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ABSTRACT

Unified Parallel C++ (UPC++), a C++ library, attempts to address the programming difficulty introduced
by distributed parallel systems and still take advantage of the model’s high scalability by exposing an API
that represents the distributed memory as a contiguous global address space, similar to that of a shared-
memory parallel system. Though previous work, including the various benchmarks by UPC++ developers, has
demonstrated the library’s effectiveness in simple tasks and in porting distributed-memory parallel algorithms
that are often implemented in OpenMPI, there lacks an assessment of the ease and effectiveness of porting
shared-memory parallel algorithms into UPC++. We implement a number of graph algorithms in OpenMP, a
common shared-memory parallel library, and port them into UPC++ in a locality-aware, communication-averse
manner to evaluate the convenience, scalability, and robustness of UPC++. Tests on both a single-node, multi-
core system and the NERSC supercomputer (a multi-node system), with a plethora of real and random input
graphs, demonstrate a number of prerequisites for high scalability in our UPC++ implementation: large input
graphs, dense input graphs, and dense operations. Similar tests on our OpenMP implementation function as
control, proving the algorithms’ performance in shared-memory systems. Despite the relatively straightforward
and naive porting from OpenMP, we still achieve competitive performance and scalability in dense algorithms
on large inputs. The porting demonstrates UPC++’s ease of usage and good porting potential, especially when
compared with other distributed libraries like OpenMPI. Finally, we extrapolate a distributed graph processing
system on UPC++, optimized with a hybrid top-down/bottom-up approach, to simplify future distributed graph

algorithm implementations.
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1 INTRODUCTION

Recent years have seen CPU frequency growth slowing down
as Moore’s Law, which estimates that the number of transistors
on a microchip doubles every two years, reaches its physical
limit due to source-to-drain leakage and overheating [1]. The
resulting hardware bottleneck for serial computing has pushed
researchers to increasingly rely on optimizing parallel systems
on both hardware and software levels to improve high perfor-
mance computing. One key metric for such optimization is how
well parallel systems scale, that is, as more and more processors
are added to the system, how much its performance improve.

Within parallel systems, memory can be shared by or distributed
amongst processors. Existing shared-memory parallel systems
are easy to program and often involve nothing more than an
implementation of the pARFoR (parallel for) for most use cases,
but both their runtime and memory scale poorly as the systems
become large. Distributed systems, in which nodes are con-
nected together by a networks instead of any shared memory,
achieve generally better scaling by sacrificing ease of program-
ming. Instead of simply accessing local memory, nodes have to
send messages through the network to read and write on other
nodes’ memory, and the added complexity of message manage-
ment must be handled properly in order translate good hardware
scalability to good production scalability.

Unified Parallel C++ (UPC++) [2] is a C++ library, built on
the model of Unified Parallel C, supporting Partitioned Global
Address Space (PGAS) programming. The library’s memory

model’s goal is to take advantage of the distributed-memory
infrastructure for its memory and processor scalability while
simplifying the programming by logically representing the dis-
tributed system as a shared-memory one.

The original UPC++ paper [2] conducted a number of bench-
marks such as random accessing, and experiments port-
ing distributed-memory parallel algorithms such as like the
OpenMPI-based LULESH [3]. In this paper, we explore
UPC++’s potential for porting shared-memory parallel algo-
rithms, broken down into an evaluation of our porting’s perfor-
mance compared with the original shared-memory implementa-
tion, its scaling, and the ease of porting. We implement common
graph algorithms, including Breadth-First Search, PageRank,
Bellman-Ford, and Connected Components, using OpenMP [4],
a shared-memory library, on C++ and port them into a dis-
tributed version using UPC++ in a manner that maximizes node
operation locality and minimizes communication. We run two
rounds of testing on a variety of real graphs, retrieved from Stan-
ford SNAP Large Network Dataset Collection [5], and random
graphs. First, we test the algorithms on a single-node, multi-
core system, varying the number of nodes used to compare our
UPC++ implementation’s single-node performance and scaling
with OpenMP. Then, we run the same tests on our UPC++ imple-
mentations on a distributed multi-node, multi-core system on the
supercomputing platform of the National Energy Research Sci-
entific Computing Center (NERSC) to investigate our UPC++
implementation’s scaling on a distributed system. We end our
analysis with a discussion of UPC++’s ease of use compared to
traditional distributed parallel systems.
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Finally, we extrapolate from our UPC++ graph algorithm im-
plementations a common compute-reduce round-based design
paradigm for distributed graph algorithms and create a dis-
tributed graph processing system similar to Gemini [6] that
supports dynamic scheduling between the top-down and bottom-
up approach based on frontier size. The system handles the
details of loading and partitioning input graphs, as well as the
optimization and control logic shared by most graph algorithm,
to allow programmers to focus on the unique logic of each
algorithm during implementation.

This work and our experimental results give insight into how and
when to use UPC++. The results confirm that distributed pro-
gramming requires large input data and dense computation tasks
to be effective due to its significant communication overhead,
while shared-memory parallelism is still preferable when pos-
sible. Our relatively simple porting into UPC++ still achieves
good scaling (up to 13.6x 32-node speedup in PageRank) and
even better single-node performance than its OpenMP coun-
terpart provided that the above prerequisites are met. The few
changes needed to port our algorithms demonstrate the UPC++’s
ease of use, thanks to its PGAS memory model and powerful
API, especially when compared to dated yet popular distributed
libraries such as OpenMPL.

2 BACKGROUND

2.1 Parallel Computing
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Figure 1: Serial vs. parallel computing models

Traditional computing is done in a serial model, in which a
single processor handles all the work needed to complete a
program. The program sends a series of instructions to the
processor, and the processor executes them one at a time. Since
computation is serial, the complexity of an algorithm can be
estimated by the total number of instructions sent to a processor
using a Random Access Machine (RAM) model.

