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Hello, my name is Jaeyi Song and I am a freshman.

My interests include science research, music, and playing with
my dog.
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Hi, my name is Sophia Hou and I’m a sophomore.

One fun fact is that I have a younger sister.
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Introduction to Groups

Definition
A group (G ,+) is a set G with a binary operation ∗ that has
three requirements satisfied:

1. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all elements
a, b, c ∈ G .

2. Identity: there is an element e ∈ G in which
a ∗ e = e ∗ a = a for all elements of G . The identity for
groups under multiplication is 1, under addition it is 0.

3. Inverse: For an element a ∈ G , there is the inverse of a
(let’s say b) that satisfies a ∗ b = b ∗ a = e.
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Example

The group (Z/nZ,+), which is the set {0, 1, 2, . . . , n − 1}
under addition taken modulo n, is a group.

1. This set satisfies associativity because addition is
associative. Addition fulfills (a+ b) + c = a+ (b + c).

2. Identity is 0 because for addition, 0 will always be
identity. Identity is any number that produces a for
a+ e = e + a.

3. Inverse of x will be n − x .
This is an example of a cyclic group, which is a special type
of group in which every element can be written as iterated
copies of a single element a called a generator of G .
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Example

The set GL(2,R) of invertible 2 × 2 real matrices is a group
under matrix multiplication.

1. Matrix multiplication is associative, so the binary
operation here is associative.

2. The identity matrix is
(

1 0
0 1

)
.

3. The inverse of the 2 × 2 matrix
(
a b
c d

)
is

1
ad−bc

(
d −b
−c a

)
, which is in GL(2,R).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Example 2

Example

The set GL(2,R) of invertible 2 × 2 real matrices is a group
under matrix multiplication.

1. Matrix multiplication is associative, so the binary
operation here is associative.

2. The identity matrix is
(

1 0
0 1

)
.

3. The inverse of the 2 × 2 matrix
(
a b
c d

)
is

1
ad−bc

(
d −b
−c a

)
, which is in GL(2,R).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Example 2

Example

The set GL(2,R) of invertible 2 × 2 real matrices is a group
under matrix multiplication.

1. Matrix multiplication is associative, so the binary
operation here is associative.

2. The identity matrix is
(

1 0
0 1

)
.

3. The inverse of the 2 × 2 matrix
(
a b
c d

)
is

1
ad−bc

(
d −b
−c a

)
, which is in GL(2,R).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Example 2

Example

The set GL(2,R) of invertible 2 × 2 real matrices is a group
under matrix multiplication.

1. Matrix multiplication is associative, so the binary
operation here is associative.

2. The identity matrix is
(

1 0
0 1

)
.

3. The inverse of the 2 × 2 matrix
(
a b
c d

)
is

1
ad−bc

(
d −b
−c a

)
, which is in GL(2,R).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Example 2

Example

The set GL(2,R) of invertible 2 × 2 real matrices is a group
under matrix multiplication.

1. Matrix multiplication is associative, so the binary
operation here is associative.

2. The identity matrix is
(

1 0
0 1

)
.

3. The inverse of the 2 × 2 matrix
(
a b
c d

)
is

1
ad−bc

(
d −b
−c a

)
, which is in GL(2,R).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Example 3

Example

The free group on two elements ⟨a, b⟩ consists of all words
formed by a, b, a−1, b−1.

1. It is associative because it is essentially concatenation of
words.

2. The identity is the empty word, usually denoted e.
3. The inverse of every word can be formed by reversing

the order and then taking the inverse of each letter.
*Note that this group is not commutative.
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Non-Example

The set Mat2(R) is not a group under multiplication

The set is not a group under multiplication because not every

matrix has an inverse. For example,
(

0 0
0 0

)
does not have a

multiplicative inverse because the determinant is 0.
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Nonexample 2

Non-Example

Integers under multiplication (Z,×) are not a group

This set is not a group because the inverse does not exist.
For instance, there is no inverse of 2 since 1/2 is not a
integer.
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Free Group

Definition
The free group on elements ⟨x1, x2, ..., xn⟩ consists of all
finite-length words formed by x1, x2, ..., xn, x

−1
1 , x−1

2 , ..., x−1
n .

The free group on one element is Z.

The free group on two elements was discussed in Example 3.
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Generators and Relations

Definition
Consider the free group on n elements, x1, x2, ..., xn. Let
r1, r2, ..., rm be elements in this group (these are just words).
The group

⟨x1, x2, ..., xn | r1, r2, ..., rm⟩

is the quotient we get by setting each ri equal to identity.
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Presentation of a Group

Definition
A presentation of a group, G , is an expression of G in terms
of generators and relations (shown in previous slide).
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Example 1

Example

The group Z/3Z has a presentation ⟨x | x3 = e⟩.

The x represents the element 1, so x3 = e just means that
1 + 1 + 1 = 0 (mod 3).
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Example

The group Z2 has a presentation ⟨x , y | xy = yx⟩.

