
A Systematic Study on the Difference and 
Conversion Between Synchronous and 

Asynchronous Protocols
Tanisha Saxena

Mentor: Jun Wan

MIT PRIMES 

2022 May 22nd Conference



Background

• Distributed systems: A network of n users that communicate by 
sending messages to each other.

• Synchronous systems: Delivery-time-bounded systems where each 
user can access the global clock with zero delay.

• Asynchronous systems: Systems in which users only have access to 
local clocks and messages are not bounded.



Last Year’s Work

• Find a distributed systems model similar to the real world

• Aimed to combine synchronous and asynchronous models

• Created an adversary that got close to the goal



Motivation and Goal

Model Practical Efficient Simple

Synchronous No Yes Yes

Asynchronous Yes No No

Goal
Identify conditions under which a synchronous protocol can 

be converted to an asynchronous protocol

Developers need a method to create less complex protocols that work on real systems



Equivalence of Protocols

A distributed protocol can be understood as a function P(i) where i is an 
input vector containing the input messages for each user. The protocol 
creates an output vector o that specifies the output generated by each 
user. Two protocols are equivalent if their output vectors are identical.

General Algorithm

P(i) → o

P’(i) → o’

o = o’

Distributed Algorithm

P(i, α) → o

P’(i, α’) → o’

∀i, α ∃α′ ∋ o = o′



Clock in Asynchronous Model

We begin by analyzing the impact of the “global clock” part of the 
synchronous model. To do this, we add a global clock to the 
asynchronous model, and observe how that effects the users.

Result
An asynchronous model with a global clock is equivalent to 

the plain asynchronous model

Therefore, the global clock alone does not add synchronicity to the 
asynchronous model.



Redefining Protocols

To improve the simplicity of defining protocols, we prove the following:

• Time-based synchronous model = Round-based synchronous model 
(known)

• Any protocol can be described as a sequence of events

The event-order-based description of the protocols makes it much 
easier for us to prove equivalence, and makes it easier to define 
adversaries



Adversary in Synchronous Model

• A normal adversary can corrupt up to f users, and allows them to 
send any arbitrary message at any time.

• A special adversary can, in addition to the effects of the normal 
adversary, block up to f messages from other users

Result
A synchronous 
system with a 

special adversary 
is equivalent to an 

asynchronous 
system with a 

normal adversary



Equivalence Results



Hierarchy Results

Our research along with our special adversary provide us with a 
method to order distributed system models based on how 
restrictive they are:

This allows for more precise navigation of synchronicity in 
distributed systems overall.



Conclusion

• We determined the extent of the effect of the main restrictions on 
distributed systems
• Global clock

• Time-bounded delivery

• Our special adversary combined with the synchronous system acts as 
a structured model to create simpler protocols
• Allows for transformation between synchronous and asynchronous protocols

• Our hierarchy allows developers to precisely alter the synchronicity of 
their models to accurately simulate any distributed system



Future Work

• Can we retain the model hierarchy after removing the normal 
adversary?

• Does the normal adversary effect the efficiency of users in the 
asynchronous model?

• Can we generalize adversary effects to create models of any arbitrary 
strength?

• Other than the protocols we have already tested, which other 
distributed systems protocols can be converted to synchronous or 
asynchronous given our models?



Acknowledgements

• Jun Wan, my mentor, for his invaluable insight and guidance

• Srini Devadas for supporting me throughout the research journey

• Elaine Shi for providing critical feedback on application of our work

• Yu Xia for his generous comments on how to develop our work

• Slava Gerovitch and the entire MIT PRIMES program for giving me this 
opportunity



Bibliography

• [BFA21] Raul Barbosa, Alcides Fonseca, and Filipe Araujo. “Reductions and abstractions for formal verification of 
distributed round-based algorithms”. In: Software Quality Journal (2021), pp. 1–27.

• [Can+96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. “Adaptively secure multi-party computation”. In: 
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 639–648.

• [CD+15] Ronald Cramer, Ivan Bjerre Damg ̊ard, et al. Secure multiparty computation. Cambridge University Press, 2015.

• [CL85] K Mani Chandy and Leslie Lamport. “Distributed snapshots: Determining global states of distributed systems”. In: 
ACM Transactions on Computer Systems (TOCS) 3.1 (1985), pp. 63–75.

• [Cri91] Flaviu Cristian. “Reaching agreement on processor-group membership in synchronous distributed systems”. In: 
Distributed Computing 4.4 (1991), pp. 175–187.

• [Del+07] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Bastian Pochon. “The perfectly synchronized 
round-based model of distributed computing”. In: Information and Computation 205.5 (2007), pp. 783–815.

• [MMR14] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. “Signature-free asynchronous Byzantine consensus 
with t¡ n/3 and O (n2) messages”. In: Proceedings of the 2014 ACM symposium on Principles of distributed computing. 
2014, pp. 2–9.


