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Huntington’s Disease

- Huntington’s Disease (HD) is an inherited 
neurodegenerative disease.

- Caused by high number of CAG repeats 
(36+ repeats) in the Huntingtin (HTT) gene.

- Patients with the disease exhibit somatic 
expansion, where the number of repeats 
expands individually in each brain cell.

- Leads to more diverse and longer CAG 
lengths, which can be toxic and lead to 
neuronal cell death.

Figure from: https://pubmed.ncbi.nlm.nih.gov/32811395/

https://pubmed.ncbi.nlm.nih.gov/32811395/


The McCarroll Lab collected new 
biological data:

- Post-mortem brain samples 
from HD patients.

- Precise CAG 
measurements from many 
individual cells.

- Cell type specific.

Somatic expansion occurs mainly 
in the Spiny Projection Neurons 
(SPNs), resulting in diverse CAG 
repeat lengths.

Because expansion is highly 
cell-type specific, this new data 
enables the analysis we 
performed.

Data collected by the McCarroll Lab in collaboration with the McLean Brain Bank



Research Goals

- Somatic expansion is increasingly thought to be the driver of disease 
progression.

- Very high numbers of CAG repeat can be toxic and lead to neuronal cell death.

- Consistent with the fact that cell death is most heavily observed in SPNs.

- Understanding mechanisms behind expansion could be crucial for developing 
therapeutics.

- How can we create a model that simulates somatic expansion?

- Can such a model help us better understand the expansion mechanism and 
disease progression?



Modeling Somatic Expansion
The model was inspired by the work of Dr. John Warner and previous models 
applied for other repeat expansion diseases.

The generative model works as follows:

- Model one cell’s CAG length at a time. Assume mutations are a random 
stochastic process with a certain rate that increases with longer CAG lengths.

- Each mutation has a probability of being an expansion and otherwise 
contraction, which increase/decrease the CAG length by 1.

Parameters:

● r = mutation rate parameter (mutation rate calculated as a function of r and 
CAG length).

● p = probability of a mutation being an expansion.



Model Pseudocode
Let A = age at death, I = inherited CAG length, for the patient we are trying to model. 
Function below returns the CAG length at death of a single cell.

r = mutation rate 
parameter

p = probability of 
expansion



Run with: r = 0.135, p = 0.615, A = 58, I = 42

Simulate many cells

Running the Model



https://docs.google.com/file/d/1rxsERyUcZ1xIFBlspwztT0Jma74lgmf1/preview




Fitting the Model
- Grid search on (r, p) 

parameter pairs, for each 
generate distribution of CAG 
lengths and compare to the 
observed data.

- To evaluate fit between the 
model and data distributions, 
we use the 
Kolmogorov-Smirnov (KS) 
test statistic.

- Each point represents one set 
of parameters and is colored 
by the KS test statistic.

optimum



Best Fits



Cell Death

- This model doesn’t account for 
cell death, which is pervasive in 
later stages in HD.

- We often see >70% cell death in 
the SPNs, and these dead cells 
generally have much higher 
CAG lengths.

- The data we see isn’t representative because cells that have died are not observed.

- Cells with high CAG lengths are greatly underrepresented. If cells didn’t die, many 
would reach very high CAG lengths that we’d never observe.



Accounting for Cell Death
- The lab has found evidence that transcriptional dysregulation of genes in a cell starts 

happening above ~180 CAGs. 

- So we assume cells that have died are also mostly above 180 CAGs

- In our data we have a certain amount of observed cells above 180 CAGs, but we add 
back whatever percent of cells that have died to that count.

- We want the model to get a similar proportion of cells above 180 CAGs.

- We modify the objective function to take into account the KS test statistic for the CAG 
distribution of cells < 180 CAGs, and also the fraction of cells above 180 CAGs in the 
model and data.





Need for a Better Model
Base Model unable to fit. Doesn’t get enough cells to a high enough CAG length without 
compromising the shape.

We tried a number of different models, and one of the most flexible modelled expansion as 
an exponential process.

Previously the rate was linearly related to the number of CAGs above 35, with this model 
they’re exponentially related.

Extra parameter e:

Tnext ~ Exp(r * (X - 35)e)

Rest of the model is the same. We perform a grid search on triples (r, p, e) and find the best 
fitting parameters.





Two Biological Processes CDFs take similar shape even with big age 
difference. Consistently see a sharp bend at 
~70 CAGs, which is where the long tail starts.

This suggests that there may be 2 biological 
processes, one starting at 36 CAGs, the 
second starting at ~70 CAGs. Second 
process could explain the tail we observe.



Two Process Model
This inspires a 2 process model.

Parameters: 

- r1 = rate of process 1
- r2 = rate of process 2
- p = probability of expansion for both processes
- t2 = threshold for process 2

The second process operates in a very similar way to process 1, with its own separate 
threshold and rate.

We run a grid search on 4-tuples (r1, r2, p, t2).







Conclusions and Future Work

- The rate of somatic expansion is likely not linear, but grows extremely fast in 
comparison to CAG length.

- Statistical models with 2 processes are able to explain the data better than 
single process models.

- Indicates the possibility of 2 biological mechanisms behind somatic expansion which have 
differing rates and thresholds — at 35 CAGs and ~70 CAGs.

- Impact of the Model:

- Deepens our understanding of the molecular mechanisms that drive somatic expansion, as it 
allows us to see the progression of CAG lengths over time.

- May inform the design of clinical trials or therapeutics targeting somatic expansion, which 
patients may benefit from.
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