Computer science problems.

About the problems. This year’s problems allow you to explore many
aspects of developing efficient programs, including algorithms and data repre-
sentation.

What you need to do.

You may use any programming language you want for your programs, as long
as its full implementation is available at no cost and with an easy installation
for both a Mac and Windows (free trial versions do not qualify). Note that
you are not required to chose the most efficient programming language, but to
develop the most efficient program in the language of your choice.

We will be looking for the following in your submissions:

e Correct code that we can run. You need to send us all your code files,
including the header files for languages like C++. If you are using standard
libraries, make sure to include all “import” statements, as required by the
language you are using. Make sure to send the files under the correct
names, including the file extension (.java, .c, etc). Make sure that the file
names do not contain any identifying information about you, such as your
first or last name.

e Test data for your code that you have used (you can write it in comment
or in a separate file). Make sure to test your code well — you don’t want
it to fail our tests!

e Code documentation and instructions. Important: do not include
your name in comments or in any file names. If you are submitting
your answers to non-code problems in a separate file, also make sure that it
does not have your name in the contents or in the file name. The only place
where you specify your name is the zip file with your solutions which must
be of the form yourlastname-CS-solution.zip (replace yourlastname
by your actual last name). Make sure that you use zip compression,
and not any other one, such as tar. In the beginning of each file
specify, in comments:

1. Problem number(s) in the file. The file name should indicate the
purpose of the file: utilities (such as input/output), a specific data
structure implementation (such as a hashtable), etc.

2. The programming language, including the version (Java 1.12, for in-
stance), the development framework (such as Visual Studio) that you
used, unless you were using just a plaintext editor (notepad, emacs,
etc), and the platform (such as Windows, Mac, Linux)

3. Instructions for running your program (how to call individual func-
tions, pass the input (if any), etc), either in comments in your pro-
gram file or as a separate file, clearly named. Your program will need
get input from the user in a specified format. You need to clearly
explain how to set internal parameters, if any.



4. Some of your code may be commented out if it is not used in the
final run of your program. Make sure it is clear what needs to be
uncommented to run code for each of the problems.

5. All of your test data.

6. If you were using sources other than the ones listed here (i.e. text-
books, online resources, etc) for ideas for your solutions, please clearly
credit these contributions. This is a courtesy to work of others and
a part of ethics code for scholars.

7. Make sure that you clearly specify where input files are supposed to
be located, provide an example input file and an example of how the
file name would be specified in the input. Use relative paths (from
the top of the project or from the executable), not absolute paths.
All input files must have an extension .in, all output files
an extension .out.

8. Documentation (in comments or in a separate document) that in-
cludes the following:

(a) Why your program always produces a correct solution.

(b) Efficiency of your program in terms of O(n), where n is the size
of the input, in the worst case. Make sure to specify what kind
of data constitutes the worst case.

(c) If the worst case happens rarely, explain what the expected effi-
ciency is (you don’t need the exact computation of the expected
efficiency: informal reasoning is fine, as long as it’s clear and
refers to the code and data patterns).

(d) A list of programming choices and optimizations that you made
to reduce the running time.

e (lear, understandable, and well-organized code. This includes:

1. Clear separation between problems and functions; comments that
help find individual problems and explain how to run the correspond-
ing functions.

2. Breaking down code into functions that are clearly named and de-
scribed (in comments), using meaningful names for variables and
function parameters. Your code should be as self-explanatory as
possible. While using comments helps, naming a variable average
is better that naming it x and writing a comment “x represents the
average”.

3. Minimization of code repetition. Rather than using a copy-paste
approach, use functions for repeated code and reuse these functions.

4. Using well-chosen storage structures (use an array or a list instead of
ten variables, for instance) and well-chosen programming constructs
(use loops or recursion when you can, rather than repeated code).



Problem 1. The program input is a string of non-zero digits, for instance
365

Your goal is to partition these digits into (possibly multi-digit) numbers to
maximize the combined number of prime divisors in the sequence. Repeated
divisors are counted as many time as they appear.

For instance, for the example above you can partition it into the three single-
digit numbers 3,6,5, where commas indicate where the partitions are. In this
case there are four prime divisors 3,2, 3, and 5 since 3 and 5 are prime, and 6 is
the product of 2 and 3. I will be writing divisors as multisets (sets with repeated
elements), so the divisors in this case are {2,3,3,5}. Just like in sets, the order
of elements in multisets doesn’t matter, and I am writing them in increasing
order.

