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Dihedral Groups

The dihedral group of order 2n, D2n, is the group of symmetries
of a regular n-gon, consisting of n rotations and n reflections.

e R90 R180 R270

v

h

d1 d2

How can we present the group above? One option is, s1 = d1 and
s2 = v , then D8 = ⟨s1, s2 | s21 = s22 = (s1s2)

4 = e⟩.
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Symmetric Group
Can we have this nice structure in the presentation of other
groups?

Yes!

The symmetric group Sn is the group of all permutations of n
elements. For S4, using cycle notation, we see that

(12)2 = (23)2 = (34)2 = e,

((12) ◦ (34))2 = e,

((12) ◦ (23))3 = (123)3 = e.

Let si = (i i +1) be these adjacent transpositions (swaps). Then

S4 = ⟨s1, s2, s3 | s21 = s22 = s23 = (s1s2)
3 = (s2s3)

3 = (s1s3)
2 = e⟩.
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Coxeter Groups

We have

D8 = ⟨s1, s2 | s21 = s22 = (s1s2)
4 = e⟩,

S4 = ⟨s1, s2, s3 | s21 = s22 = s23 = (s1s2)
3 = (s2s3)

3 = (s1s3)
2 = e⟩.

Accordingly, a Coxeter group is a group with presentation,

⟨s1, s2, . . . , sn | s2i = e for 1 ≤ i ≤ n,

(si sj)
mi,j = e for 1 ≤ i < j ≤ n⟩,

where mi ,j ≥ 2.
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Coxeter Diagrams and Examples

We can represent Coxeter groups with Coxeter diagrams.

For
example,

D8 = ⟨s1, s2 | s21 = s22 = (s1s2)
4 = e⟩:

•
s1

•
s2

4

S4 = ⟨s1, s2, s3 | s21 = s22 = s23 = (s1s2)
3 = (s2s3)

3 = (s1s3)
2 = e⟩:

•
s1

•
s2

•
s3
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Finite Irreducible Coxeter Groups
A Coxeter group with finite order is called finite, and a Coxeter
group with connected Coxeter diagram is called irreducible.

Theorem (Coxeter 1935, [2])

All finite irreducible Coxeter groups are described by the following
Coxeter diagrams:

An : • • · · · • •

Bn : • • · · · • 4 •

Dn : • • · · · •
•

•

E6 : • • •
•

• •

E7 : • • •
•

• • •

E8 : • • •
•

• • • •

F4 : • • 4 • • H3 : • 5 • • H4 : • 5 • • •

I2(n) : • n •
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Permutations

A permutation σ consecutively contains another permutation π
if there is a contiguous subsequence of σ with the same relative
order as π.

The permutation 132546 consecutively contains the permutation
2143, and the permutation 4132 consecutively contains the
permutation 312.

Goal: Generalize consecutive pattern containment to Coxeter
groups.
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Reduced Words

Given an element w of a Coxeter group W , we can write it as a
product of generators, called a word. A word of minimal length is
called reduced.

Example

In S4, with generators si = (i i + 1) for i = 1, 2, 3, we have the
following possible words for w = 4132:

4132 = s2s3s2s3s1s3 = s3s2s1s3 = s2s3s2s1.
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Parabolic Decomposition

Given a connected subset (on the Coxeter diagram) J of the set of
generators S , we let wJ be the longest suffix of any reduced word
for w that contains only generators from J

Example

In S4, with generators si = (i i + 1) for i = 1, 2, 3, we have the
following possible words for w = 4132:

4132 = s2s3s2s3s1s3 = s3s2s1s3 = s2s3s2s1.

The longest suffix of a reduced word containing only generators
from J = {s1, s2} is from the reduced word s2s3 · s2s1. Note that
s2s1 = 312.
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Consecutive pattern containment

Definition (W. 2022+)

Suppose π and σ are group elements of Coxeter groups W ,W ′

with set of generators S , S ′, respectively. Then we say that σ
consecutively contains π if there exists a connected subset J ⊆ S ′

such that π “equals” σJ . Formally, this involves an isomorphism.

•
•

π

W = S3

•
•
•
σJ

W ′ = S4

Figure: Consecutive containment in Coxeter groups
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cc-Wilf-Equivalence

Definition

Given two permutations π, τ , we say that they are
c-Wilf-equivalence if for every n, the number of permutations on
n elements consecutively containing π is the same as the number
consecutively containing τ .

Accordingly, we define

Definition (W. 2022+)

We say that two Coxeter group elements π and τ of an
irreducible Coxeter group are cc-Wilf-equivalence if for every
finite irreducible Coxeter group W , the number of σ ∈ W
consecutively containing π is the same as the number consecutively
containing τ .
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Automorphisms Induce cc-Wilf-Equivalences
Recall that 4132 = s2s3 · s2s1 consecutively contains 312 = s2s1.
But it also consecutively contains 231 = s1s2.

•s1

•s2

312
• s1

• s2

• s3

(4132){s1,s2}φJ
•s1

•s2

231
• s1

• s2

• s3

(4132){s1,s2}

φJ

Figure: Isomorphisms for consecutive containment for the Symmetric
group

Proposition (W. 2022)

If π is an element of a Coxeter group W , and ϕ is a diagram
automorphism of W , then π is cc-Wilf-equivalent to ϕ(π).
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Maximal Element Induces cc-Wilf-Equivalences

If π = π1π2 · · ·πn is a permutation on n elements, then the
complement of π, πC := (n+ 1− π1)(n+ 1− π2) · · · (n+ 1− πn)
is c-Wilf-equivalent to π since σ consecutively contains π if and
only if σC consecutively contains πC .

We can generalize this by writing πC = n(n − 1) · · · 21 ◦ π. Now,

Proposition (Well Known, [1])

Every finite Coxeter group W has a unique element of maximal
length. We will denote this element w0(W ).

The permutation n(n − 1) · · · 21 is precisely this element in Sn.
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Maximal element induces cc-Wilf-Equivalences (cont.)

Proposition (Well Known, see [1])

Every finite Coxeter group W has a unique element of maximal
length. We will denote this element w0(W ).

Using this,

Proposition (W. 2022)

Let π be an element of a Coxeter group W . Then π is
cc-Wilf-equivalent to w0(W )π.

Anthony Wang Mentor: Yibo Gao MIT PRIMES USA October Conference

Consecutive Patterns in Coxeter Groups



Coxeter Groups Consecutive Pattern Containment cc-Wilf-Equivalence Acknowledgements
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Proposition (Well Known, see [1])

Every finite Coxeter group W has a unique element of maximal
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Using this,

Proposition (W. 2022)

Let π be an element of a Coxeter group W . Then π is
cc-Wilf-equivalent to w0(W )π.

Anthony Wang Mentor: Yibo Gao MIT PRIMES USA October Conference

Consecutive Patterns in Coxeter Groups



Coxeter Groups Consecutive Pattern Containment cc-Wilf-Equivalence Acknowledgements

Nontrivial Families of cc-Wilf-Equivalence classes

Theorem (Duane—Remmel 2011 [4], Dotsenko—Khoroshkin 2013
[3])

We say that a permutation π is non-overlapping if two of its
occurrences share in any other permutation σ can share at most
one position. Then the first and last entries of a non-overlapping
permutation determines its c-Wilf-equivalence class.

The idea is that π and τ are essentially interchangeable wherever
they occur.

Skipping over a lot of details, we prove the following:

Theorem (W. 2022)

If π and τ are both strongly difference-disjoint and
automorphic-equivalent, then they are cc-Wilf-equivalent.
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