Fractals

Hausdorff Dimension, the Koch Curve, and Visibility

Heidi Lei

MIT PRIMES-USA

Mentor: Tanya Khovanova

May 18, 2019

Koch Curve

Koch Curve

Koch Curve

Length of the Koch Curve

Length of the Koch Curve

$$\lim_{n\to\infty} \operatorname{length}(K) = \lim_{n\to\infty} \left(\frac{4}{3}\right)^n = \infty$$

set X	scaling factor c	# of pieces m	dimension dim
line	1/2	2	1
square	1/2	4	2
cube	1/2	8	3

$$\dim_{\mathrm{H}} X = \log_{c^{-1}} m$$

$$\dim_{\mathsf{H}} \mathsf{K} = \log_{\mathsf{c}^{-1}} m = \log_3 4$$

$$\dim_{\mathbf{H}} K = \log_{c^{-1}} m = \log_3 4$$

 $1 < \dim_{\mathbf{H}} K = 1.262 \dots < 2$

 $\dim_{\mathrm{H}} S = \log_{c^{-1}} m = \log_2 3$

$$\dim_{\mathbf{H}} S = \log_{c^{-1}} m = \log_2 3$$

 $1 < \dim_{\mathbf{H}} S = 1.585 \dots < 2$

Visibility

A point *P* in a set *X* is *visible* from a point *V* if there are no other points in *X* on the line segment connecting *P* and *V*.

The collection of all points in X visible from V is denoted X_V .

Visibility

$$\dim_{\mathbf{H}} \mathcal{K}_{(0,\infty)} = \log_3 3 = 1$$

 $\dim_H K_V = ?$

$$V \cdot$$
 $\dim_{\mathrm{H}} K_V = ?$

٧٠

 $\dim_H K_V = ?$

 $\dim_H K_V = ?$

Hausdorff Measure

The s-dimensional Hausdorff measure of a set $F \subset \mathbb{R}^n$ is defined to be

$$\mathcal{H}^{s}(F) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(F),$$

where
$$\mathcal{H}^{s}_{\delta}(\mathit{F}) = \inf \Big\{ \sum_{i=1}^{\infty} |U_{i}|^{s} : \{U_{i}\} \text{ is a δ-cover of F} \Big\}.$$

Hausdorff Dimension

The *Hausdorff dimension* $\dim_{\mathrm{H}} F$ of a set $F \in \mathbb{R}^n$ is defined to be

$$dim_H \textit{F} = inf\{\textit{s} \geq 0: \mathcal{H}^{\textit{s}}(\textit{F}) = 0\} = sup\{\textit{s}: \mathcal{H}^{\textit{s}}(\textit{F}) = \infty\}.$$

Preliminary Results

• $\dim_{\mathrm{H}}(\mathsf{K}_{\mathsf{V}_{\infty}})=1$ when V_{∞} is an arbitrary point at infinity.

Preliminary Results

- $\dim_{\mathrm{H}}(\mathit{K}_{\mathit{V}_{\infty}})=1$ when V_{∞} is an arbitrary point at infinity.
- $\dim_{\mathrm{H}}(K_{V}) = 1$ when V lies in the shaded regions.

Preliminary Results

- $\dim_{\mathrm{H}}(\mathit{K}_{\mathit{V}_{\infty}})=1$ when V_{∞} is an arbitrary point at infinity.
- $\dim_{\mathrm{H}}(K_{V}) = 1$ when V lies in the shaded regions.

Future Research

• Calculate the Hausdorff dimension of K_V for any $V \in \mathbb{R}^2$.

Future Research

- Calculate the Hausdorff dimension of K_V for any $V \in \mathbb{R}^2$.
- Calculate the Hausdorff dimension for other fractals with visibility conditions.

Future Research

- Calculate the Hausdorff dimension of K_V for any $V \in \mathbb{R}^2$.
- Calculate the Hausdorff dimension for other fractals with visibility conditions.
- Generalize the results: for a fractal F, when is $\dim_{\mathrm{H}}(F_V) > 1$?

Acknowledgments

- PRIMES
- Dr. Tanya Khovanova, for mentoring this project
- Prof. Larry Guth, for suggesting the problem
- Friends and family

References

[1] K. Falconer, *Fractal Geometry: Mathematical Foundations and Applications*. John Wiley & Sons, 2004.