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Introduction



The Pell’'s Equation

The Pell equation is the equation of the form x> — Dy? = 1 for
positive integer pairs (x,y) and positive integers D.



The Pell’'s Equation

The Pell equation is the equation of the form x> — Dy? = 1 for
positive integer pairs (x,y) and positive integers D.

Sidenote

We will refer to D as a positive integer that is not a square of an
integer.

- If D is a square number, the equation has no solutions except
(x,¥) = (£1,0)



Brief History

- The equation was studied extensively by Joseph-Louis Lagrange
and John Wallis in the 1700s.

- However, it was named Pell’s equation after John Pell because
Euler miscredited who discovered them first.



Natural Questions

Natural Questions
1. Is it always possible to find a solution (x,y) given any D?
2. If so, how can we describe all such solutions?
3. What if the right hand side is -1 instead of 1?
4. Given D, how do we obtain a solution such that x> — Dy? = 1?



There always exists a pair of integers (x,y) such that x> — Dy? = 1.



When (x,y7) are the positive integer solutions with smallest x,
such that x> — Dy? = 1, every subsequent solutions (X, V) can be
obtained through

Xk +yk\/5 = (X1 +y1\@)k.



For a given D, there does not always exist a pair of integers (X, y)
such that x> — Dy? = —1.



When the continued fraction v/D = [a1,03, 03, -, Gp—_1, Ay, let p and
g be co-prime integers such that g = [a1, 07,03, ...0p—1]. Then, an
integer solution (x,y) to Pell's equation x> — Dy? = 1 is given by

(x,¥) = (p,q) when n is odd

(x,y) = (p* + gD, 2pq) when n is even.



Nuts and Bolts




Auxiliary Lemma 1

Note
x* = Dy? = (x — yvD)(x + yv/D)



Auxiliary Lemma 1

Note
x* = Dy? = (x — yvD)(x + yv/D)

For m that is a given positive number and a fixed D, there exists a
pair of integers (x,y) such that 0 <y < m, and

;
| x—yvVD |< —



Proof Sketch of Lemma 1

Set up

- We will be proving this by contradiction and using pigeon-hole
principle

- Set the pigeons as the solutions (X, yx) = ([kRVD], k)
- Set the holes as the intervals the solutions fall into



Proof Sketch of Lemma 1

Set up
- We will be proving this by contradiction and using pigeon-hole
principle
- Set the pigeons as the solutions (X, yx) = ([kRVD], k)

- Set the holes as the intervals the solutions fall into

Concluding Step

Since there are m pairs of (xg, y) but only m — 1 intervals, there is
an interval that contains two pairs.



Auxiliary Lemma 2

For any given D, there are infinitely many pairs of positive integers
(x,y) such that

;
| x —yVD |< v

1



Proof of Lemma 2

Set Up
- Select arbitrary positive integer m to be m

- There exists some integer pair (xq,y-) such that | x; — y13v/D |< 1
(lemma 1)



Proof of Lemma 2

Set Up
- Select arbitrary positive integer m to be m
- There exists some integer pair (xq, Y1) such that | x; —y1vD |< %
(lemma 1)

Next Steps
* | x—yv/D |< L # 0 because vD is an irrational number
- There exists m, such that | x; — y;vD |> m%
- Repeat the same process with m, instead of m;
- There are infinite pairs of (x,y) such that | x — yv/D |< %



Auxiliary Lemma 3

For any given D, there exists infinite number of pairs of positive
integers (x,y) such that

| X2 — Dy? |< 3VD.