Parallel computing, on the other hand, uses a collection of pro-
cessing elements (like the processors in Figure 1(b)) that can
execute different tasks at the same time to cooperate to solve
problems quickly. A major motivation for using parallel com-
puting is to achieve a speedup, given by

execution_time
speedup,, = —_——1 (D

execution_time,,

where execution_time,, is the execution time using p processors.

A parallel system introduces several complications. First, com-
munication between the processors limits the maximum speedup
by adding overhead to the system. Second, the program must
assign work in a balanced manner amongst the processors to min-
imize idle processors waiting on others to finish work. Lastly,
the processors must be coordinated to agree on the current state
of the program and avoid data races.

2.2 Shared-Memory vs Distributed-Memory Parallelism
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Figure 2: Serial vs. parallel computing models

Within parallel computing, there are different models of repre-
senting memory.

Shared-memory parallelism is defined by a common view of the
memory that all the processors share. A common example is a
multi-core personal computer. Inter-processor communication
is fast, as it simply entails accessing the shared memory. It is
easy to program, as all processors share a single view of the
memory and the program does not need to work to share any
data between the processors. However, shared-memory system
does not scale well easily, due to the logistical challenges of
fitting more memory and processors on a single machine without
experiencing significantly decreased memory access speed.

Distributed-memory parallelism lacks the shared memory and
instead connects the processors by a network. One common
example is a cluster of nodes connected together by the internet.
Each node needs to explicitly pass messages along the network
in order to read or write non-local data, and the latency in this
message-passing communication, which is much slower than
memory access, can become a significant overhead if not man-
aged and minimized. Despite these challenges, a distributed
system scales much better, as adding another machine to a net-
work introduces little overhead. Therefore, distributed systems
are frequently used for high-performance computing and for
processing data too big to fit on a shared-memory system.
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Figure 3: PGAS memory model, from UPC++ v1.0 Programmer’s Guide [7]

It must be noted that the two levels of parallelization can and
often are interspersed in a single system. In a cluster, individual
nodes, for example, can each have multiple cores and utilize
them for shared-memory parallelization on a local level.

2.3 Unified Parallel C++

Unified Parallel C++ (UPC++) [2] is a C++ library supporting
high-performance computation by exposing a Partitioned Global
Address Space (PGAS), which maps the local memory of each
thread to a logical partition of a global memory address space.
The programmer can use the same API calls to access data
anywhere on the address space, which is represented using a
special global pointer, whether in reality the data lies on a local
memory address or on a different node connected to by the
network; the library handles the logistics of manipulating local
data in the former case and sending the appropriate message in
the latter case. UPC++ imposes a clear separation between the
global address space and a local private space such that only
values on the shared segment (i.e., values with a global address)
can be shared.

UPC++ runs on physically distributed systems and presents
an abstraction of the distributed memory that imitates shared-
memory parallelism. UPC++ explicitly casts all memory oper-
ations and supports Remote Procedure Call using a system of
FUTURE and PROMISE to encourage programmers to consider the
cost of communication. Additionally, UPC++ provides collec-
tives to manage member nodes efficiently.

Though the library can work with clusters connected through
UDP protocols over general internet, it is mainly designed for
high-performance computing on supercomputer frameworks
such as Cray Systems, whose computing nodes are connected
by dedicated, high-speed network [8]. UPC++ can be used
alongside shared-memory libraries like OpenMP to provide two
levels of parallelization or be mixed with other distributed com-
munication frameworks like OpenMPI.

The original paper on UPC++ [2] has demonstrated excellent
performance at large scale, up to 30,000 cores on Cray XC30. It
shows almost perfect strong scaling on Embree, a distributed ray
tracing software that is mostly embarassingly parallel. A more
recent paper [9] has shown linear weak scaling of distributed
hash tables implemented using UPC++ up to 34816 cores on

Cray XC40. The previous benchmarks are either too generic
or highly specialized and optimized. An evaluation for the
library’s potential as a production tool for more general-purpose,
real-world high-performance computing tasks such as graph
algorithms is called for.

3  METHODOLOGY

We implement two similar versions of a suite of graph algo-
rithms, one using OpenMP, a well-established shared-memory
parallel library, and another using UPC++, which is distributed.
The reason behind an OpenMP implementation is to demon-
strate the efficiency and scalability of the algorithms themselves
and establish a baseline for comparison, which helps us more
effectively comment on how the use of UPC++ affects the final
performance.

3.1 Algorithms

We implement a number of graph algorithms using both UPC++
and OpenMP: Breadth-First Search (BFS), Bellman-Ford, Con-
nected Components, and PageRank.

3.1.1 Breadth First Search

A breadth-first-search looks through an unweighted graph
G = (V,E), starting with a root vertex v € V, and computes a
breadth-first search tree. We frame (and simplify) the algorithm
by computing vector D of size |V|, where D[i] is the smallest
number of vertices between i and v. We define D[v] as 0, and
D[ j] where j is not connected to v as D[ j] = oo.

Algorithm 1 features two implementations of BFS, depending
on the choice between STEPSPARSE and STEPDENSE. The two ver-
sions share a common overall structure. A frontier, including all
the vertices, and all vertices in a frontier are the same distance
away from the root vertex. The computation is divided into
rounds. Each round, the algorithm explores vertices distance
round away from the root vertex—i.e., the unexplored neigh-
bors of the current frontier—, sets their distance values, and
collects them as the next frontier. The top-down and bottom-up
steps both execute the above steps, but they differ in efficiency
depending on the frontier size.
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Algorithm 1 BREADTHFIRSTSEARCH

