Introduction to Representation Theory

Victor Luo and Sasha Shashkov

Mentor: Yau Wing Li

May 18, 2019

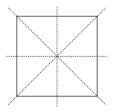
What is a Representation?

Let G be a group. A representation ρ of G with dimension n is a function that assigns every $g \in G$ an $n \times n$ matrix $\rho(g)$, such that

$$\rho(gh) = \rho(g)\rho(h)$$
 (matrix multiplication).

- Equivalently, a representation is a group homomorphism $\rho: G \to GL(n, F)$ (the group of $n \times n$ invertible matrices over F), where F is any field.
- The matrices $\rho(g)$ can be seen as linear transformations acting on an n-dimensional vector space (defined over F).
- In this talk, we will consider finite groups G and take $F = \mathbb{C}$; these representations exhibit nicer properties, as we will see.

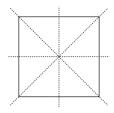
Example: Representation of D_8



Consider the group of symmetries D_8 of the above square, centered at the origin. Because the center is fixed by any symmetry, each element of D_8 corresponds to a 2-dimensional linear transformation, which corresponds to a 2×2 matrix over $\mathbb R$ or $\mathbb C$.

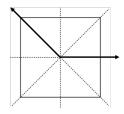
This leads to a 2-dimensional representation of D_8 :

Example: Representation of D_8



Let id be the group identity, r correspond to a 90° counterclockwise rotation, and s correspond to a reflection about the x-axis.

Equivalent Representations



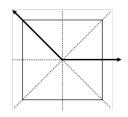
Call two representations ρ_1 and ρ_2 equivalent if they have the same dimension and ρ_2 can be obtained from ρ_1 by a change of basis.

ullet Formally, this means there exists a square matrix ${\mathcal T}$ such that for all $g\in {\mathcal G}$,

$$\rho_2(g) = T^{-1}\rho_1(g)T.$$

Suppose we change our basis from $\{[1,0],[0,1]\}$ to $\{[1,0][-1,1]\}$, as shown. Then this yields an equivalent representation of D_8 :

Equivalent Representations



$$\begin{array}{c|cccc} id & r & r^2 & r^3 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} & \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} & \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix} \\ s & sr & sr^2 & sr^3 \\ \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} & \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix} & \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$$

In this case, our matrix $T = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.

FG-Modules

Let F be a field and G be a group. An FG-module is a vector space V over F with left multiplication by elements of G, such that multiplication by any element g is a linear transformation in V.

There is a correspondence between FG-modules and representations of G:

Theorem

• For any n-dimensional representation ρ over F of G, F^n is an FG-module if for any $v \in F^n$ and $g \in G$, gv is defined as

$$gv = \rho(g)v$$
.

• For any n-dimensional FG-module V with basis \mathcal{B} , then $\rho: G \to GL(n,F)$ is a representation if for all $g \in G$, we define

$$\rho(g) = [g]_{\mathscr{B}}.$$

FG-Submodules

If V is an FG-module, then an FG-submodule of V is any subspace W of V which is also an FG-module.

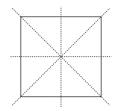
• Equivalently, W is an FG-submodule of V if for all $g \in G$ and $w \in W$, $gw \in W$ (multiplication in V).

For example, the following representation of D_8 corresponds to a $\mathbb{C}D_8$ -module, and has two $\mathbb{C}D_8$ -submodules:

$$\begin{bmatrix} id & r & r^2 & r^3 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \\ sr & sr & sr^2 & sr^3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} & \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} & \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} & \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

FG-Submodules



The two submodules are the subspaces generated by the vectors [2, -1]and [0, 1], respectively. Using the unique basis for each subspace, the corresponding representations of D_8 are:

Reducibility of *FG*-Modules

An nonzero FG-module V is called *reducible* if it has an FG-submodule not equal to $\{0\}$ or V. Otherwise, it is *irreducible*.

• If V is a n-dimensional reducible FG-module with a k-dimensional submodule W, then there exists a basis \mathscr{B} of V such that for all $g \in G$,

$$[g]_{\mathscr{B}} = \left[\begin{array}{c|c} X_g & 0 \\ \hline Y_g & Z_g \end{array} \right]$$

for some matrices X_g, Y_g, Z_g where X_g is a $k \times k$ matrix.

• Then, if we define $\rho(g) = X_g$ and $\phi(g) = Z_g$, both ρ and ϕ are representations of G.

Reducibility of FG-Modules

An nonzero FG-module is called *reducible* if it has an FG-submodule not equal to $\{0\}$ or V. Otherwise, it is *irreducible*.