Proof of Lemma 3

Set Up
« X2 = Dy? = (x + vDy)(x — VDy)

- There are infinitely many pairs of integers (x,y) such that
| x=yvD|< ; (Lemma 2)
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Proof of Lemma 3

Set Up
x* = Dy* = (x + VDy)(x — vDy)

- There are infinitely many pairs of integers (x,y) such that
| x=yvD|< ; (Lemma 2)

Next Steps

« For pairs (x,y), (x + vDy)(x — vDy) < ”fy =%+ VD.
- x<yvD+1since [x—yv/D|< ; <1

- Simplifyto £ < vD+ 1 <vD+ VD

* x* = Dy? = (x+ VDy)(x — VDy) < 3vD

14



Auxiliary Lemma 4

For some non-negative integer k, there exists infinitely many pairs
of positive integer pairs (x,y) such that

x> —Dy? = k.



Proof of Lemma 4

Set Up
There exists infinite number of pairs of positive integers (x,y) such
that | x> — Dy? |< 3v/D (Lemma 3)



Proof of Lemma 4

Set Up
There exists infinite number of pairs of positive integers (x,y) such
that | x> — Dy? |< 3v/D (Lemma 3)

Next Steps

- Only a finite number of integers whose absolute value is less
than 3v/D

- Some integer in this interval, k, should have infinite number of
integers that satisfy x> — Dy? = k.



Introduction to Auxiliary Lemmas for Theorem 4

- First we will introduce continued fractions

- Then we will prove lemmas that lead up to Theorem 4:



Introduction to Auxiliary Lemmas for Theorem 4

- First we will introduce continued fractions

- Then we will prove lemmas that lead up to Theorem 4:

When the continued fraction vD = [a4, @3, a3, ..., Gn_1, dy), let p and
g be co-prime integers such that g = [a1, ay, a3, ...ap—1]. Then, an
integer solution (x,y) to Pell's equation x> — Dy? = 1 is given by

(x,¥) = (p,q) when n is odd

(x,¥) = (p” + ¢°D,2pq) when n is even.



What is a Continued Fraction?

Definition
A continued fraction for a real number x is formed by

1
Xn — dp

X1 =X,0n = LXnJ yXn+1 =

for n € N. Following the conventional notation, we write
x = [a,ay,....].



Continued Fractions

Example

Construct the continued fraction for v/2.

19



Continued Fractions

Example
Construct the continued fraction for v/2.

First Term
1< V2 < 2, so taking the floor, a; = 1

19



Continued Fractions

Example

Construct the continued fraction for v/2.

First Term
1< V2 < 2, so taking the floor, a; = 1
Recursion
. _ 1 _ _
X2 = 5 =v2+1,s0a =2
. _ 1 _
Also, X3 = —— =241
. Thel’] X,' = \/§+1 forl> 1,50 \/E: [172727'777] = [17§]

:
V2=14 —F—
2+ —1—

19



Proof Sketch of Lemma 5

The continued fraction expansion of a real number x is periodic if
and only if x is quadratic irrational.

20



Proof Sketch of Lemma 5

The continued fraction expansion of a real number x is periodic if
and only if x is quadratic irrational.

Definition

A real number is quadratic irrational if it is the solution to some
integer-coefficient quadratic equation, i.e., the number can be
expressed as %Tﬁ for some integers P, Q and positive integer D.

20



Proof Sketch of Lemma 5

The continued fraction expansion of a real number x is periodic if
and only if x is quadratic irrational.

Forward Direction
- Must show that real number A = [ay, ..ay, by, ..., by] can be

expressed as
_PxVD

A
Q

- Let B= [b1, bz, ceey bn]

21



Proof Sketch of Lemma 5

Deal with B

B=b1+ ——F—
W+b2++

uB+v 1
* Then B = [z for u,v,w,z integers

- Cross multiply, solve for B using quadratic formula

- B= ’*"f quadratic irrational

22



Proof Sketch of Lemma 5

Deal with B

1
BES bw aF b—w
2+ A ——
bntd

uB+v i
* Then B = [z for u,v,w,z integers

- Cross multiply, solve for B using quadratic formula

- B= ’*"f quadratic irrational

Substitution

A= ai + 7
az @ r+[1\/5
3
D :
A= ﬂ fore,f, g, h integers
g +hvD

Rationalizing, A = M for integers r, s, t as desired 0



Proof Sketch of Lemma 5

Reverse Direction

- Must show only finitely many x; given x;
- letxy = —”{5

- Suffices to show that such x; are periodic

- The following lemma completes proof

23



Proof Sketch of Lemma 6

A reduced quadratic irrational number is purely periodic.