Algorithm 2 BELLMANFORD

1: procedure BREADTHFIRSTSEARCH(G, V)
2: D « {0, ..., 0}

3: D[v] « 0 » All distances start at co, but the root node
has distance 0
4: DNext «— D
5: frontier « {v}
6: frontierNext « {}
7: round « 1
8: while frontier # {} do > Done exploring if frontier is
empty
9: STEP «— CHOOSE(STEPSPARSE, STEPDENSE) >
Chooses between top-down and bottom-up
10: Ster(G, frontier, frontierNext, D, DNext, round)
11: frontier « frontierNext
12: frontierNext « {}
13: Swar(D, DNext)
14: DNext «— D
15: round < round + 1
16: return D
17:
18: procedure STEPSPARSE(G, frontier, frontierNext, D, DNext,
round)
19: for v € frontier do > [terate over the frontier
20: for n € v.neighbors do
21: if DNext[n] = co then » If vertex is not set yet,

round < DNext[n]

22: DNext[n] < round

23: frontierNext < frontierNext U {n}

24

25: procedure STEPDENSE(G, frontier, frontierNext, D, DNext,
round)

26: forve G.Vdo > Iterate over all vertices

27: if DNext[v] = oo then > If vertex is not set yet,

check if any neighbor is explored

28: for n € v.neighbors do

29: if n € frontier then

30: DNext[v] « round

31: frontierNext « frontierNext U {v}
32: break

For a small frontier, the top-down step is much more efficient, as
its outer for-loop iterates few elements. However, for a frontier
whose size is a significant fraction of the total vertices, the
sparse step allows the inner for-loop to terminate early and
avoid wasted computation. Previous work [10] has shown that
heuristically minimizing the number of edges scanned each
round by choosing between the two versions can be highly
effective. For simplicity, this paper uses the heuristic function:

SteEPSPARSE  SIZE( frontier) < SIZ%OG'V)

STEPDENSE  otherwise

STEP { @

A few notes are due here. First, for BFS, we can get by without
using two copies of D, but we choose not to for conformity
with the overall architecture of the other algorithms. Second, all
the algorithms discussed work on directed graphs just as easily.
Simply modify v.neighbors in STEPSPARSE to v.out_neighbors

1: procedure BeLLMaNForD(G, V)

2: D « {co, ..., 0}

3: D[v] « 0 » All distances start at co, but the root node
has distance 0

4 DNext «— D

5 frontier «— {v}

6: frontierNext « {}

7 round « 1

8 while frontier # {} & round <|G.V|do > Done
exploring if frontier is empty or there are negative loops

9: StEP < CHOOSE(STEPSPARSE, STEPDENSE) >

Chooses between top-down and bottom-up

10: StEP(G, frontier, frontierNext, D, DNext, round)

11: frontier < frontierNext

12: frontierNext « {}

13: Swap(D, DNext)

14: DNext «— D

15: round < round + 1

16: if round = |G.V| then

17: return "Negative Loops" > There are negative
cycles

18: return D

19:

20: procedure STEPSPARSE(G, frontier, frontierNext, D, DNext,
round)

21: for v € frontier do > [terate over the frontier

22: for n € v.neighbors do

23: if D[v] + G.W|[v, n] < DNext[n] then

24: DNext[n] <« D[v] + G.W[v,n] » Relax the
edge if possible

25: frontierNext « frontierNext U {n}

26:

27: procedure STEPDENSE(G, frontier, frontierNext, D, DNext,
round)

28: forve G.Vdo > Iterate over all vertices

29: for n € v.neighbors do

30: if n € frontier then

31: if D[n] + G.W[v,n] < DNext[v] then
32: DNext[v] < D[n] + G.W[v,n]
33: frontierNext « frontierNext U {v}

and v.neighbors in STEPDENSE to v.in_neighbors. We stick with
undirected graphs in our pseudocode for clarity.

The other graph algorithms implemented can all be treated with
this frontier-round and hybrid top-down/bottom-up method. We
discuss them briefly below.

3.1.2  Bellman-Ford

Bellman-Ford computes the distance of the shortest path be-
tween a root vertex v and each vertex, as a distance vector D.
It takes a weighted graph G = (V, E, W), in which the weight
vector W represents the distance of each edge.

Note that allowing the existence negative weights would possibly
lead to negative cycles. A simple heuristic determines their
existence: if the algorithm runs for more than |V| rounds, there
must be a negative cycle. As each round relaxes all edges once,
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Algorithm 3 CoNNECTEDCOMPONENTS

Algorithm 4 PAcERANK

1: procedure CoNnNECTEDCOMPONENTS(G)

2: D <« {1,2,...,|G.V|} » Vertices start in own component
3: DNext < D
4: frontier < {1,2,...,|G.V|}
5: frontierNext « {}
6: round « 1 > Keeping this variable for consistency
7: while frontier # {} do > Done if frontier is empty
> Chooses between top-down and bottom-up
8: StEP «— CHOOSE(STEPSPARSE, STEPDENSE)
9: Ster(G, frontier, frontierNext, D, DNext, round)
10: frontier « frontierNext
11: frontierNext « {}
12: Swar(D, DNext)
13: DNext < D
14: round < round + 1
15: return D
16:
17: procedure STEPSPARSE(G, frontier, frontierNext, D, DNext,
round)
18: for v € frontier do > [terate over the frontier
19: for n € v.neighbors do
20: if D[v] < DNext[n] then
21: DNext[n] « D|[v]
22: frontierNext < frontierNext U {n}
23:
24: procedure STEPDENSE(G, frontier, frontierNext, D, DNext,
round)
25: forve G.Vdo > [terate over all vertices
26: for n € v.neighbors do
27: if n € frontier then
28: if D[n] < DNext[v] then
29: DNext[v] « DIn]
30: frontierNext « frontierNext U {v}

and a (non-cyclic) shortest path is at most of length V|, any
graph free of negative cycles would be fully explored within |V/|
rounds.

The rest of the details are the same as Algorithm 1.

3.1.3 Connected Components

For an unweighted graph G = (V, E), a connected component
C c V satisfies the requirement that all its vertices can reach
each other through a finite number of edges. The Connected
components algorithms divides all vertices into connected com-
ponents. Namely, it computes a vector D of size |V|, where
vertices in the same component share the same value in D, and
vertices that are not connected have different values in D.

