An Introduction to Matrix
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Matrix Basics

Assume all matrices are square.

e Determinant of n x n matrix = n-dimensional volume of the parallelepiped spanned
by column vectors
e Asquare matrix has nonzero determinant if and only if it is invertible.

e Invertible matrices consist of Linearly Independent columns

o  All pointsinthe range of the matrix transformation are a result of a unique point in the
domain

An example is shown below of a possible map.




Matrix Transformations

- We can specify linear transformations using matrices
- Three basic types of linear transformation: Rotation, Reflection, and Dilation.

Definition 4.1. A rotation matrix M describes a rotation aboul an axis through an
angle 0. 1( 0 = %, then M" = I.

Definition 4.2. Tor a reflection, there is a basis in which the reflection matrix has
all non-diagonal terms as zero, and diagonal terms as 1 depending on the plane the

refllection is based oll ol
Definition 4.3. A dilation is given by a matrix AJ, where A is the scale factor.

Note that if M is a rotation of a angle 0« such that 0 is rational, there always exists
an integer n such that M™ = 1.



The Exponential and Logarithmic Functions for
Matrices

- Todescribe rotations, we use the Matrix Exponential

- The key definition is the following: The exponential function, Exp(X), and the
logarithm function, Log(X), are defined by power series.

- Thedefinition of the Exp and Log functions, in mathematical terms, are:

— 1 . — (—1)*!
Exp( X) = L FX” and Log(I + X) = L LX”.

- . n!
n=0) =)



The Exponential and Logarithmic Functions for
Matrices (cont.)

These are plots of what Exp(X) might look like for a two-dimensional matrix acting on the vector <1, 0>, with
the S values corresponding to the number of terms in the summation used. Note the convergence of Exp.
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Logarithmic Summation Plots of Matrices

For logarithmic plots, they are much different. Some sequences converge while others diverge.

These are plots of what Log(1+X) might look like for a two-dimensional matrix acting on a unit
vector, with the S values corresponding to the number of terms in the summation used.
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Exponential Function by Addition and Power
Series

To check the theory behind these definitions, let’s [irst take Exp(X). We note that Exp

is obviously closed under addition of multiples of X, and multiplying gets

ol |
Exp(aX)Exp(bX) § j— X — X |
xpla xp(b ( - ) (LZI- )y )

-_0
- -~ . - . - L " A .
So, for all X™ terms, the coellicient we have is going to be Y, ﬁ?r‘:j'ﬁ Each term is
the a*0"* term in (a + b)" for all k, so we have that
nlakpn—Fk Y p—k (a+ b)"
= (a B = Z =
" El(n — k) El(n—k)! n!

meaning that

L ;
Exp(aX)Exp(bX) = Z (u_+l X* = Exp((a + b) X).
k=0

An intuitive reason on why this works is because of Maclaurin series upon ¢* - because

a+b = (:Tu(,'b

we know that e and Exp is just powers ol e with respect to malrices.



Diagonalizing a matrix: Exp and Log

As shown below, if amatrix A7 — P-!'pp for some invertible matrix P, we have an interesting
equation for Exp(M”k).

We notice that

‘ o MR P-EtpEp . PipEep
E:lrp(.'\‘[“)—[+.’\[“+9—'+T+,.,_I+ T + = -

Now, we know [rom the previous diagonal matrix identity, that because matrices are
distributive, we can break them up:

. ‘ P—IDZk p—lD:{k
Exp(M*) = (P"' P S +) P

oo P le 3k e A
=P I+ D 4*'.)—"+T+... P=P I:I])(D)P

This lets us arrive at an interesting equation: Since M* = P=1D*P_ then Exzp(P~'D*P) =
P 'Exzp(D*)P.



Representing Rotation Matrices using the Matrix
Exponential

e Note that Exp(Log(R))*k = Exp(kLog(R)) where R is a rotation matrix and k is a
nonnegative integer.

e Only the magnitude of the argument of Exp in the direction of Log (R) varies

e Hence, for asingle input k, we can determine a rotation matrix R. k uniquely defines the
rotation angle.

e We canuniquely compute this angle (done in the next slide)
This rotation group is SO(2), the two-dimensional rotation group. This is a simple example
of a Lie Group.



Here, we are uniquely expressing the Log of a
rotation matrix as a scalar, given by the angle
of rotation, times a constant matrix.

We first write the 90 degree counterclockwise
rotation matrix R, and then proceed to find its
Log with our definitions.

Representing Rotation Matrices using the Matrix
Exponential (cont.)

With motivation [rom 4-cycles of the derivatives ol sin and cos since il the fourth
derivatives of sin and cos are themselves, we lirst notice that if we let the rotation matrix

0 -1
1 0’

4 Rx (mod 1)

BExp(R) = ZZ @0

i=0 j=0

I? represent,

then we note that from above,

which, since

2 —1 0 ey 0 1 . .
i *[() —II'R *[*] “].«m(lR =T,

we see that we can rewrite each element in the matrix as (since the Maclaurin series
revolves around the number 1 here) the following matrix, with a rotation angle:

4 y cos(1) —sin(1) cos(1) —sin(1)
BENR) = [sin(]) cos(1) ] de=Log (Lin(]) cos(1) ])



Representing Rotation Matrices using the Matrix
Exponential (cont.)

A more general expression is shown below:
0 —1]\ [cos(8) —sin(8)
£Zp (6 [1 0 :|> B [sin(@) cos(0) |
cos(9) —sin(d)]\ [0 —1]
Log ([sin(@) cos(6) =% o |

As we noted earlier, the series for Log does not always converge, so the second
formula holds only when the angle is sufficiently small.




Lie Groups: A Generalization of Continuous Matrix
Groups

e A generalization of the study of matrix groups
e Relation to multiple other subjects

o  Geometry - transformations are a big part of Lie Theory

m  Projective Linear Groups & Cross Ratio

o Physics - shows physical system especially particle physics Diagram for interaction of particles
o  Linear Algebra [Source: ]

e Our previous slides about the matrix exponential and logarithmic functions
have discussed a specific realization of the exponential map in Lie Group
Theory.


https://en.wikipedia.org/wiki/Particle_physics_and_representation_theory#/media/File:Standard_Model_charges.svg

Final Remarks

Previously, we identified matrix transformations individually with respect to the rotation
and Exp and Log functions.

With Lie groups, we understand that our previous matrix groups have been subgroups of
the General Linear (GL) group over some vector space

More generally, Lie groups do not always have such a structure!

The exponential map produces a homomorphism from the additive group real numbers to
a “rotation group”, which is a known as a one-parameter subgroup of a more general Lie
group. This, in Lie Theory, can generalize the map of rotations.



Acknowledgements

e Sanjay Raman (my PRIMES mentor) for guiding my work
e Dr.Slava Gerovitch (the PRIMES director) for this amazing opportunity
e Dr. Tanya Khovanova (for PRIMES STEP, which let me gain passion in research)

Thanks for listening to my presentation!



References

e “Introduction to Lie Groups and Lie Algebras” by Alexander Kirillov, Jr.
e “Anintroduction to matrix groups and their applications” by Andrew Baker