24



Additional Definitions

Definition
A continued fraction is purely periodic if x = [ay, @3, ..a,] for some n.

25



Additional Definitions

Definition
A continued fraction is purely periodic if x = [ay, @y, ..a,] for some n.

Definition
A quadratic irrational number is reduced if it is greater than 1 and
its conjugate is between 0 and —1.

25



Additional Definitions

Definition
A continued fraction is purely periodic if x = [ay, @y, ..a,] for some n.

Definition
A quadratic irrational number is reduced if it is greater than 1 and

its conjugate is between 0 and —1.
Note

- every irrational quadratic number can be reduced by adding or
subtracting an integer

- suffices to prove for reduced quadratic irrationals

25



Proof Sketch of Lemma 6

A reduced quadratic irrational number is purely periodic.

Set Up

cXp=X= P*—Q\/ﬁ reduced quadratic irrational, X' = P*—Q\/ﬁ conjugate
- From definitions, bound P + v/D

X_P+\@

5 >1,50Q< P++vD < 2vD

- Only finitely many (P, Q) such that % reduced quadratic
irrational

26



Proof Sketch of Lemma 6

Recursive Step

- Use recursive formula, plug in x; = P+Q\/5,

X P1+\/5
2=
Q

- Using X' = a; + Xi show x, reduced quadratic irrational, holds
2
for all x;

27



Proof Sketch of Lemma 6

Recursive Step

- Use recursive formula, plug in x; = F“ro\/ﬁ,
P11+ VD
Xy = —————
Q
- Using X' = a; + Xi show x, reduced quadratic irrational, holds
2
for all x;
Periodic

- Finitely many (P, Q) such that ”Tﬁ reduced quadratic irrational
- X; = Xx; for some | # j
- By recursion, X = Xj_it1, X2 = Xiyj42, - Xi = Xj, Xit1 = Xj1,
Xit2 = Xjt3; -
- Sequence periodic with first term x;, thus continued fraction x
purely periodic o



Corollary of Lemma 6

For some sequence of integers a;, vD = [a1, Ty, G3, ..dn)-

28



Corollary of Lemma 6

For some sequence of integers a;, vD = [a1, 03, 3, ..an].

Proof

- +/D quadratic irrational, solution to X2 — D = 0
- VD + {ﬁJ purely periodic

- Thus v/D periodic from second term from Lemma 6

28



Recursive Sequence

Definition
We define a recursive sequence p, and g, for continued fraction
[a1,ay, ..., an]. Note that a; here are not specific numbers, but

variables.

Pn _ [ay,...an].

Gn

29



Recursive Sequence

Definition
We define a recursive sequence p, and g, for continued fraction
[a1,ay, ..., an]. Note that a; here are not specific numbers, but
variables.

Pn

= = [m, ...ap].
Qn lax, ]

Example

We list the first two terms of p; and g;. p1 = a1, p» = a1, + 1.
G1=1,02 = Q2.

29



Auxiliary Lemmas

Let v/D = [a1, @, A3, -.d,] and p, and g, as defined above. Then,

Forn > 2, pp = GnPn—-1+ Pn—2-
Forn >2,qn = anGn-1+ qn-2.

Forn >1, ph—1Gn — PnGn-1 = (=1)".
Xn1Pn+Pn_1

Forn>2,x= pAToRE

30



Auxiliary Lemmas

Let v/D = [a1, @, A3, -.d,] and p, and g, as defined above. Then,

Forn > 2, pp = GnPn—-1+ Pn—2-
Forn >2,qn = anGn-1+ qn-2.