We can use the same setup as BFS. We initialize D[i] = i for all ,
representing our initial assumption that each vertex belongs in a
different component. Each round, we check all edges connected
to the frontier and for each edge connecting vertices v, w, we set
D[v] and D[w] to be min(D[v], D[w]), effectively joining two
components over many rounds. The remaining details of the
sparse and dense steps are immediate.

1: procedure PAGERANK(G)
2 Delgm g en)
3 DNext «— D

4: round < 1

5: maxlters «— M

6: while round < maxlters do > Done after max rounds
7 STEP — STEPDENSE

8 SteP(G, D, DNext round)

9: Swar(D, DNext)

10: DNext «— D

11: round «— round + 1
12: return D

13:

14: procedure STEPDENSE(G, D, DNext, round)
15: forve G.Vdo > Iterate over all vertices

16: DNext[v] < 3
17: for n € v.neighbors do
18: DNext[v] « DNext[v] + ot

3.1.4 PageRank

PageRank is originally used by Google to rank the relative
importance of websites. It takes an unweighted graph G = (V, E)
and a damping factor 0 < y < 1. It maintains a vector D of
length |V|, whose values sum to 1. It initializes the all entries to

be ﬁ and iterates over all vertices until their values converge
onto some arbitrary threshold:
R Dlu]
Dli] = — + —_— 3
u V| Y Z |u.neighbors| )

uev.neighbors

For our purposes, we modify the algorithm so that it ends after a
certain number of iterations to avoid excessively long runtime
during tests.

Since we update all vertices each round, there is no need to
maintain a frontier or have STEPSPARSE. Note, however, that the
frontier-round paradigm used in the other algorithms can easily
be maintained by adding each vertex to the next frontier only
when round < max_iters.

3.2 Implementation

We implement the parallel versions of these direction-optimized
graph algorithms for OpenMP and UPC++. This involves rep-
resenting the data efficiently, parallelizing the serial algorithms,
and, for UPC++, partitioning the data.

3.2.1 Representation

First, to efficiently fit graphs into the memory, we use Com-
pressed Sparse Rows (CSR) representation. For a directed, un-
weighted graph G, we maintain two vectors O (offsets) and £
(edges) with sizes S1ze(G.V) and S1ze(G.E), respectively. For
vertex v that has m neighbors, write

O[v]:{O[v—l]—i-k v>0

0 v=_0 @
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Algorithm 5 PRIMITIVES

Algorithm 6 BREADTHFIRSTSEARCH on OpenMP (helpers)

1: procedure CAS(addr, oldVal, newVal)
2: if xaddr # oldVal then
return false
xaddr < newVal
return true

A A

procedure PrioriTyUppateE(addr, newVal, ORDERING «
lambda a b: a < b)

8: oldVal « =addr

9: while OrpERING(newVal, oldVal) do

10: if CAS(addr, oldVal, newVal) then
11: return true

12: oldVal «— *addr

13: return false

14:

15: procedure PLusScan(Aln, AOut)
> Outputs the cumulative sum of an input array in the output
array

16:

17: procedure Ficter(Aln, AOut, P)
> Outputs values filtered from the input array in the output
array as a continuous block
> Returns the number of values that pass the filter

18:

19: procedure SumFLAGS(Aln)

20: AOut « {0,0,...,0} > |AIn| 0’s
21: PLusScanN(Aln, AOut, lambdat : t)
22: return AOut[|AOut| — 1]
And for k € [0,m — 1],
E[O[v] + k] = G.V[v].neighbors[k] (@)

Each vertex i’s neighbors are {E[k] | k € [O[i], O[i + 1])}. A
weighted graph has another vector W similar to E, where W[k]
is the weight of the directed edge represented by E[k].

Note that the neighbors can be incoming neighbors or outgoing
neighbors for a directed graph. By storing both versions of CSR
representation, we can iterate through or count any vertex’s in-
coming and outgoing neighbors in constant time. We implement
a custom Graph class to abstract these functionalities.

To port our algorithms into UPC++, we need to partition the
graph amongst the distributed nodes when loading. In our
straightforward implementation, we divide the graph evenly, i.e.,
in a system with n nodes, node i owns vertices [i‘nﬂ, (i+ 1)‘,11']
and their edges; in other words, these vertices are local to node
i. When implementing the algorithms, each node only processes
its local vertices.

3.2.2 OpenMP Implementation

Implementing the algorithms for OpenMP requires a number
of parallel primitives. The parallel-for (pArFor) schedules it-
erations of a for loop amongst the processors, and it is built
into OpenMP as a preprocessor directive. Compare-and-swap
(CAS) is an atomic version of the provided pseudocode, allow-
ing safe writing within parallel loops, and it is provided as part
of the standard library of C++. Priority update takes an ad-
dress, a value, and an arbitrary ordering (i.e., the priority part

1: procedure DenseToSparse(denseFrontier, frontierSize,
sparseFrontier)
2: parfor i € [0, frontierSize — 1] do > [terate over the
frontier
3: if denseFrontier[i] then
4: sparseFrontier[i] = i
5: else
6: sparseFrontier[i] = —1
7: FiLter(sparseFrontier, sparseFrontier, frontierSize,
lambda x: x > 0)
8:
9: procedure SparseToDEnse(sparseFrontier, frontierSize,
denseFrontier)
10: parfor i € [0, frontierSize — 1] do > [terate over the
frontier
11: denseFrontier[sparseFrontier[i]] « true
12:
13: procedure STEPSPARSE(G, frontier, frontierNext, D, DNext,
round)
14: parfor v € frontier do > Iterate over the frontier
15: for n € v.neighbors do
16: if CAS(DNext[n], oo, round) then > Atomic
update to avoid repeated entry into sparse frontier
17: frontierNext[n] < n
18: return Fiurer(frontierNext, frontier, |G.V|, lambda x:
x > 0)
19:
20: procedure STEPDENSE(G, frontier, frontierNext, D, DNext,
round)
21: parfor v e G.V do > [terate over all vertices
22: if DNext[v] = co then > If vertex not set yet
23: for n € v.neighbors do
24: if n € frontier then
25: DNext[v] < round
26: frontierNext[v] « true
27: break
28: return SumFLAGS(frontierNext, |G.V|)

of the priority update; one common example is the numerical
ordering of real numbers), and it uses CAS to ensure that the
given address will eventually have a value with at least the same
priority as the given value.