The x and y represent elements (1, 0) and (0, 1), and the
relation xy = yx just means that x and y commute.
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Example

The symmetric group S4 has presentation
⟨x1, x2, x3 | x2

1 = x2
2 = x2

3 = (x1x2)
3 = (x2x3)

3 = e⟩.

The xi represents the transpositions (i , i + 1).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Example 3

Example

The symmetric group S4 has presentation
⟨x1, x2, x3 | x2

1 = x2
2 = x2

3 = (x1x2)
3 = (x2x3)

3 = e⟩.

The xi represents the transpositions (i , i + 1).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Example 3

Example

The symmetric group S4 has presentation
⟨x1, x2, x3 | x2

1 = x2
2 = x2

3 = (x1x2)
3 = (x2x3)

3 = e⟩.

The xi represents the transpositions (i , i + 1).



Group Theory

Sophia Hou and
Jaeyi Song

Introduction

Groups

Generators and
Relations

Fun problems

Propositions

Proposition

Every group has a presentation.

Every group has presentation
⟨{xg | g ∈ G} | xgxg ′ = xgg ′∀g , g ′ ∈ G ⟩. (Note that the
number of generators and relations may be infinite, which is
ok).
This is really large to work with by hand, so our examples
have much nicer presentations!
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Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and
imagine we are living on the R2 plane). You want to loop a
rope around the two poles and connect the ends such that
the rope cannot be removed from the poles. One simple way
to do this is:

However, you want to be able to remove the rope by
removing either one of the poles. In the picture above,
removing a pole does not untangle the rope from the
remaining pole. How can you do it?
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imagine we are living on the R2 plane). You want to loop a
rope around the two poles and connect the ends such that
the rope cannot be removed from the poles. One simple way
to do this is:

However, you want to be able to remove the rope by
removing either one of the poles. In the picture above,
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Problem 1: Loops as group elements

Fix a base point away from the poles.
A loop (beginning and ending at this base point) going
counterclockwise around the left pole is denoted as a and a
loop going counterclockwise around the right pole is denoted
as b.

Loops (beginning and ending at the base point, up to
homotopy) form a group by concatenation, with inverse
being the reverse direction of the loop. This is called the
fundamental group: in this case, the group is ⟨a, b⟩.
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Problem 1: Reformulation in group theory

A loop is an element of this group ⟨a, b⟩.
A loop that is entangled around the poles and cannot be
removed is an element that is not the identity.
Removing the left pole is the same as setting a to be the
identity element. Similarly, removing the right pole is the
same as setting b to be the identity element.
We must find an element x ∈ ⟨a, b⟩ that is not identity, but
when either a or b is set to identity, x becomes the identity.
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Problem 1: Resolution

An element that satisfies these conditions is aba−1b−1.

Generalization: If instead of 2 poles, there are n poles, can
you find a loop which cannot be disentangled, but once any
of the n poles are removed, then the loop can be removed?
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Problem 1: Resolution

Let a1, a2, . . . , an be the generators of the fundamental
group, where ai is the counterclockwise loop around the ith
pole.

Let xn−1 be the solution representing n − 1 poles. The
element xn−1anx

−1
n−1a

−1
n represents the solution for n poles.

Why? When either one of the poles from 1 to n − 1 are
removed, xn−1 becomes the identity and the element
becomes ana

−1
n , which is identity. If the nth pole is removed,

the element becomes xn−1x
−1
n−1, which is also identity.
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The Alphabet group

Let’s consider the free group generated by 26 generators, say
a,b,c,d,...,x,y,z. Now impose the relations of homophones:
that is, for every pair of words which are homophones (i.e.
read and red), set them equal (i.e., read=red, where the
generators are being multiplied). What is this group?
Answer: There are many ways to arrive at the same answer.
Here is one plausible solution.
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Possible Solutions

(1) by = bye =⇒ e = 1
(2) see = sea =⇒ a = 1
(3) buy = by =⇒ u = 1
(4) fir = fur =⇒ i = 1
(5) whole = hole =⇒ w = 1
(6) hour = our =⇒ h = 1
(7) in = inn =⇒ n = 1
(8) knot = not =⇒ k = 1
(9) die = dye =⇒ y = 1

(10) ad = add =⇒ d = 1
(11) all = awl =⇒ l = 1
(12) arc = ark =⇒ c = 1
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Possible Solutions continued...

(13) ate = eight =⇒ g = 1
(14) base = bass =⇒ s = 1
(15) berry = bury =⇒ r = 1
(16) boos = booze =⇒ s = 1
(17) bat = batt =⇒ t = 1
(18) check = cheque =⇒ q = 1
(19) idle = idol =⇒ o = 1
(20) lam = lamb =⇒ b = 1
(21) coo = coup =⇒ p = 1
(22) faze = phase =⇒ f = 1
(23) genes = jeans =⇒ j = 1
(24) flex = flecks =⇒ x = 1
(25) gamma = gama =⇒ m = 1
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Explanation of Solution:

All letters except v are identity. Merriam-Webster finds that
there are also no relations in v , so it turns out the quotient
group is just ⟨v⟩ ∼= Z.
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