Forn >1, ph—1Gn — PnGn-1 = (=1)".
Xn1Pn+Pn_1

Forn Z 2’ 4= Xn1Qn+Qn—1°

- Use induction to verify

- Important for the following lemma

30



Proof Sketch of Lemma 8

Let vD = [a1, T3, G5, .a5] and let 2 = [ay,..a,4]. Then, (p,q) is a
solution to the equation x> — Dy? = (—1)"~".

31



Proof Sketch of Lemma 8

Let vD = [@, @, @3, -Gp] and let & = [ay, ..a, ). Then, (p,q) is a
solution to the equation x> — Dy? = (—1)"~".

From Lemma 7 #4

VD — Xn+1Pn + Pn—1
XH—HQH + Qn—1

31



Proof Sketch of Lemma 8

Let vD = [@, @, @3, -Gp] and let & = [ay, ..a, ). Then, (p,q) is a
solution to the equation x> — Dy? = (—1)"~".

From Lemma 7 #4

N Xn+1Pn + Pn—1
Xn—HQn + Qn—1

Substitution
Substitute xp1 = vD + {ﬁJ get

VD(VD + LﬁJ )Qn + VDQy_1 = (VD + [ﬁJ )Pn + Pn_1

31



Proof Sketch of Lemma 8

Since /D is Irrational
Pa—1 = DQy - |VD| Py
anﬁ = Pn - \‘\/EJ Qn

32



Proof Sketch of Lemma 8

Since /D is Irrational
Pa—1 = DQy - |VD| Py
anﬁ = Pn - \‘\/EJ Qn

From Lemma 7 #3

- Pa(Ps — | VD] Q1) = Qn(DQy = | VD| Po) = (=1
- Simplifies to (P)? — D(Qp)? = (=1)""
- So p? — Dg? = (—1)"~" as desired

32



Proofs




Proof of Theorem 1

33



Proof of Theorem 1

Theorem 1
There always exists a pair of integers (x,y) such that x> — Dy? = 1.

33



Proof of Theorem 1

Theorem 1

There always exists a pair of integers (x,y) such that x> — Dy? = 1.

Lemma 8

For some non-negative integer R, there exists infinitely many pairs
of positive integer pairs (x,y) such that

X2 —Dy? = k.

33



Proof of Theorem 1

Theorem 1

There always exists a pair of integers (x,y) such that x> — Dy? = 1.

Lemma 8

For some non-negative integer R, there exists infinitely many pairs
of positive integer pairs (x,y) such that

X2 —Dy? = k.

From Lemma 8

For some i and j, there is an infinite number of solutions (X, y) such
that X2 — Dy? = k while x =i (mod k), and y = (mod k).

33



Proof of Theorem 1

Set up
Let (x1,¥1) and (x2,y,) be such solutions.

- X2 —Dy? =R, X5 — Dy5 =R,
© X1 =X, (mod R),

*Vi=W (mod }?)

Division
X =Dyt _ (x4 VDy)0a = vDyr) _
X3 —DY: (x4 vDy:)(x2 — vVDy»)

34



Proof of Theorem 1

Simplification

X1 :l:\/E)ﬁ (X1 ﬂ:\@%)(XﬂFﬁyz)

X, VDY,  (x2 £VDy,)(x2 F VDys)
(x1x2 — Dyry2) £ (Xa¥1 — x1y2)VD
X5 — Dy

(xiX2 — Dyay) = (Xo¥1 — Xay2)VD
o .

35



Proof of Theorem 1

Simplification

X1 :l:\/E)ﬁ (X1 ﬂ:\@%)(XﬂFﬁyz)

X2 £VDy, (X2 £ VDy:)(x2 F VDy,)
_ (¥ = Dyys) £ (Y — x1y2)vD
X5 — Dy

(xiX2 — Dyay) = (Xo¥1 — Xay2)VD
o .