We also use plus scan, which gives the cumulative sum of an
array, and filter, which filters values from an array and packs
those which satisfy a given predicate in another array. Their
parallel implementations are directly taken from the Problem
Based Benchmark Suite [1 1] and therefore not describe in detail.
Lastly, we define a helper function sum flags (SumFLAGs), which
sums the number of true’s in a Boolean array.

Now we’re ready to parallelize the algorithms. Let’s take BFS
as an example. The basic layout is the same as algorithm 1, but
we make a few changes:

1. We change the outer for loops into PARFOR.

2. We atomically write to the D vector using CAS to avoid
data races.
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Algorithm 7 BREADTHFIRSTSEARCH on OpenMP (main)

procedure BREADTHFIRSTSEARCH(G, V)
D « [co,..., 0]
D[v] « 0
DNext «— D

sparseFrontier < [v,—1,—1,...,—1]
sparseFrontierNext < [—-1,—1,...,—1]
frontierSize « 1

denseFrontier < [false, ..., false]
denseFrontierNext < denseFrontier

wasSparse « true
round « 1

while frontierSize # 0 do

shouldBeSparse «— frontierSize <
if shouldBeSparse then
if !wasSparse then

4]
20

> All distances start at oo, but the root node has distance 0

> No need to initialize dense frontier correctly; we start in sparse mode

> Maintain a variable tracking last round’s mode

> Done exploring if frontier is empty
> Chooses between top-down and bottom-up

> Convert if last round was in a different mode

DENseToSpARSE(denseFrontier, |G.V|, sparseFrontier)

wasSparse < true

frontierSize «— STEPSPARSE(G, sparseFrontier, sparseFrontierNext, D, DNext, round)

else
if wasSparse then

> Convert if last round was in a different mode

SearRsEToDENSE(sparseFrontier, frontierSize, denseFrontier)

wasSparse « false

frontierSize «— STEPDENSE(G, denseFrontier, denseFrontierNext, D, DNext, round)

Swar(D, DNext)

DNext «— D
parfor i € [0,|G.V| - 1] do
sparseFrontierNext[i] = —1

denseFrontierNext[i] = false
DNext[i] = D[i]
round < round + 1
return D

> Reset next round’s variables

3. We maintain two versions of the frontier, sparse and
dense, and convert between them as needed using PAR-
FOR.

Specifically, we represent the dense frontier as a Boolean array
of size |V|, where if denseFrontier[i] is true if and only if vertex i
is in the frontier; and we represent the sparse frontier as a vector
of the vertex indices of frontier members. In implementation, it
is represented by an array of size |V| and a frontierSize variable.
The dense version sacrifices some efficiency in enumeration
(which is hardly noticeable when the frontier is dense) for an
efficient membership check, while the sparse version allows for
an efficient enumeration of a small frontier.

Note that in STEPSPARSE, we first treat frontierNext as effectively
a Boolean array, where frontierNext[i] = —1 if vertex i is not in
the frontier, and frontier[i] = i if it is. We then turn this into a
contiguous vector via a call to FILTER.

Moreover, in STEPDENSE, we can directly assign values within
parallel for loops without atomic operations because the within
one round, the values are the same. This is not generally true

for other algorithms, but we can easily use PrioriTYUPDATE to
modify the steps.

As another example, we examine our implementation of con-
nected components. The main body of the algorithm can be
translated from our sketch, Algorithm 3, the similar to the way
BFS is translated. Indeed, the same could be said about all other
algorithms used. Therefore, we only present STEPSPARSE and
StePDENSE of connected components.

3.2.3 UPC++ Implementation

We port the graph algorithm suite into UPC++, keeping the
algorithms’ structure the same our OpenMP version. Each node
maintains a sparse frontier and a dense frontier, which are syn-
chronized at the end of each round along with the value vector
D. In light of the distributed infrastructure, we modify our code
to respect locality. Each node is responsible for processing only
frontier members that are local, adding to the next round’s fron-
tier and updating values as needed. In sparse mode, each node
updates the values of the neighbors of its local vertices. In dense
mode, each node updates the values of local vertices.
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Algorithm 8 CoNNECTEDCoMPONENTS on OpenMP

Algorithm 9 SyNcRouNDSPARSE on UPC++

1: procedure STePSPARSE(G, frontier, frontierNext, D, DNext,
round)

2 parfor v € frontier do > [terate over the frontier
3: for n € v.neighbors do
4: if PriorirYUpPDATE(DNext[n], D[v]) then >
Atomic update to avoid repeated entry into sparse frontier
5: frontierNext[n] < n
6: return FiLter(frontierNext, frontierNext, |G.V|, lambda
x: x> 0)
7:
8: procedure STEPDENSE(G, frontier, frontierNext, D, DNext,
round)
9: parfor v e G.V do > [terate over all vertices
10: for n € v.neighbors do
11: if DNext[v] € D[n] then > No need to
atomically update, as only one thread could update a vertex
at a time
12: DNext[v] « DIn]
13: frontierNext[v] « true
14: return SumFLaGs(frontierNext, |G.V|)

To transfer our OpenMP implementation, we first replace the
generic C++ arrays with the global pointers supplied by UPC++
so that they can be communicated between nodes. A global
pointer [7] represents an address on the global address space,
and if this address also corresponds to a memory address local
to the node, it can be downcasted into a regular C++ pointer.

