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Posets

Definition

A partially ordered set, or poset, is a set P following the properties:

1 Certain elements x , y ∈ P are relatable under the binary
relation ≤.

2 If x ≤ y and y ≤ x then x = y .

3 If x ≤ y , and y ≤ z , then x ≤ z .

Definition

In a poset P, an element y covers an element x if x ≤ y , and there
doesn’t exist a distinct element z such that x ≤ z ≤ y . We write
x l y .
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Hasse Diagrams

Figure: The Hasse diagram of the
set of subsets of (x , y , z)

Posets can be represented in
diagrams called Hasse diagrams,
which appear like directed
graphs. An arrow points from
the smaller element to the
larger element.
In this example, the relation ≤
is equivalent to the inclusion
relation ∈.
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Example: Young’s lattice

Figure: The Hasse diagram of
Young’s lattice Y up to rank 5.

Young’s lattice Y is the poset of
integer partitions, non-increasing
ordered tuples λ = (λ1, . . . , λn).
These are represented visually by
upper-left justified sets of boxes.

An element of Y is greater than
another element of Y if each row is
at least as large as the equivalent
row in the other element.
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Differential posets

Definition (Stanley)

An r -differential poset P is a poset satisfying the following:

1 P is locally finite, graded, and has a unique minimal element
Ô.

2 For every two elements x , y ∈ P, the number of elements
covering both x and y is the same as the number of elements
covered by both x and y .

3 If an element x ∈ P covers d elements, then r + d elements
cover x .
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Example: Young’s lattice

Figure: The Hasse diagram of
Young’s lattice Y up to rank 5.

Young’s lattice Y is a
1-differential poset. Y r is the
r -differential poset form of
Young’s lattice, which is the set
Y × Y × Y × . . .× Y︸ ︷︷ ︸

r times

. An

element in Y r is an ordered
r -tuple of elements of Y .
Stanley conjectured that Y r is
the smallest r -differential poset
by size.
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Example: Fibonacci Lattices

Figure: The Hasse diagram of the
Fibonacci lattice Z (2), a
2-differential poset, up to rank 3.

The r -Fibonacci poset, notated
by Z (r), is the differential poset
defined by the
reflection-extension
construction.
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Fibonnaci Reflection-Extension Construction

Figure: Reflecting the element in
row 0 onto row 2

Figure: Extending every element of
row 1 twice
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Fibonnaci Reflection-Extension Construction

Figure: Reflecting row 1 onto row 3 Figure: Extending each element in
row 2 twice
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Enumerative identities

Definition

Define e(x) =
∑

ylx e(y). Equivalently, e(x) equals the number of

paths up from Ô to x .

Many combinatorial and enumerative properties of Young’s lattice
apply to differential posets in general, making them interesting to
study.
For example, the Robinson-Schensted bijection applied to Young’s
lattice tells us that

∑
x∈Pn

e(x)2 = n! for x ∈ Y . However,∑
x∈Pn

e(x)2 = rnn! for any r -differential poset P.
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Enumerative Identities Example: Young’s Lattice

The e(x)’s for the elements of
row 5 of Y are 1, 4, 5, 6, 5, 4,
1. Therefore,∑

x∈Y5
e(x)2 = 12 + 42 + 52 +

62 + 52 + 42 + 12 = 120 = 15 ∗5!
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Enumerative Identities Example: 2-Fibonacci Poset

The e(x)’s for the elements of
row 3 of Z (2), the 2-differential
Fibonacci poset, are
1, 1, 1, 4, 1, 2, 2, 1, 4, 1, 1, 1.
Therefore,

∑
x∈Z(2)3

e(x)2 =
1 + 1 + 1 + 16 + 1 + 4 + 4 + 1 +
16 + 1 + 1 + 1 = 48 = 23 ∗ 3!
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Rank Sizes in Differential Posets

Definition

The rank of an element in a differential poset is the number of
steps taken to reach Ô.

Definition

Define pn to be the number of elements in rank n of a differential
poset P.
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r -Fibonacci Numbers

Definition

The r -Fibonacci numbers Fr (x) satisfy Fr (0) = 1, Fr (1) = r , and
Fr (x) = r · Fr (x − 1) + Fr (x − 2).

Note that if r = 1, we just get the regular Fibonacci numbers.
Since the reflection-extension construction of the r -Fibonacci poset
consists of reflecting the second to last row, and extending r
elements per element in the last row, the rank sizes of the
r -Fibonacci poset are indeed the r -Fibonacci numbers.
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Byrnes’ Theorem

Theorem (Byrnes 2012)

For any r-differential poset P we have:

pn ≤ r
n∑

i=0

pi − (pn−1 − 1),

and therefore pn ≤ Fr (n).

The r -Fibonacci numbers satisfy Byrnes’ inequality, and some
induction is sufficient to show Fr (n) is the maximum rank size of
rank n.
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Uniqueness of the maximal extension

Now, we move on to new results:

Theorem

In a differential poset P, if pn = Fr (n) for some particular n, then
the partial r -differential poset P[0,n] is isomorphic to the
r-Fibonacci poset Z (r)[0,n].
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Future directions

From the fact that the Fibonacci poset is the largest differential
poset, Byrnes hypothesized that the reflection-extension
construction will also give the maximal extension for any partial
differential poset. Equivalently:

Conjecture (Byrnes 2012)

In a differential poset,

pn ≤ rpn−1 + pn−1
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Are there any questions?
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