Solution to x> — Dy? =1

(6y) = (X1X2 —kD)ﬁyz 7 XY ;Xﬂ/z)

35



Proof of Theorem 1

Integers?
y = X2Y1 ;Xw)/z.

36



Proof of Theorem 1

Integers?

y = Xo¥1 ;Xw)/z.

X1 =X (mod R), y1 =¥> (mod R). S0, Xoy1 = X1y> (mod R).
Therefore, y and thus x are integers.

36



Proof of Theorem 2

Theorem 2

When (x1,y7) are the positive integer solutions with smallest x;
such that x> — Dy? = 1, every subsequent solutions (x, yx) can be
obtained through

Xk +Yk\/5 =(x1+ V1\@)k~

37



Proof of Theorem 2

Theorem 2

When (x1,y7) are the positive integer solutions with smallest x;
such that x> — Dy? = 1, every subsequent solutions (x, yx) can be
obtained through

X+ ypVD = (X1 + V1\@)k~

Part 1
(Xk, V) are solutions to x> — Dy? = 1.

37



Proof of Theorem 2

Theorem 2

When (x1,y7) are the positive integer solutions with smallest x;
such that x> — Dy? = 1, every subsequent solutions (x, yx) can be
obtained through

X + YeVD = (x1 + y1vD)*.
Part 1
(Xk, V) are solutions to x> — Dy? = 1.

Part 2

(Xk, Vi) are all the solutions to x> — Dy? = 1.

37



Proof of Theorem 2

Part 1 - Base Case
(x4,y1) are solutions to x> — Dy? = 1 by set-up.

38



Proof of Theorem 2

Part 1 - Base Case
(x4,y1) are solutions to x> — Dy? = 1 by set-up.

Part 1 - Inductive Step: kto kR + 1

(Xk + VeVD) (X1 + V1VD) = (XiX + Dy1¥i) + (Xi¥k + Xey1) VD =
Xk+1 + Vet1 VD.

38



Proof of Theorem 2

Part 1 - Base Case
(x4,y1) are solutions to x> — Dy? = 1 by set-up.

Part 1 - Inductive Step: kto kR + 1

(Xk + VeV D) (X1 + y1v/D) = (XiXk + DYayk) + (Xa¥k + Xky1)VD =
Xk+1 + Vet1 VD.

(Xk1: Yer1) = (XaXk + DYaYi, XYk + XpY1)

38



Proof of Theorem 2

Part 1- Inductive Step: Rto kR + 1

1= (x{ — Dy7) (s — Dy3)

= (X1 +y1VD)(Xk + Ve VD) (X1 — y1vD) (X — V&V D)

= [0aXk + DYaYk) + (X1Yk + Xey2) VDI [(X1Xe + Dyayk) — (Xa¥k + Xey1) VD]
= (X1X¢ + DY1Y)* — D(X1Y + Xey1)?

_ 2 2
= X1 — DVietn

39



Proof of Theorem 2

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to X — DY? = 1 that cannot be
described as in theorem statement.

40



Proof of Theorem 2

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to X* — DY? = 1 that cannot be
described as in theorem statement.

Part 2- Building down
1= (X2 = DY?)(x; — DY?) = (X + YVD)(x; — y1VD)(X — YV/D)(x1 + y1VD)

= [(Xx1 — Y\1D) + (Yx1 — Xy1)VD][(Xx1 — Yy1D) — (Yx1 — Xy1)V/D]
= (Xxq — Yv1D)? — D(Yxqy — Xy1)%.

40



Proof of Theorem 2

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to X* — DY? = 1 that cannot be
described as in theorem statement.

Part 2- Building down

1= (X* = DY*)(x — Dy7) = (X + YVD) (% — y1VD)(X — YVD)(x1 + y1vD)
= [(Xx1 — Y\1D) + (Yx1 — Xy1)VD][(Xx1 — Yy1D) — (Yx1 — Xy1)V/D]
= (Xxq — Yv1D)? — D(Yxqy — Xy1)%.