The main body of the algorithm, except for a change in the
array implementation, is the same as before. Likewise, the
conversion functions between sparse and dense frontiers are
serialized since each node is assumed to be single-core, but
otherwise kept the same. Therefore, parallel primitives such as
Firer and SumFLags are serialized, and atomic operations such
as PrioriTYUppATE and CAS are replaced with computationally
cheaper read and writes that are not thread-safe due to the lack
of local parallelization.

To minimize communication, we aggregate all changes during
each round share results only at the end of the round. For this,
we implement two additional functions, SYNCROUNDSPARSE and
SyNcRoUNDDENSE, to synchronize the frontiers and distances
and reach consensus amongst nodes, which are only invoked at
the end of each round, forming a compute-communicate cycle.

For SyncRouNDSPARSE, since each node may update values of
non-local vertices within each round, finding the true value
involves considering the corresponding array values of all nodes
and reducing them into one consensus value. For this, we use
the UPC++ collective reduce_all, which takes the global array
by the same name and reduces the candidate values into one by
applying a binary operator repeatedly.

Specifically, for reducing the sparse frontier, we use the UPC++
built-in reduction operator op_fast_max to take the maximum
value before applying the filter operation. Recall that, before
filtering, frontier[i] = —1 if vertex i is in the frontier, and
frontier[i] = i otherwise. This reduction effectively unionizes
all the frontiers in our nodes. The value array can be reduced
similarly, though the specific reduction operator varies depend-

1: procedure RepUCEALL(sTC, dst, op)
> UPC++ collective. Reduces each element of an array src
across all nodes and outputs at dst.

b

procedure BARRIER
> UPC++ collective. Blocks execution until all nodes reach
this line.

procedure SyncRounpSparse(frontierNext, DNext)
RepuceALL(frontierNext, frontierNext, MAX)
REDpUCEALL(DNext, DNext, MIN)
BARRIER()

PN

Algorithm 10 SyncRounpDENSE on UPC++

1: procedure BroapcasT(src, origin)
> UPC++ collective. Broadcasts an array src from node
origin.

: procedure SyncRounpDENsE(frontierNext, DNext)

for i € [0, NumNodes — 1] do
BROADCAST(frontierNext[i'nﬂ i+ l)lnﬂ], i)
Broapcast(DNext[i™ : (i + )11, 4)

BARRIER()

NN RERD

ing on the use case. For our algorithms, taking the minimum
value is the desired behavior.

In reality, the reduce_all function returns a future, which we
simply wait to complete. We omit these technical details here.

For SyncRounpDENsE, since each node only update values of
local vertices, the true value for a vertex lies in the node that
owns the vertex. Therefore, reaching consensus means that each
node broadcasts the values of its local vertices. For this, we use
the UPC++ collective broadcast, which takes a global array
and an origin node, and it broadcasts the values of the array at
the origin node to all nodes (and sets their corresponding values
to be the origin node’s values).

4  EXPERIMENT

Our evaluation of UPC++ is twofold.

First, we compare the UPC++ and OpenMP implementations
side-by-side on a single-node, multi-core machine. Though
UPC++ is designed for multi-node supercomputers, this exper-
iment investigates the scalability of UPC++ implementation’s
internal logic without communication latency as a major factor.
Then we benchmark UPC++ on the NERSC supercomputer,
using a multi-node setup to evaluate our graph algorithm suite.
This experiment demonstrates the production scalability of our
UPC++ implementation.

For both setups, we run a strong scaling and a weak scaling
test. Strong scaling is how the runtime varies with the number
of nodes for a fixed problem size. However, since parallel
speedup is ultimately limited by the serial fraction of the code,
it is helpful to understand how the runtime scale as problem
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sizes scale, which motivates us to measure weak scaling. Weak
scaling refers to how the runtime varies with the number of
nodes for fixed problem size per node.

4.1 Setup

Our single-node, multi-core machine is an Amazon Web Service
c5.18xlarge instance. It has 72-core (with hyper-threading) with
32x3.6GHz 2-core Intel Xeon Scalable Processors (Cascade
Lake), 144GB of main memory, and a 14Gbps bus. The OpenMP
code is compiled using g++ 7.3.1 with flags -std=c++11
and -fopenmp set. The UPC++ code is compiled using
UPC++ version 20190900L, with flags -threadmode=seq and
-codemode=03 set.

Our NERSC experiments use the Haswell Compute Nodes. Each
node contains two sockets, with each socket being populated
with a 2.3GHz 16-core Intel Xeon Processor E5-2698 v3 and
128GB of main memory.

Input | # Vertices | # Directed Edges
YouTube | 1.13 x 10° 5.98 x 10°
Orkut 3.07 x 108 2.34 x 108
Friendster | 6.56 x 107 1.81 x 10°
rMat24 3.36 x 107 3.34 x 108

Table 1: Input graphs of the experiments

The input graphs used in our strong scaling experiments are
shown in Table 1. YouTube, Orkut, and Friendster are all undi-
rected user community graphs retrieved from the Stanford Large
Network Dataset Collection [5]. RMat24 is a synthetic graph
with a power-law distribution of degrees [12], generated with
parameters a = 0.5, b = ¢ = 0.1, d = 0.3. For our weak
scaling experiments, we generate rMat graphs of exponentially
increasing number of vertices using the same parameters. The
smallest graph has 1.6 x 10* vertices and 1.8 x 10° directed
edges; the largest graph (32 times the size) has 5.2 x 10° vertices
and 6.3 x 10° directed edges. We added weights to the graphs
by assigning randomly generated integers between 1 and 10 to
each edge, converted the undirected graphs into directed graphs,
and symmetrized the graphs.

