event order frame when all other

Deliver(i, j, m, Ci) are occurring, then the special adversary will Block(i, j) in P ′

until Deliver(i, j, m) occurs in P

3. By the rules of P ′, we can guarantee that any message sent after Round(r, start)

will be received before Round(r, end) unless the adversary creates a Block(i, j).

Since the adversary can only block up to f users, we can guarantee that each user

will receive at least n− f = h messages in each round

4. This guarantee matches the asynchronous model above, where each user proceeds

only after receiving h messages

5. Hence, a synchronous protocol P ′ with a special adversary A′ can be created from

any asynchronous protocol P with a normal adversary A.

Now we can see, since the messages received by every user in both systems are equiv-

alent and occur in the same sequence, we have successfully proven that, for any asyn-

chronous model with the normal adversary, there exists some synchronous model with

the special adversary that creates the same output.

As proven by the above paragraphs, the special adversary is able to impose the same

restrictions on the synchronous system as the normal adversary does on the asynchronous

system in addition to the restrictions of the asynchronous system itself. This proves that

for any normal adversary there exists a special adversary that can simulate the effects of

the asynchronous system and the normal adversary onto the synchronous systems. Since

the restrictions from the effects are equivalent, the outputs with also be the same, proving

the lemma.

The proof for converting synchronous to asynchronous is actually simpler than the

opposite direction. Because there are no restrictions on how long a message can take to

send in the asynchronous model, altering the protocol to match the synchronous protocol

with the adversary is easily done.

Lemma 5.6. For any special adversary A applied to a synchronous protocol, there exists

a corresponding normal adversary A′ that can be applied to an asynchronous protocol to

create the same output.

Proof. We construct a normal adversary A′ and an asynchronous protocol P ′ from a

synchronous protocol P and a special adversary A as follows:

1. We construct an oracle over P that determines the resulting event order of the

synchronous model

11



2. Any Deliver(i, j, m) events that occur after the Round(r, end) when Sent(i, j,

m) occurred between Round(r, start) and Round(r, end) corresponds to a channel

between users that has a longer delivery time

3. Since delivery time is controlled by the asynchronous protocol, we can guarantee

that any orientation of blocking by the A in P can be translated into P ′

With these two lemmas proven, it is now easy to show that:

Theorem 5.7. A synchronous system with a special adversary is equivalent to an asyn-

chronous system with a normal adversary.

Proof. Lemma 5.5 and 5.6 show that given any asynchronous protocol and normal ad-

versary, we can construct an equivalent synchronous protocol and special adversary that

produce the same output, and vice versa.

With this theorem, we can conclude that a special adversary, when applied to a
synchronous model, gives us a model that is equivalent to an asynchronous model with
a normal adversary. That is, it gives us a model that is less restrictive than a pure
synchronous model, yet more realistic than a pure asynchronous model. This is the main
result of our paper.

6 Conclusion

In this paper we identified the aspects of a synchronous system that affect its synchronic-
ity. We also defined a ”special adversary” and showed that a synchronous system with
a special adversary is more restrictive than a pure asynchronous system yet less restric-
tive than a pure synchronous system. Adding a special adversary helped us remove the
requirement to deliver messages in a bounded time from synchronous models. This al-
lows us to transform synchronous protocols into protocols that can work on asynchronous
systems.

Our construct of adversaries also helped us create a hierarchy of distributed system
models based on how restrictive they are. Our results show that the asynchronous model
is the least restrictive, followed by the two equally restrictive asynchronous model with a
normal adversary and synchronous model with a special adversary which are less restric-
tive than the synchronous model with a normal adversary, and lastly, the most restrictive
model is the pure synchronous model.

7 Future Work

We want to consider and apply some changes to our initial problem regarding the adver-
saries research. Specifically, we want to investigate if it is possible to remove the normal
adversary all together (given that the special adversary is equivalent to the normal ad-
versary with some properties added) and exclusively apply the second part of the special
adversary (block up to f channels for each user) to a synchronous model and make it
equivalent to the plain asynchronous model.

Beyond that, we also question the practical effects of the normal adversary on the
asynchronous model. As the asynchronous model is defined in 2, it is not clear whether

12



adding the normal adversary affects the performance of the users, as they are allowed to
send messages at anytime, regardless of the addition of the normal adversary.

On a larger scale, we want to continue our research on adversaries and explore the
effects they can have on systems when they effect more than just the quantity of messages
and the delivery time. We aim to determine if it is possible to generalize adversary effects
such that, given a criteria on how strong a model should be, an adversary can be created
with a limited selection of events it can manipulate that will accurate change the strength
of any model to match the criteria.

Given that our work so far is theoretical, we would like to identify the practical
applications and prove the functionality of our work in a more tangible way. To do this,
we would run algorithms on distributed systems simulations to observe the efficiency
of our adversaries and their ability to convert synchronous protocols to asynchronous
protocols.

8 Acknowledgements

I would like to thank my mentor Jun Wan for providing his valuable insight and guid-
ance as well as his time to help support me through this research. I would also like to
thank Srini Devadas and Yu Xia, for their help in revising our research. I’d also like
to thank Elaine Shi for providing critical feedback on the application of our work. And
Slava Gerovitch and the entire MIT PRIMES program for giving me the opportunity to
participate in this research.

References

[BFA21] Raul Barbosa, Alcides Fonseca, and Filipe Araujo. “Reductions and abstrac-

tions for formal verification of distributed round-based algorithms”. In: Soft-

ware Quality Journal (2021), pp. 1–27.

[Can+96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. “Adaptively secure

multi-party computation”. In: Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing. 1996, pp. 639–648.

[CD+15] Ronald Cramer, Ivan Bjerre Damg̊ard, et al. Secure multiparty computation.

Cambridge University Press, 2015.

[CL85] K Mani Chandy and Leslie Lamport. “Distributed snapshots: Determining

global states of distributed systems”. In: ACM Transactions on Computer

Systems (TOCS) 3.1 (1985), pp. 63–75.

[Cri91] Flaviu Cristian. “Reaching agreement on processor-group membership in syn-

chronous distributed systems”. In: Distributed Computing 4.4 (1991), pp. 175–

187.

[Del+07] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Bastian

Pochon. “The perfectly synchronized round-based model of distributed com-

puting”. In: Information and Computation 205.5 (2007), pp. 783–815.

13



[MMR14] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. “Signature-free

asynchronous Byzantine consensus with t¡ n/3 and O (n2) messages”. In: Pro-

ceedings of the 2014 ACM symposium on Principles of distributed computing.

2014, pp. 2–9.

14


	Introduction
	Background and Definitions
	Our Problem Statement and Methodology
	Adding Synchronicity to Asynchronous Systems
	Adding Flexibility to Synchronous Systems
	Round-Based Synchronous Systems
	Using Adversaries to Remove Synchronicity

	Conclusion
	Future Work
	Acknowledgements