Another way of partitioning is 36,5. In this case 36 can be factored into
{2,2,3,3}, and 5 is prime, so the multiset of prime divisors for 36,5is {2, 2, 3,3, 5},
which is larger than the multiset of four elements in the partition 3,6,5.

There are two more partitions:

e 3,65 with the multiset of three elements {3, 5,13} (since 65 =5 - 13)
e 365 treated as the entire 3-digit number, with the multiset {5, 73}.

Thus in this case the partition 36,5 produces the largest number of prime
divisors, which is 5.

Your goal is to write a program that, given a string of digits as input (on its
own line, no spaces), will output a partition that produces the largest number of
prime divisors, followed by the number of divisors. In the example given above
the output will be

36,5 5

Note that you don’t need to print out the divisors themselves (although you
might want to implement this feature as a debugging option).
Some details to be mindful of:

e 1 is not a prime number.

e If more than one partition gives the maximal number of elements, printing
any one of them is fine.

e Your program must work on strings of length up to 30 digits. It may run
too long on some of longer strings, and we will use a timeout when running
programs. However, it shouldn’t crash, and should still in principle output
a correct answer if it ever finishes.

e Your program must always produce a correct answer. Using heuristics,
even with a high degree of certainty, is not allowed. For this reason prob-
abilistic primality testing is not allowed.



e Your goal is to write a program that produces an answer within a rea-
sonable amount of time on as long of an input string as possible. Think
of what kinds of cases may make it too slow and what you can do about
those.

e If you are using multisets as data structures, you need to implement your
own. Don’t use libraries, even if they exist.

In addition to your program code and instructions for how to run it, you need
to submit a write-up (in comments or in a separate document) that explains
the following;:

1. Why your program always gives a correct answer.

2. What is the worst case efficiency of your program as O(n), where n is the
number of digits in the input string. Clearly explain what kind of data
results in the worst case. See [I] or [2] for definition of O(n).

3. If the expected (common) case when given a randomly chosen string of n
non-zero digits is different from the worst case, please explain what it is
and why. This part doesn’t need to be completely formal, but needs to be
very clear. You may want to address it in conjunction with the next item.

4. The point of the problem is optimization, so please describe and justify
all decisions that you made in order to make your program run faster
(these may include choices of data structures and data representation,
choices of algorithms and their stopping conditions, etc.).

You can get some ideas for optimizations in [I] and/or any other algorithms
book. Make sure to cite your references, including online ones.

Problem 2. The program also takes input as a string of non-zero digits. Ad-
ditionally it takes a number between 1 and the multi-digit number represented
by the string.

Just as in the previous question, the program considers all possible ways of
partitioning this string into smaller numbers. However, your goal is to find a
partition that multiplies to the given number. For instance, the input

365 180

prints the partition 36, 5.
Note that for many combinations there is no solution. For instance, the
input

365 185
doesn’t have a solution. In this case your program should print

No solution.



Note that the input number is chosen between 1 and the integer represented by
the string with no partitions (in this case, 365).

Your goal is not only to find the combination quickly if it exists, but also
to quickly discover that there is no solution when there is none. If the input
number is selected at random, there will be more No solution cases than those
for which the solution exists. It may be that some cases for which a solution
exists take a long time to run for long sequences, but you should attempt to
optimize it for as large percentage of cases as possible.

As in the previous problem, please submit explanations of

1.
2.

Why your program always gives a correct answer.

What is the worst case efficiency of your program as O(n), where n is the
number of digits in the input string. Clearly explain what kind of data
results in the worst case.

If the expected (common) case when given a randomly chosen string of
n non-zero digits and a randomly (uniformly) chosen number between 1
and the multi-digit number represented by the string is different from the
worst case, please explain what it is and why. This part doesn’t need to be
completely formal, but needs to be very clear. You may want to address
it in conjunction with the next item.

The point of the problem is optimization, so please describe and justify
all decisions that you made in order to make your program run faster
(these may include choices of data structures and data representation,
choices of algorithms and their stopping conditions, etc.).

Happy programming!

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edi-
tion, 2009.

[2] Michael Sipser. Introduction to the Theory of Computation. Course Tech-
nology, Boston, MA, third edition, 2013.