4.2  Result

The results of our AWS experiments are shown in Table 2 and
Table 4. We are unable to perform scaling tests on large graphs
such as rMat24 and Friendster, as each process of our UPC++
implementation attempts to create an array of size |V|, and all
these arrays are to be stored in the main memory of our single-
node machine, which leads to insufficient memory. This behav-
ior is as expected, as, in practice, each UPC++ process will be
operating on a separate node that has its own memory.

Performance. As a baseline, we notice consistently good
strong scaling of all four algorithms in their OpenMP imple-
mentation, though the larger graphs scale better. In particular,
YouTube scales the least well due to its small graph size and
low density. This can be explained as small graphs amplify the
effect of algorithm overheads that do not scale, and low graph

density leads to sparse frontiers that are as effectively paral-
lelized as dense ones. This claim is supported by the fact that
the OpenMP BFS achieves good runtime in the weak scaling
test, which mitigates the effect of serial overhead.

In single-core computations, our UPC++ implementation
achieves better runtime across the board, a surprising result
given that UPC++ is designed to accommodate distributed sys-
tems, while OpenMP is written specifically for shared-memory
systems such as this experiment machine, and both implemen-
tations are based on the same overall architecture. This may
be due to the fact that our UPC++ implementation replaced
atomic operations with normal reads and writes, or this may
be indicative of UPC++’s cheaper initialization overheads than
OpenMP.

Our UPC++ implementation scales in the right direction on
Orkut, but not YouTube, and it performs the worst in BFS (in
strong scaling) and Bellman-Ford (in weak scaling). This can
be explained with the same reasoning. Sparse algorithms such
as BFS and Bellman-Ford do not scale well, as they frequently
invoke the sparse step, which needs to be synced at round end by
an expensive reduction step. The unscalable overhead from look-
ing through the aggregate frontier each round and identifying
local members in sparse rounds renders sparse steps much more
expensive in systems with large core count than dense rounds,
which only loop through the entire local frontier range (i.e., ver-
tices [i%, i+ 1)% for process i in an n processor system) no
matter how large the system. This is an inherent issue in directly
porting shared-memory parallel algorithms into distributed in-
frastructures. Note that the dense step is able to scale well due
to our algorithms’ locality awareness.

The results of our NERSC experiments are shown in 3 and 5.
They confirm our hypothesis that our algorithms scale with dense
graphs much more effectively. As in the AWS experiments, BFS
fails to scale well. Overall, the denser a graph is (from densest
to least, Orkut, Friendster, rMat24, YouTube), the better its
scalability. Connected components and PageRank scale much
better than BFS due to their larger frontiers. Our relatively naive
porting is still able to achieve a 13.6x speedup on PageRank with
Orkut, as well as a 7.27x speedup on connected components,
confirming that our dense step is efficient in a distributed setting.

Programmability. With a more careful, fine-grained
distributed-memory implementation of parallel graph algo-
rithms, such as the Gemini system [6], we can achieve much
better results. As it stands, we still gain the capability to
process much larger graphs and easily scale up the system. As
demonstrated by the brevity of our source code, UPC++ is
much easier to use than traditional distributed libraries such
as OpenMPI, which require manual managing of inter-node
messages. The simple, intuitive collective and the future system
hide the details of communication under clear abstractions and
allow for simple, readable code with the same level of control
as OpenMPI.
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# Cores BFS Bellman-Ford Connected Components PageRank
OpenMP | tM | YT | Orkut | Fs | tM | YT | Orkut | Fs | tM | YT | Orkut | Fs t™M | YT | Orkut | Fs
1 102 | 0.21 | 2.67 | 672 | 121 | 097 | 343 | 958 | 89.5 | 0.70 | 30.3 | 2128 | 126 | 098 | 329 | 1753
2 588 | 0.13 | 145 | 248 | 786 | 074 | 182 | 640 | 563 | 049 | 153 | 1336 | 80.4 | 0.73 | 20.8 | 1418
4 357|008 | 1.06 | 16.0 | 57.0 | 0.59 | 9.80 | 159 | 32.8 | 0.34 | 8.45 670 | 48.1 | 0.50 | 12.0 | 901
8 1.83 | 005 | 059 | 166 | 23.1 | 027 | 724 | 312 | 22.0 | 0.24 | 4.62 359 | 289 | 0.34 | 7.11 463
16 0.99 | 0.04 | 037 | 263 | 16.1 | 0.28 | 4.69 92 | 129 | 0.16 | 3.59 183 | 189 | 0.21 | 4.89 | 238
32 0.61 | 0.03 | 025 | 498 | 11.8 | 0.18 | 2.52 54 | 729 0.12 | 1.90 107 | 10.2 | 0.14 | 2.58 136
| 328U | 168|779 | 108 | 134|102 | 550 | 135 | 17.7 | 122 | 594 | 159 | 19.8 | 123 | 6.80 | 12.7 | 12.8 |
| UPC++ | \
1 N/A | 009 | 084 | N/JA | NJA | 047 | 139 | NJA | NJA | 034 | 120 | NJA | NJA | 025 | 8.56 | N/A
2 N/A | 022 | 082 | NJA | NJA | 055 | 844 | NJA | NJA | 034 | 736 | NJA | NJA | 022 | 552 | N/A
4 N/A | 040 | 087 | N/JA | NJ/A | 0.81 | 560 | NJA | NJA | 039 | 477 | NJA | NJA | 025 | 3.71 | N/A
8 N/A | 055 | 084 | NJA | NJ/A | 0.87 | 460 | NJA | NJA | 043 | 3.16 | NJ/A | NJA | 025 | 247 | N/A
16 N/A | 0.82 | 095 | N/A | NJA | 1.39 | 433 | NJA | NJA | 059 | 256 | N/JA | NJA | 027 | 2.02 | N/A
32 N/A | 1.39 | 134 | N/A | NJA | 1.84 | 3.64 | NJA | NJA | 0.80 | 2.04 | N/A | NJA | 035 | 1.75 | N/A
| 32SU | NJA | 007 | 062 | NJA | N/A | 025 | 3.82 | NJA | N/A | 042 | 591 | NJ/A | NJ/A | 071 | 487 | N/A |

Table 2: Strong scaling runtime (in seconds) on the single-node AWS instance. rM is rMat24; YT is YouTube; Fs is Friendster.