So, (Xx1 — Yy1D, Yx; — Xy1) are solutions.

40



Proof of Theorem 2

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to X* — DY? = 1 that cannot be
described as in theorem statement.

Part 2- Building down

1= (X* = DY*)(x — Dy7) = (X + YVD) (% — y1VD)(X — YVD)(x1 + y1vD)
= [(Xx1 — Y\1D) + (Yx1 — Xy1)VD][(Xx1 — Yy1D) — (Yx1 — Xy1)V/D]
= (Xxq — Yv1D)? — D(Yxqy — Xy1)%.

So, (Xx1 — Yy1D, Yx; — Xy1) are solutions.
By assumption, (Xx; — Yy1D, Yx; — Xy;) should be larger than (X, Y).

40



Proof of Theorem 2

Part 2- Minimality

By minimality assumption, Xx; — Yy; > X. So, § > 215

41



Proof of Theorem 2

Part 2- Minimality
By minimality assumption, Xx; — Yy; > X. So, § > X

X—1°
X2 —DY?=1.50,%=/D+ 7.

41



Proof of Theorem 2

Part 2- Minimality
By minimality assumption, Xx; — Yy; > X. So, % > L

X2 —DY?=1.50,%=/D+ 7.

As Y increases, é decreases.

41



Proof of Theorem 2

Part 2- Minimality

By minimality assumption, Xx; — Yy; > X. So, § > X

X—1°
X2 —DY?=1.50,%=/D+ 7.

As Y increases, é decreases.
Even when (x,y) = (X1, ¥1), the minimal solution, Xf’—{y > )X/{
Contradiction.

41



Proof of Theorem 3

Theorem 3
For a given D, there does not always exist a pair of integers (x, y)
such that x> — Dy? = —1.

Counterexample
D = 4. x* — 4y> = —1. Therefore, X* = 4y? — 1.
x?> =3 (mod 4). Contradiction.

42



Proof of Theorem 4

Theorem 4

When the continued fraction v/D = [a1,03, 03, -, Gp—_1, Ay, let p and
g be co-prime integers such that g = [a1, 07,03, ...0p—1]. Then, an
integer solution (x,y) to Pell's equation x> — Dy? = 1 is given by

(x,¥) = (p,q) when n is odd

(x,y) = (p* + gD, 2pq) when n is even.

43



Proof of Theorem 4

Lemma 8
Let VD = [a1, T, G5, -.ay] and let & = [ay, ..a,1]. Then, (p,q) is a
solution to the equation x? — Dy? = (—1)"".
Solutions
- n=1(mod 2): p> —Dg> =1.

- n=0 (mod 2): p? — Dg?> = —1. Squaring each side,
(p2 _ Dq2)2 — (p2 4 Dq2)2 _ D(2DQ)2 =1

4l



Summary




For every D that is not a perfect square, is there always a nontrivial
solution?

45



For every D that is not a perfect square, is there always a nontrivial

solution?

Theorem 1
There always exists a pair of integers (x,y) such that x> — Dy? = 1.

45



How do we generate all such solutions?

46



How do we generate all such solutions?

Theorem 2

When (x1,y7) are the positive integer solutions with smallest x;
such that x> — Dy? = 1, every subsequent solutions (X, yx) can be
obtained through

Xk +)/k\FD =(x1+ V1\@)k~

46



What if the right hand side is -1?

47



What if the right hand side is -1?

Theorem 3

For a given D, there does not always exist a pair of integers (x, y)
such that x> — Dy? = —1.

47



How do we find a solution?

48



How do we find a solution?

Theorem 4

When the continued fraction vD = [a4, @3, a3, ..., Gn_1, dy), let p and
g be co-prime integers such that % = [a1, 0y, a3, ...an—1]. Then, an
integer solution (x,y) to Pell's equation x> — Dy? = 1 is given by

(x,¥) = (p,q) when n is odd

(x,¥) = (p” + g°D,2pq) when n is even.
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