• This is the same process we used to decompose the $\mathbb{C}D_8$ -module in the previous example:

$$\begin{bmatrix} id & r & r^2 & r^3 \\ \left[\frac{1}{0} \stackrel{\circlearrowleft}{0}\right] & \left[\frac{-1}{1} \stackrel{\circlearrowleft}{0}\right] & \left[\frac{1}{0} \stackrel{\circlearrowleft}{0}\right] & \left[\frac{-1}{1} \stackrel{\circlearrowleft}{0}\right] \\ s & sr & sr^2 & sr^3 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{1} \stackrel{\circlearrowleft}{0} \\ -1 & -1 \end{bmatrix} \quad \begin{bmatrix} -1 \stackrel{\circlearrowleft}{0} \\ 0 & -1 \end{bmatrix} \quad \begin{bmatrix} \frac{1}{1} \stackrel{\circlearrowleft}{0} \\ -1 & -1 \end{bmatrix} \quad \begin{bmatrix} -1 \stackrel{\circlearrowleft}{0} \\ 0 & -1 \end{bmatrix}$$

• Because the top-right entries were all 0, we were able to obtain the red and blue representations.

Direct Sums

We can also combine two FG-modules: if V and W are two FG-modules, then the space $V \oplus W$ also forms an FG-module if we define multiplication as follows:

• For any vector $x \in V \oplus W$, x can be written as v + w for unique vectors $v \in V$ and $w \in W$. Then, define

$$gx = gv + gw$$

for all $g \in G$.

Direct Sums

• For example, if ρ and ϕ are representations corresponding to the $\mathbb{C}D_8$ -modules V and W, then we can obtain the representation $\rho \oplus \phi$ corresponding to the $\mathbb{C}D_8$ -module $V \oplus W$ in the following manner:

$$\rho = \begin{bmatrix} id & r & r^2 & r^3 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$$

$$sr & sr^2 & sr^3$$

$$\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$$

$$\phi = \begin{bmatrix} id & r & r^2 & r^3 & s & sr & sr^2 & sr^3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & [1] & [1] & [1] & [1] \end{bmatrix}$$

Direct Sums

• For example, if ρ and ϕ are representations corresponding to the $\mathbb{C}D_8$ -modules V and W, then we can obtain the representation $\rho \oplus \phi$ corresponding to the $\mathbb{C}D_8$ -module $V \oplus W$ in the following manner:

$$\rho \oplus \phi = \begin{bmatrix} id & r & r^2 & r^3 \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & -2 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$sr & sr^2 & sr^3$$

$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Group Algebra

The *Group Algebra* FG is the |G| dimensional vector space of all expressions of the form $\sum_{g \in G} \lambda_g g$ with multiplication given by

$$(\sum_{g \in G} \lambda_g g)(\sum_{h \in G} \mu_h h) = \sum_{g,h \in G} \lambda_g \mu_h(gh)$$

It is referred to as the *regular FG*-module and the representation which arises from this is the *regular* representation.

Theorem

Write the regular $\mathbb{C}G$ -module as the direct sum of irreducible $\mathbb{C}G$ -modules as

$$\mathbb{C} G = \mathit{U}_1 \oplus \mathit{U}_2 \oplus \ldots \oplus \mathit{U}_r$$

Then every irreducible $\mathbb{C}G$ -module is isomorphic to some U_i .

Group Algebra of D_8

$$D_8 = \langle r, s : r^4 = 1, s^2 = 1, srs^{-1} = r^{-1} \rangle$$

Let $u, v \in \mathbb{C}D_8$ such that

$$u = 3 + r^3 + 2s$$
 $v = 6r + 5sr$

Then

$$uv = (3 + r^3 + 2s)(6r + 5sr)$$

$$= 18(r) + 15(sr) + 6(r^3)(r) + 5(r^3)(sr) + 12(s)(r) + 10(s)(sr)$$

$$= 18r + 15sr + 6 + 5sr^2 + 12sr + 10r$$

$$= 6 + 28r + 27sr + 5sr^2$$

Maschke's Theorem

Theorem

Let F be \mathbb{R} or \mathbb{C} , and let V be an FG-module. If U is an FG-submodule of V, then there is an FG-submodule W of V such that $V = U \oplus W$.

Corollary

V is completely reducible if it can be written as $V=U_1\oplus U_2\oplus\ldots\oplus U_r$, where each U_i is an irreducible FG-module. If F is $\mathbb C$ or $\mathbb R$, then every non-zero FG-module is completely reducible.

Decomposition of Group Algebra

Take $V = \mathbb{C}D_8$, and $U \subset V$ such that

$$U = span\left(\sum_{g \in G} g\right) = span(1 + r + r^2 + \ldots + sr^3)$$

We want to find W such that $V = U \oplus W$.

Taking

$$W = \left\{ \sum_{g \in G} a_g g : \sum_{g \in G} a_g = 0 \right\}$$

gives two G-invariant subspaces whose direct sum is clearly V.

Schur's Lemma

Let V and W be irreducible $\mathbb{C}G$ -modules.

- If $\phi: V \to W$ is a $\mathbb{C}G$ -homomorphism, then either ϕ is a $\mathbb{C}G$ -isomophism or $\phi(v) = 0$ for all $v \in V$.
- ② If $\phi: V \to V$ is a $\mathbb{C}G$ -homomorphism, then ϕ is a scalar multiple of the identity endomorphism 1_V .

Corollary

If every irreducible $\mathbb{C}G$ -module of a finite group G has dimension one, then G is abelian.

Using this fact we can prove that every group of order $|G| = p^2$ is abelian.

Acknowledgements

Thank you to our mentor Yau Wing Li, and all the organizers of PRIMES that provided us with this wonderful opportunity!