32 SU is the speedup achieved by using 32 nodes, calculated as the single-node runtime divided by the 32-node runtime. rMat24
and Friendster were unable to fit in memory during the multi-node UPC++ tests as each process creates a size |V| frontier array.

Table 4: Weak scaling runtime (in seconds) on the single-node
AWS instance using scaling rMat graphs.

# Cores Algorithms
OpenMP | BFS | Bellman-Ford | CC | PageRank
1 0.05 0.49 0.25 0.42
i 882 83421 822 832 # Cores Algorithms
3 0'09 1'01 0‘59 0‘92 OpenMP | BFS | CC | PageRank
16 0.12 1.38 0.86 1.30 1 0.03 | 0.11 0.12
32 0.14 243 1.35 2.25 2 0.09 | 0.25 0.25
4 0.40 | 1.17 0.82
| UPC++ | | 8 | 176|308 190
1 0.02 0.34 0.12 0.09 16 579 | 5.26 3.82
2 0.05 0.62 0.19 0.15 32 264 | 144 9.93
4 0.22 1.04 0.37 0.31
8 0.55 2.38 0.78 0.63 Table 5: Weak scaling runtime (in seconds) on the NERSC
16 1.89 4.66 1.85 1.18 supercomputer using scaling rMat graphs.
32 6.19 11.7 5.34 2.66

# Cores BFS Connected Components PageRank

UPC++ | tM | YT | Orkut | Fs | tM | YT | Orkut | Fs | tM | YT | Orkut | Fs
1 1.71 | 0.08 | 1.61 | 0.64 | 3.11 | 0.41 | 9.75 | 553 | 0.55 | 0.31 | 29.59 | 690
2 5321022 097 | 556|467 | 040 | 645 | 298 | 1.07 | 0.39 | 6.55 | 398
4 6.77 | 0.52 | 1.26 | 99.1 | 9.94 | 042 | 4.92 175 | 2.06 | 0.52 | 3.87 | 266
8 11.8 | 0.88 | 1.52 | 7.81 | 11.7 | 047 | 3.00 | 137 | 298 | 0.81 | 2.78 | 265
16 17.1 | 1.51 | 1.82 | 11.6 | 11.9 | 048 | 245 | 106 | 457 | 098 | 2.47 | 318
32 145|197 | 271 | 17.8 | 12.1 | 0.50 | 193 | 76.1 | 6.03 | 1.34 | 2.18 | 312

| 32SU | 0.12 | 0.04 | 059 | 024 | 0.26 | 0.82 | 5.05 | 7.27 | 0.09 | 0.23 | 13.6 | 2.21 |

Table 3: Strong scaling runtime (in seconds) on the NERSC supercomputer. 32 SU is the speedup achieved by using 32 nodes,
calculated as the single-node runtime divided by the 32-node runtime. rM is rMat24; YT is YouTube; Fs is Friendster. We are
unable to run Bellman-Ford on large graphs due to technical difficulties.
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5 PROCESSING SYSTEM

Motivated by the similar overall structure of all our graph algo-
rithms and by the design of Gemini’s API [6], we implement
a UPC++-based distributed graph processing system that au-
tomates the graph loading, sparse-dense frontier management,
and terminating conditions. The user only needs to provide the
specific interaction logic within a sparse step and a dense step.
The system exports a Graph class that supplies a constructor
and a method, defined in Algorithm 11.

Algorithm 11 Distributed graph processing system in UPC++

1: procedure GrapH(path)
> Loads and partitions a graph amongst nodes from a path.
2:
3. procedure GrapH.ComPUTE(initD, initFrontier, sparseOp,
denseOp)
> Computes a value array D in sparse and/or dense rounds
until the frontier is empty
> Initializes D and frontier
> Each round, iterates the entire sparse/dense frontier and
applies sparseOp/denseOp to each edge connected to the
frontier

Armed with this API, we can easily simplify our UPC++ graph
algorithms. Algorithm 12 gives an example of such a rewriting
for BFS.

Algorithm 12 BREADTHFIRSTSEARCH on our processing system

1: procedure BREADTHFIRSTSEARCH(G, V)
2 procedure INiTD(i)
3 if i = v then
4 return oo
5 else
6: return 0
7.
8 procedure INITFRONTIER (1)
9 returni =v
10:
11 procedure SparseOp(DNext, FrontierNext, src, dst,
round)
12: if DNext[src] = oo then
13: DNext[dst] « round
14: FrontierNext|dst] < dst
15:
16: procedure DenseOp(DNext, FrontierNext, src, dst,
round)
17: if DNext[src] = oo then
18: DNext|src] < round
19: FrontierNext[dst] < dst
20:
21: G.Compute(IniTD, INITFRONTIER, SPARSEOP, DENSEOP)

6 CONCLUSION

In this work, we investigate the potential of porting shared-
memory parallel algorithms into UPC++ by implementing a
suite of parallel graph algorithms in OpenMP and UPC++ and

extensively testing their scaling performance. Our experiments
show that performance and scalability often greatly depend on a
combination of input data, algorithms, and platform. Though dis-
tributed parallel computing requires large input data and dense
computation to be efficient, and shared-memory parallelism is
preferable when data fits in memory, UPC++ still proves itself a
powerful library despite our simple porting. Its well-designed
API, especially when compared to the dated counterpart in Open-
MPI, and global memory model render implementing algorithms
intuitive.

For future work, a closer analysis at the cost of each com-
munication and computation step of our algorithms can yield
more insight. Moreover, one can implement highly-optimized
OpenMPI-based distributed graph algorithms in UPC++ and
compare the two versions as an evaluation of UPC++’s potential
to achieve state-of-the-art performance.
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